- 无标题文档
查看论文信息

论文中文题名:

 煤仓自燃分级预警与液态CO2应急处置 技术研究与应用    

姓名:

 胡冕    

学号:

 19220089026    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 翟小伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Research and application of coal bunker spontaneous combustion grading early warning and liquid CO2 emergency disposal technology    

论文中文关键词:

 煤仓 ; 煤自燃 ; 二氧化碳 ; 分级预警 ; 应急处置    

论文外文关键词:

 Coal bunker ; Coal spontaneous combustion ; Carbon dioxide ; Graded early warning ; Graded disposal    

论文中文摘要:

       随着我国煤炭开采技术的不断提高,自动化封闭式储煤仓得到广泛应用。其中,储煤筒仓(以下简称为煤仓)最为常见。由于煤仓环境封闭,散热条件差,“烟囱效应”明显,极易发生煤炭自燃。因此,为进一步提高煤仓自燃事故防范与处置能力,本文通过煤自然发火实验和煤仓液态CO2降温实验,研究煤仓煤自燃预警指标、预警技术以及处置技术,并通过实验台模拟应用进行验证。进行了以下的研究:

     (1)利用大型煤自然发火试验台模拟煤仓自然发火全过程,得到了煤仓自燃过程中高温点产生位置和运移规律。分析实验结果表明:高温点产生于煤仓直筒段中部仓壁和锥斗处仓壁煤体粘结区域,并随着煤氧化进程不断向下方供风侧移动;根据煤自燃过程中温度和气体浓度变化规律,建立了以格式系数为主要预警阈值的煤仓自燃分级预警指标体系。

     (2)利用煤仓自燃液态CO2降温实验台,研究了注入液态CO2后煤仓内部高温区域的温度场变化规律。实验结果表明:液态CO2注入煤仓后迅速吸热汽化,各测点温度最大降幅可达170℃,其中二平面平均温度下降33℃;停注静置5h后,煤仓内各高温区域平均温度明显小于初始平均温度,其中二平面平均温度较初始温度下降22.3℃,说明液态CO2对处置煤仓自燃具有优异效果。

     (3)利用Fluent数值模拟软件研究煤仓内气体分布规律,分析煤仓自燃特点以及自燃危险区域。结合煤仓自燃分级预警指标体系和液态CO2防灭火技术,构建了煤仓自燃分级预警与液态CO2应急处置系统,确定了系统布置方案和系统预警处置逻辑,设计了系统的总体架构、控制程序以及上位机功能界面。

     (4)通过改造实验台实现了煤仓自燃分级预警与液态CO2应急处置系统的应用验证,结果表明:当系统发出预警时,处置系统会根据系统发出的预警等级,按照预设的处置措施进行自动操作。应用结果说明该系统监测预警功能精准迅速,应急处置功能及时有效,有效确保了煤仓的安全运转。

论文外文摘要:

         With the continuous improvement of coal mining technology in my country, automatic closed coal storage bins have been widely used. Among them, coal storage silos (hereinafter referred to as coal bunker) are the most common. Due to the closed environment of the coal bunker and the poor heat dissipation conditions, the "chimney effect" is obvious, and coal spontaneous combustion is very likely to occur. Therefore, in order to further improve the ability to prevent and deal with spontaneous combustion accidents in coal bunker, this paper studies the coal bunker coal spontaneous combustion early warning index, early warning technology and disposal technology through the coal spontaneous combustion experiment and the coal bunker liquid CO2 cooling experiment, and verified by the experimental bench simulation application. The following studies were carried out:

         (1) The coal bunker spontaneous ignition test bench was used to simulate the whole process of coal bunker spontaneous ignition, and the generation position and migration law of high temperature points in the coal bunker spontaneous combustion process were obtained. The analysis and experimental results show that the high temperature point occurs in the coal-bonding area of the bunker wall in the middle of the straight section of the coal bunker and the bunker wall, and moves to the lower air supply side with the coal oxidation process; According to the change law of temperature and gas concentration in the process of coal spontaneous combustion, a coal bunker spontaneous combustion graded early warning index system with Graham coefficient as the main early warning threshold is established.

         (2) Using the coal bunker spontaneous combustion liquid CO2 cooling test bench, the coal bunker spontaneous combustion liquid CO2 cooling experiment was designed, and the temperature field change law in the high temperature area inside the coal bunker after liquid CO2 injection was studied. The experimental results show that: after liquid CO2 is injected into the coal bunker, it quickly absorbs heat and vaporizes. The maximum temperature drop at each measuring point can reach 170 °C, and the average temperature of the No. 2 plane drops by 33 °C; the injection is stopped for 5 hours. After that, the average temperature of each high temperature area in the coal bunker was significantly lower than the initial average temperature, and the average temperature of the No. 2 plane was 22.3 °C lower than the initial temperature, indicating that liquid CO2 has an excellent effect on the spontaneous combustion of the coal bunker.

