- 无标题文档
查看论文信息

论文中文题名:

 基于Ratio统计量的相依时间序列均值变点检验及应用    

姓名:

 刘叶    

学号:

 19201103017    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070104    

学科名称:

 理学 - 数学 - 应用数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 数学    

研究方向:

 时间序列分析    

第一导师姓名:

 金浩    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Robust Ratio tests for mean change point detection of dependent time series and its application    

论文中文关键词:

 Ratio统计量 ; 相依序列 ; 均值变点 ; Wild Bootstrap抽样 ; AR(p)模型    

论文外文关键词:

 Ratio test ; Dependent series ; Mean change ; Wild Bootstrap ; AR (p) model    

论文中文摘要:

由于变点问题的普遍存在性和涉及领域的广泛性,使其成为一个热点问题。均值变点是常见的变点问题之一,受到学者们的广泛重视。大量研究表明,如果忽视时间序列中均值变点的存在往往会产生错误的结论,因此对时间序列进行均值变点检验和估计是非常有必要的。

均值变点常用累积和(Cumulative Sum, CUSUM)统计量来检验,而CUSUM统计量需要估计长期方差,且长期方差的估计量在原假设和备择假设下应满足一致性。事实上,这一条件是很苛刻的,即使在误差项独立的情形下也难以实现。当误差项是相依甚至厚尾相依序列时,估计长期方差就更具有挑战性。为此本文采用两个稳健的Ratio检验统计量有效的避免长期方差估计,讨论了时间序列均值变点检验问题,为CUSUM统计量提供有效的替代方法,具体内容如下:

1) 对于传统的高斯相依时间序列,基于两个稳健统计量讨论了时间序列均值单变点和多变点问题。在原假设下,推导得统计量的渐近分布均是Winner过程的泛函,并在备择假设下,证明统计量的一致性。数值模拟表明,本文的两个统计量所得临界值不受相依系数影响,与Horváth的统计量相比本文统计量的经验水平更逼近显著性水平,经验势也更显著。此外,对于均值多变点检验统计量也具有良好的性能。最后通过中国银行股价和鲁北化工股价两个实例,进一步说明本文方法的有效性和可行性。

2) 鉴于许多经济和金融时间序列数据均具有尖峰、厚尾的特征,已不能用传统的高斯分布描述。因而基于两个修正的Ratio统计量讨论了厚尾AR(p)时间序列均值变点问题,在原假设不存在均值变点的情形下,推导得统计量的渐近分布均是Lévy过程的泛函,并在备择假设存在一个均值变点的情形下证明其一致性。同时,借助Wild Bootstrap重抽样方法有效避免厚尾指数估计进而得到统计量渐近正确的临界值。在均值变点存在的情形下,给出了均值变点位置的估计量,并证明其一致性。数值模拟表明,即使对于小样本,修正统计量也表现出很好的性能。特别的,在原假设下两个统计量的临界值均不受厚尾指数和自回归系数影响;在备择假设下,统计量随变点位置,跳跃幅度等突变因素的变化而变化,但不受偏度系数影响。此外,在原假设下统计量S(k)的经验水平表现出更好的稳健性,而备择假设下统计量M(k)则具备更好的显著性,变点估计量也具有良好的精确性。最后通过上海第一百货股价和尼罗河水流量两组实际数据,进一步说明本文统计量的有效性和可行性。

论文外文摘要:

Because of the universality of change point problem and the extensiveness of related fields, it becomes a hot issue. As one of the common change point problems, the mean change point has been paid more and more attention by scholars. A large number of studies have shown that if the existence of mean change point in time series is ignored, it will often lead to wrong conclusions. Therefore, it is very necessary to test and estimate the mean change point in time series.

The mean change point is often tested by cumulative sum (CUSUM) statistics, which need to estimate the long-term variance, and the estimator of the long-term variance should satisfy the consistency under the null hypothesis and the alternative hypothesis. In fact, this condition is very harsh, even in the case of independent error term is difficult to achieve. Therefore, it is more challenging to estimate the long-term variance when the error terms are dependent or even heavy-tailed dependent sequences. For this reason, this paper adopts two robust Ratio statistics to effectively avoid long-term variance estimation and discusses the change point test of time series mean, providing an effective alternative method for CUSUM test statistics. The specific contents are as follows:

1) For the traditional Gaussian dependent time series, the problem of single and multiple mean change point of time series is discussed based on two robust Ratio test statistics. Under the null hypothesis, the asymptotic distribution of the Ratio statistics is deduced as the functional of Winner process, and the consistency of the statistics is proved under the alternative. Monte Carlo numerical simulation shows that the critical values obtained by the two statistics in this paper are not affected by the dependence coefficient. Compared with Horváth, the empirical size of the statistics in this paper is closer to the significance level, and the empirical power is also more significant. In addition, the statistic also has good performance for multiple mean change point. Finally, the effectiveness and feasibility of this method are further illustrated by two examples of the stock price of Bank of China and Lubei Chemical.