        (3) Fluent numerical simulation software was used to study the gas distribution law in the coal bunker, and to analyze the spontaneous combustion characteristics of the coal bunker and the danger zone of spontaneous combustion. Combining the coal bunker spontaneous combustion grading early warning index system and liquid CO2 fire-fighting technology, a coal bunker spontaneous combustion grading early warning and liquid CO2 emergency disposal system was constructed, the system layout plan and system early warning disposal logic were determined, and the overall structure of the system, control procedures and the upper computer function interface.

       (4) The application verification of the coal bunker spontaneous combustion grading early warning and liquid CO2 emergency disposal system was realized by transforming the experimental bench. The results show that when the system issues an early warning, the disposal system will automatically operate according to the pre-set disposal measures according to the warning level issued by the system. The application results show that the monitoring and warning function of the system is accurate and rapid, and the hierarchical disposal function is timely and effective, which effectively ensures the safe operation of the bunker.

参考文献:

[1] 温廷新. 煤矿生产灾害预警与应急管理研究[D]. 辽宁工程技术大学, 2016.

[2] 冯雨, 李学刚. 当前动力煤市场波动结构性原因探析[J]. 中国煤炭工业, 2022(03): 78-79..

[3] 王倩. 我国能源消费现状及其优化策略[J]. 商业经济研究, 2018(17): 40-42.

[4] 刘哲. 含内热源的储煤筒仓温度分布实验研究与数值模拟[D]. 华北电力大学, 2019.

[5] Cho M, Ha J, Kim T. Behavior Characteristics of Hazardous Gas and Scattering Coal Dust in Coal Storage Sheds[J]. Applied Sciences, 2021, 11(24): 11771-11771.

[6] 金永飞, 闫旭斌, 蒋志刚, 等. 煤仓自然发火过程高温点运移规律试验研究[J]. 煤炭科学技术, 2016, 44(10): 34-38.

[7] 李冠兰. 大型煤仓自然发火检测系统及注氮防灭火系统设计[J]. 内蒙古煤炭经济, 2017(24): 136-138.

[8] Chul J, Chae H. A novel method to suppress spontaneous ignition of coal stockpiles in a coal storage yard[J]. Fuel Processing Technology, 2012, 100: 73-83.

[9] 李冰. 选煤场储煤仓甲烷浓度无线监测系统开发研究[D]. 辽宁工程技术大学, 2016.

[10] 线葵娟, 李应超, 丁坡岭. 炼焦煤仓自燃事故的原因和对策[J]. 冶金能源, 2011, 30(05): 63-64.

[11] 秦丹丹, 张铁铸. 浅谈火电厂煤仓防爆控爆必要性及相关措施[J]. 电子世界, 2014(18): 78.

[12] 马瑞, 魏芸, 刘晅亚, 等. 大型储煤筒仓进料过程煤尘浓度分布及煤尘爆炸数值模拟[J]. 消防科学与技术, 2021, 40(12): 1728-1732.

[13] 吕美娟. 储煤筒仓内温度场数值模拟与试验研究[D]. 华北电力大学, 2018.

[14] 向甘乾. 储煤筒仓防自燃因素分析及设计[J]. 冶金设备与工程技术, 2019: 37-40.

[15] 应钦锋, 阮华兵, 冯金龙. 库存煤炭自燃原因分析及对策[J]. 中国化工贸易, 2014(35): 131.

[16] 康伟卿, 刘长青, 曹清云. 原煤筒仓消防设施设计[J]. 武警学院学报, 2015, 31(8): 55-58.

[17] 方啸. 输煤系统储煤筒仓的优化设计[J]. 硫磷设计与粉体工程, 2014(1): 15-19.

[18] 张江石, 王建豪, 熊红琴, 等. 大型筒仓储煤的倒仓临界温度研究[J]. 煤炭技术, 2014, 33(05) :254-256.

[19] 杨俊民, 孙冰. 煤仓自然发火因素分析及防治技术[J]. 煤矿安全, 2014, 45(3): 63-68.

[20] 李岸然. 锅炉原煤仓自燃预警与惰化防火装置[J]. 电力科技与环保, 2014, 30(6): 58-59.