2) Since many economic and financial time series data are characterized by sharp peaks and heavy-tailed, they cannot be described by traditional Gaussian distribution. Then, the mean change point problem of heavy-tailed AR(p) time series is discussed based on two modified Ratio statistics. When there is no mean change point in the null hypothesis, the asymptotic distribution of the derived statistics are all functional of the Lévy process, and its consistency is proved under the condition that there is a mean change-point in the alternative hypothesis. The Wild Bootstrap re-sampling method is used to avoid the estimation of the heavy-tailed index and then the asymptotically correct critical value of the statistics is obtained. As a by-product, the mean change point location estimator is given and its consistency is proved. Monte Carlo numerical simulation shows that even for small samples, the modified statistics show good finite behavior. In particular, the critical values of the two statistics are not affected by the heavy-tailed index and autoregressive coefficient under the null hypothesis. Under the alternative hypothesis, the statistics change with the change point location, change magnitude and other mutation factors, but are not affected by skewness parameters. In addition, the empirical level of statistic S(k) shows better robustness under the null hypothesis, while the statistic M(k) shows better significance under the alternative hypothesis, and the change point estimator also shows good accuracy. Finally, the validity and feasibility of the test statistics in this paper are further illustrated by the stock price of No.1 SDS and the Nile river flow.

参考文献:

[1] 朱华亮. 跳跃度变点估计的统计推断研究[D]. 合肥: 合肥工业大学, 2014.

[2] 王黎明. 随机变量变点问题统计推断的若干讨论[D]. 上海: 华东师范大学, 2001.

[3] 谭长春. 变点问题的非参数统计推断及其在金融中的应用[D]. 合肥: 中国科技大学, 2000.

[4] Page E S. Continue inspection schemes[J]. Biometrika, 1954, 42(1): 100-114.

[5] Csörgő M, Horváth L. Limit theorems in change-point analysis[M]. New York: John Wily & Sons, 1997.

[6] 韩四儿, 田铮, 党怀义. 厚尾相依序列均值变点的截尾估计及其收敛性[J]. 工程数学学报, 2006, 23(3): 1031-1038.

[7] Bai J S. Estimation of a change point in multiple regression models[J]. The review of economics and statistics, 1997, 79(4): 551-561.

[8] Bai J S, Lumsdaine R L, Stock J H. Testing for and dating breaks in integrated and cointegrated time series[J]. Journal of Review of Economic Studies, 1998, 65(7): 395-432.

[9] Bai J S, Perron P. Computation and estimation of multiple structural change models[J]. Journal of Applied Econometrics, 2003, 18(1): 1-22.

[10] Bai J S, Perron P. Estimating and testing linear models with multiple structural changes[J]. Econometrica, 1998, 66(1): 47-78.

[11] Mandelbrot B. The variation of certain speculative prices[J]. Journal of Business, 1963, 36(4): 394-419.

[12] 郭卫娟. 正态分布序列均值变点检测的贝叶斯方法[J]. 湖北第二师范学院学报, 2020, 37(8): 8-11.

[13] 彭木慈, 贾秀芹. 长记忆时间序列均值变点的比率检验,青海师范大学学报(自然科学版), 2020, 36(2): 17-22.

[14] Qin R, Liu W. Ratio detection for mean change in α mixing observations[J]. Communications in statistics: theory and methods, 2019, 48(7/9): 1693-1708.

[15] 皮林, 王丹. 无穷方差序列均值变点的Ratio检验[J]. 纯粹数学与应用数学, 2019, 35(3): 370-378.

[16] 金浩, 高奎, 张思. 基于Bootstrap方法的重尾相依序列均值变点Ratio检验[J]. 统计与决策, 2019, 35(23): 11-16.

[17] Shirvani A. Change point analysis of mean annual air temperature in Iran[J]. Atmospheric research, 2015, 160(1): 91-98.

[18] 秦瑞兵, 游悦. 一种线性过程方差变点的比率检验[J]. 河南科学, 2020, 38(1): 33-40.

[19] 张笛, 赵文芝, 杨银倩. 大样本数据中方差变点的两阶段估计方法[J]. 西安工程大学学报, 2020, 34(4): 99-105.

[20] 金浩, 张思, 杨云锋. 基于Bootstrap方法的AR(p)模型方差变点的检验[J]. 数学的实践与认识, 2018, 48(16): 23-30.

[21] Gao Z, Shang Z, Du P, Robertson J L. Variance Change Point Detection Under a Smoothly-Changing Mean Trend with Application to Liver Procurement[J]. JASA: Journal of the American Statistical Association, 2019, 114(Jun. TN.526): 773-781.

[22] Xu M, Wu Y, Jin B. Detection of a change-point in variance by a weighted sum of powers of variances test[J].Journal of applied statistics, 2019, 46(1/4): 664-679.

[23] Daniel K, Agnieszka W, Grzegorz S. Variance change point detection for fractional Brownian motion based on the likelihood ratio test[J]. Physica, A. Statistical mechanics and its applications, 2018, 490(1): 439-450.

[24] 郭娟. 重尾序列持久性变点检验的统计分析[D]. 太原: 山西大学, 2017.

[25] 孙嘉伟. 基于类方差比的持久性变点检验及其应用[D]. 西安: 西安科技大学, 2018.

[26] Qin R, Liu Y. Block bootstrap testing for changes in persistence with heavy-tailed innovations[J]. Communications in statistics: theory and methods, 2018, 47(4/6): 1104-1116.

[27] 储召博. 非恒定方差的长记忆序列持久性变点统计推断[D]. 西安: 西安科技大学2019.

[28] Cerqueti R, Costantini M, Gutierrez L, Westerlund J. Panel stationary tests against changes in persistence[J]. Statistical papers, 2019, 60(4): 1079-1100.

[29] 秦瑞兵, 王文华. 单位根原假设下的持久性变点检验[J]. 山西大学学报(自然科学版), 2020, 43(3): 479-484.

[30] Kejriwal M. A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence[J]. Oxford Bulletin of Economics and Statistics. 2020, 82(3): 669-685.

[31] Wang Z, Wu Y, Zhao L. Change point estimation for censored regression model[J]. Science in China Series A: Mathematics, 2007, 50(1): 63-72.

[32] 陈惠, 汤银才. 已知变点数下二次回归模型方差变点分析[C]. 数理统计与管理, 2005, 24: 147-150.

[33] 钟颖, 田茂再. 稀有事件变点问题的Bayes分析[J]. 统计与决策, 2008, (03): 38-39.

[34] 史晓平, 缪柏其, 葛春蕾. 对称的稳定分布参数变点估计的相合性[J]. 中国科学,A 辑: 数学, 2008, 38(2): 207-215.

[35] Khutortsev V V. On asymptotic description of a probabilistic change point model for a two state discrete markov process[J]. Problems of Information Transmission, 2009, 45(3): 232-241.

[36] Jean F D. A survival model with change-point in both hazard and regression parameters[M]. In: Nikulin M, Commenges D, Huber C(eds)Probability, Statistics and Modelling in Public Health. Springer, Boston, 2006: 136-144.

[37] Srivastava M S, Worsley K J, Likelihood ratio tests for a change in the multivariate normal mean[J]. Journal of Time Series Analysis, 1986, 81(7): 199-204.

[38] Krishnaish P R, Miao B Q, Zhao L C. Local likelihood methods in the problems related to change points[J], Chinese Annals of Mathematics, 1990, 11(2): 363-375.

[39] Bai J S. Least squares estimation of a shift in linear process[J], Journal of Time Series Analysis, 1994, 15(5): 453-472.

[40] Kokoszka P, Leipus R, Change-point estimation in GARCH models[J], Bernoulli, 2000, 6(3): 513-539.

[41] Lee S, Tokutsu Y, Maekawa K, The residual cusum test for the constancy parameters in GARCH(1,1) models, Japan Journal of Statistical Society, 2004, 34(3): 173-188.

[42] Bansal A K, Aggarwa P. Bayes pre-test estimation for the change point of the changing one parameter exponential family[J]. Metron, 2012, 70(1): 41-57.

[43] 韩骏. 小波熵与小波网络在多相流参数测量中的应用研究[D]. 天津: 天津大学, 2010.