[21] 张江石, 王建豪, 闫波, 等. 筒仓储煤自然发火期研究[J]. 中国煤炭, 2014(6): 113-116.

[22] 刘峰, 于涛, 宋洪军, 等. 煤仓清理及防堵技术研究与实施[J]. 煤炭科学技术, 2020, 48(S2): 132-136.

[23] Zhang J, Yan M, Wang S, et al. Effects of high-temperature zones of coal in large silos[J]. Energy Sources Part A Recovery Utilization & Environmental Effects, 2017, 39(12): 1-10.

[24] 金建华, 沈建军, 龚福, 等. 封闭式大储量圆形煤场储煤自燃分析及处理[J]. 电力与能源, 2014(5): 620-623.

[25] 杨艳艳. 松散煤堆自燃探测系统研究[D]. 中国计量学院, 2016.

[26] 孙雯倩. 复合阻化剂抑制煤自燃过程的阶段阻化特性[D]. 兰州理工大学, 2021.

[27] 闫涛. 防治煤自燃新型凝胶的防灭火性能研究[D]. 西安科技大学, 2021.

[28] 时国庆. 防灭火三相泡沫在采空区中的流动特性与应用[D]. 中国矿业大学, 2010.

[29] 任常兴, 杜霞 ,张欣, 等. 惰化防爆技术及在煤粉制备系统中的应用[J]. 消防科学与技术, 2016(12): 1655-1658.

[30] 蒋新强, 朱雷, 杨渊. 长兴电厂储煤筒仓惰化监控系统设备选型与工艺[J]. 科技与创新, 2016(15): 64-65.

[31] 许宁. 筒仓储煤自燃预警方法的研究和应用[J]. 煤矿机电, 2014(6): 46-49.

[32] 邢飞. 储煤筒仓温度在线监测与惰化保护系统设计及试验研究[D]. 华北电力大学, 2018.

[33] 尹新伟, 赵彦彬, 刘哲, 等. 储煤筒仓内煤体温度场数值模拟及温度测点布置优化[J]. 电力科学与工程, 2019, 35(05): 68-72.

[34] 尹新伟, 赵国庆, 王聖齐, 等. 储煤筒仓内煤体温度分布规律实验研究[J]. 应用能源技术, 2019(9): 40-45.

[35] 吕美娟. 储煤筒仓内温度场数值模拟与试验研究[D]. 华北电力大学, 2018.

[36] 杨渊. 基于iFIX的储煤筒仓惰化监控系统开发研究[D]. 华北电力大学, 2016.

[37] 沈鑫. 储煤筒仓安全智能监控系统的研究与开发[D]. 吉林大学, 2018.

[38] 李冰. 选煤场储煤仓甲烷浓度无线监测系统开发研究[D]. 辽宁工程技术大学, 2016.

[39] 许宁. 筒仓储煤自燃预警方法的研究和应用[J]. 港口装卸, 2014(6): 46-49.

[40] 张箫剑. 基于光纤测温技术的采空区煤温监测研究[D]. 安徽理工大学, 2015.

[41] 陈立军, 李海波, 吴谦, 等. 分布式光纤测温技术研究现状及发展趋势[J]. 煤炭技术, 2010, 37(12): 1-4.

[42] 郑晓亮, 胡业林. 基于分布式光纤测温技术的井下电缆温度监测系统设计[J]. 煤炭工程, 2009, 9:19-21.

[43] 认真宣传贯彻《煤矿防灭火细则》坚决防范煤矿火灾事故[N]. 中国煤炭报, 2021-11-20(003).

[44] Zhao J Q, Yang D G, Wu J X, et al. Prediction of temperature and CO concentration fields based on BPNN in low-temperature coal oxidation[J]. Thermochimica Acta, 2021, 695: 178820-178826.

[45] Lei C K, Deng J, Cao K, et al. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob[J]. Fuel, 2018, 239: 297-311.

[46] 邓军, 雷昌奎, 曹凯, 等. 采空区煤自燃预测的随机森林方法[J]. 煤炭学报, 2018, 43(10): 2800-2808.

[47] 鲁学富. 基于GA-SVM的采空区煤自燃预警技术研究及应用[D]. 西安科技大学, 2020.

[48] 宋大勇. 基于红外成像探测的煤层隐蔽火源反演识别技术研究[D]. 西安科技大学, 2012.

[49] 刘辉. 硫化矿石自燃特性及井下火源探测技术研究[D]. 中南大学, 2010.

[50] 夏清. 自燃煤矸石山深部温度场分布规律及热源反演模型研究[D]. 中国矿业大学(北京), 2017.