[44] Wang Y Z. Jump and sharp cusp detection by wavelets[J]. Biometrika, 1995, 82(2): 385-397.

[45] Chen G M, Choi Y K, Zhou Y. Detections of changes in return by a wavelet smoother with conditional heteroscedastic volatility[J]. Journal of Econometrics, 2008, 143(2): 227-262.

[46] 齐培艳, 田铮, 段西发, 袁芳. 异方差非参数回归模型均值与方差变点的小波估计与应用[J]. 系统工程理论与实践, 2013, 33(4): 988-995.

[47] 胡尧, 邓春霞, 李丽. 非参数回归模型均值与方差双重变点的估计[J]. 应用概率统计, 2018, 34(3): 251-264.

[48] 刘豆,赵文芝. 长记忆时间序列均值多变点的ANOVA型检验[J]. 西安工程大学学报, 2021, 35(3): 123-128.

[49] 付国龙,何明灿. 长记忆时间序列均值多变点滑动比检验及应用[J]. 统计学与应用, 2018, 7(2):79-89.

[50] Wang W, He X, Zhu Z. Statistical inference for multiple change-point models[J]. Scandinavian journal of statistics: Theory and applications, 2020, 47(4): 1149-1170.

[51] 夏志明, 赵文芝. 带未知多个变点的均值突变模型的多阶段估计[J]. 应用数学学报, 2017, 40(6): 931-952.

[52] 赵蕊, 赵文芝, 吕会琴. GARCH(1,1)模型多变点的SupF检验[J]. 纺织高校基础科学学报, 2017, 30(1): 63-68.

[53] Sullivan J H. Estimating the Locations of Multiple Change Points in the Mean[J]. Computational Statistics, 2019, 17(2): 289-296.

[54] Al-Kandari N M, Aly E A A. An ANOVA-type test for multiple change points[J]. Statistical Papers, 2014, 55(4): 1159–1178.

[55] 徐小平, 刘君, 李拂晓. 面板数据中方差多变点的估计[J]. 统计与决策, 2021, 37(12),10-14.

[56] 李扬, 胡尧, 杨超. 基于平滑样条回归的方差变点检测模型[J]. 统计与决策, 2020, 36(14): 15-19.

[57] Yu Y, Liu X, Liu L, Zhao P. Detection of multiple change points for linear processes under negatively super-additive dependence[J]. Journal of Inequalities and Applications, 2019, 2019(1): 1-16.

[58] Albert S, Messer M, Schiemann J, Roeper J, Schneider G. Multi-Scale Detection of Variance Changes in Renewal Processes in the Presence of Rate Change Points[J]. Journal of Time Series Analysis, 2017, 38(6): 1028-1052.

[59] Cho H, Fryzlewicz P. Multiple-change-point detection for high dimensional time series via sparsified binary segmentation[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2015, 77(2): 475–507.

[60] Ma L, Grant A J, Sofronov G. Multiple change point detection and validation in autoregressive time series data[J]. Statistical Papers, 2020, 61(4): 1507-1628.

[61] 梅梦玲, 周菊玲, 董翠玲. IIRCT下指数分布参数多变点的贝叶斯估计[J]. 河南科学, 2021, 39(3): 353-358.

[62] 范元静, 刘赪, 杨航, 夏美美. 基于RJMCMC的泊松分布参数多变点检测[J]. 甘肃科学学报, 2021, 33(5): 1-8.

[63] 胡俊迎. 基于RJMCMC的Gamma分布尺度参数的多变点检测[D]. 合肥: 合肥工业大学, 2017.

[64] 何朝兵. IIRCT下韦布尔分布参数多变点的贝叶斯估计[J]. 机械强度, 2016, 38(03): 522-525.

[65] Yao Y C. Estimating the number of change-points via Schwarz’ criterion[J]. Statistics and Probability Letters, 1988, 6(3): 181-189.

[66] Lee C B. Estimating the number of change points in a sequence independent normal random variables[J]. Statistical and Probability Letters, 1995, 25(3): 241-248.

[67] 韩四儿, 田铮, 武新乾. 一类股市波动性预测模型的多变点检验[J]. 系统工程理论与实践, 2006, 26(3): 94-101.

[68] Hawkins D M. Fitting multiple change-point models to data[J]. Computational Statistics and Data Analysis, 2001, 37(3): 323-341.

[69] Serbinowska M. Consistency of an estimator of the number of changes in binomial observations[J]. Statistical and Probability Letters, 1996, 29(4): 337-344.