[51] 赵颖杰. 煤矿采空区火源点定位方法及应用研究[D]. 中国矿业大学, 2015.

[52] 周斌, 周文强, 董智宇, 等. 氧化升温过程中煤岩介质体氡析出特性实验研究[J]. 煤炭学报, 2020, 45(S2): 859-866.

[53] Deng J, Chen W L, Wang C P, et al. Prediction Model for Coal Spontaneous Combustion Based on SA-SVM[J]. ACS omega, 2021, 6(17): 11307-11318.

[54] Wang W, Qi Y, Jia B S, et al. Dynamic prediction model of spontaneous combustion risk in goaf based on improved CRITIC-G2-TOPSIS method and its application[J]. PloS one, 2021, 16(10): e0257499-e0257499.

[55] Cai J W, Yang S Q, Hu X C, et al. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation[J]. Fuel, 2019, 253: 339-348.

[56] Li S J, Ma X P, Yang C Y, et al. Prediction of spontaneous combustion in the coal stockpile based on an improved metabolic grey model[J]. Process Safety and Environmental Protection, 2018, 116: 564-577.

[57] 王晓铭. 封闭球仓内煤堆自燃的监测和惰化保护[D]. 北京工业大学, 2018.

[58] 王聖齐. 储煤筒仓温度监测与自燃点预测研究[D]. 华北电力大学, 2019.

[59] 杜文州. 不同气体氛围下煤燃烧特性及综放采空区空间惰化技术研究[D]. 山东科技大学, 2018.

[60] 张世华. 煤筒仓惰化防火装置的分析[J]. 安全, 2018, 39(06): 17-20.

[61] 马银戌, 申张勇. 火电厂筒仓惰化监测系统的开发[J]. 电力科学与工程, 2008, 24(09): 63-64.

[62] 杨丽娟. 输煤程控系统与简仓安全监测系统的整合[J]. 自动化仪表, 2010, 31(8): 48-51.

[63] 董丽华, 胡玲玲. 电厂筒仓安全惰化保护装置的研制运用[J]. 电力科技与环保, 2011, 27(03): 61-62.

[64] 王昌济, 文天龙. 筒仓惰化监测及控制系统设计[J]. 氮肥与合成气, 2021, 49(04): 18-20.

[65] 马砺, 王振平, 肖旸, 等. 大型煤仓自燃火灾治理技术研究[C]//. 第五届全国煤炭工业生产一线青年技术创新文集, 2010: 265-270.

[66] 周平, 邢立杰, 范向军, 等. 特大型储煤仓自燃发火治理技术[J]. 西安科技大学学报, 2015, 35(06): 745-748.

[67] 张春, 题正义, 李宗翔. 粒径对松散煤体自燃影响的试验分析[J]. 燃烧科学与技术, 2014, 20(5): 406-411.

[68] 文虎, 徐精彩, 李莉, 等. 煤自燃的热量积聚过程及影响因素分析[J]. 煤炭学报, 2003, 28(4): 370-374.

[69] 马砺, 任立峰, 韩力, 等. 粒度对采空区煤自燃极限参数的影响试验研究[J]. 煤炭科学技术, 2015, 43(6): 59-64.

[70] 邓存宝, 王继仁, 张俭, 等. 煤自燃生成乙烯反应机理[J]. 煤炭学报, 2008(03): 299-303.

[71] 邵昊, 蒋曙光, 吴征艳, 等. 二氧化碳和氮气对煤自燃性能影响的对比试验研究[J]. 煤炭学报, 2014, 39(11): 2244-2249.

[72] 王炳辉. 预防封闭煤场煤炭自燃的试验研究[D]. 浙江大学, 2015.

[73] 黄河, 唐光明, 王剑星, 等. 连续热电偶测温系统在圆筒储煤仓中的应用[J]. 传感器世界, 2015, 21(07): 13-18.

[74] GB/T 36016-2018. 铠装连续热电偶电缆及铠装连续热电偶[S]. 北京: 中国标准出版社, 2018.

[75] Kumar D; Neelima B; Ram C K. Zigbee based Wireless Data Acquisition System for monitoring of partition stability above old underground coal workings[J]. Arabian Journal of Geosciences, 2020, 13(2): 1655-1695.

[76] Zhang D; Wang L G; Yang X C. Research on Tailings Pond Online Safety Monitoring System Based on Zigbee Sensor Network[J]. Applied Mechanics and Materials, 2014, 3365: 602-605.

[77] 邓羽婷. 液态CO2在采空区的运移规律与惰化作用范围研究[D]. 西安科技大学, 2020.

中图分类号:

 TD753    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式