[70] Lung-Yut-Fong A, Lévy-Leduc C, Cappé O. Homogeneity and change-point detection tests for multivariate data using rank statistics[J]. Mathematics Statistics Theory, 2011, 12(1): 1-27.

[71] Zou C L, Yin G S, Feng L, Wang Z J. Nonparametric maximum likelihood approach to multiple change-point problems[J]. The Annals of Statistics, 2014, 42(3): 970-1002.

[72] 秦瑞兵, 田铮, 陈占寿. 独立随机序列均值多变点的非参数检测[J]. 应用概率统计, 2013, 29(5): 449-457.

[73] Inclan C, Tiao G. Use of cumulative of sums squares for retrospective detection of changes of variance[J]. Journal of American Statistical Association, 1994, 89(227): 913-923.

[74] Berkes I, Gombay E, Horváth L. Testing for changes in the covariance structure of linear processes[J]. Journal of Statistical Planning and Inference, 2009, 139(6): 2044-2063.

[75] Korkas K K, Fryzlewicz P. Multiple change-point detection for non-stationary time series using wild binary segmentation[J]. Statistica Sinica, 2017, 27(1): 287-311.

[76] 李艳鹏. 基于二元分割的多变点检测及其在金融中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2018.

[77] 夏美美, 赵联文, 范元静, 杨航. 基于二元分割的多变点估计[J], 河南科技, 2020, 38(4): 531-537.

[78] 刘伟, 胡尧, 胡倩. 基于二元分割检测分段线性趋势中的多变点[J], 重庆工商大学学报(自然科学版), 2020, 37(6): 32-38.

[79] Samorodnitsky G, Taqqu M S. Stable non-Gaussian random processes[M]. New York, 1994.

[80] Horváth L, Horváth Z, Hušková M. Ratio tests for change point detection[J]. Institute of Mathematical Statistics, 2008, 63(9): 293-304.

[81] Lo A. Long-term memory in stock market prices[J]. Econometrica, 1991, 59(5): 1279-1313.

[82] Giraitis L, Kokoszka P, Leipus R, Teyssière G. Rescaled variance and related tests for long memory in volatility and levels[J]. Journal of Econometrics, 2003, 112(2): 265-294.

[83] Berkes I, Horváth L, Kokoszka P, Shao Q M. Almost sure convergence of the Bartlett estimator[J]. Periodica Mathematica Hungarica, 2005, 51(1): 11-25.

[84] Berkes I, Horváth L, Kokoszka P, Shao Q M. On discriminating between long-range dependence and changes in the mean[J]. The annals of statistics, 2006, 34(3): 1140-1165.

[85] Cao W H, Jin H. Ratio testing for changes in the long memory indexes[J]. International Business and Management, 2016, 12(3): 62-70.

[86] Shao X F, Zhang X Y. Testing for change points in time series[J]. Journal of the American statistical Association, 2010, 105(491): 1228-1240.

[87] Pešta M, Wendler M. Nuisance-parameter-free changepoint detection in non-stationary series[J]. Test, 2020, 29(2):379-408.

[88] Phillips P C B, Solo V. Asymptotics for linear processes[J]. The Annals of Statistics, 1992, 20(2): 971-1001.

[89] Ibragimov I A, Linnik Y V. Independent and stationary sequences of random variables[M]. Groningen: Wolters-Noordhoff, 1971.

[90] Resnick S I. Point processes, regular variation and weak convergence[J]. Advanced Applied Probability, 1986, 18(4): 66-138.

[91] Beveridge S, Nelson C. A new approach to decomposition of economic time series into permanent and transitory component with particular attention to measurement of business cycle[J]. Journal of Monetary Economics, 1981, 7(2): 151-174.

[92] Fuller W A. Introduction to Statistical Time series[M]. Wiley: New York, 1976.

[93] Bewley R A. The direct estimation of the equilibrium response in a linear dynamic model[J]. Economic letters, 1979, 3(4): 357-361.

[94] Solo V. A simple derivation of the Granger representation theorem[J]. Unpublished manuscript, 1989.

[95] Davis R A, Resnick S I. Limit theory for moving averages of random variables with regularly varying tail probabilities[J]. The annals of probability. 1985, 13(1): 179-195.

[96] Cavaliere G, Georgiev L, Robert Taylor A M. Wild bootstrap of the sample mean in the infinite variance case[J]. Econometric Reviews, 2013, 32(2): 204-219.

中图分类号:

 O211.61    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式