论文中文题名: | 红柳林煤矿中西部过沟开采覆岩与地表移动破坏规律研究 |
姓名: | |
学号: | 19209071018 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081803 |
学科名称: | 工学 - 地质资源与地质工程 - 地质工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿井水害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-23 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Study on failure Law of overlying Rock and Surface Movement in trench Mining in the Midwest of Hongliulin Coal Mine |
论文中文关键词: | |
论文外文关键词: | Overburden failure ; surface movement ; numerical simulation ; similar simulation ; Hongliulin Coal Mine |
论文中文摘要: |
陕北煤矿区浅埋煤层开采覆岩与地表移动破坏不仅会引发地面塌陷,而且会造成地表沟道溃水水害,从而对煤矿安全生产造成严重威胁。因此,浅埋煤层开采覆岩与地表移动破坏规律是当前煤矿生产中灾害防治亟待解决的重要问题。本文以榆神府矿区红柳林煤矿中西部芦草沟过沟开采工作面为研究对象,采用理论分析、数值模拟和相似材料模拟等方法,对浅埋煤层过沟开采覆岩与地表移动破坏规律进行研究,为浅埋煤层过沟开采水害防治提供参考依据。 基于关键层理论对红柳林井田芦草沟不同煤层开采下覆岩关键层进行了分析判别,采用相似材料模拟和FLAC3D数值模拟对芦草沟不同区段不同首采煤层过沟开采的导水裂隙带发育高度和地表移动变形规律进行了研究。2-2煤层开采裂采比大于28.3,地表下沉系数为0.66,水平移动系数为0.27;3-1煤层开采裂采比大于20,地表下沉系数为0.75,水平移动系数为0.55;4-2煤层开采裂采比大于11.5,地表下沉系数为0.4,水平移动系数为0.84。依据相似材料模拟、数值模拟和邻近区域钻孔实测结果,综合确定单煤层裂采比为29.5,2-2、3-1、4-2首采煤层过沟开采导水裂隙带均导通沟谷底部。关键层的存在会对导水裂隙带的发育起到延缓作用,且关键层破断后地表下沉量明显大于没有关键层的下沉量。 通过相似材料模拟和FLAC3D数值模拟研究,得到了芦草沟不同区段双煤层过沟开采导水裂隙带发育高度和地表移动变形规律。双煤层开采时,由于其与上覆煤层间距较近,均能导通至上覆煤层采空区。2-2、3-1煤层开采条件下,导水裂隙带高度为112m,地表下沉系数为0.77,水平移动系数为0.29;3-1、4-2煤层开采条件下,导水裂隙带高度为109.5m,地表下沉系数为0.71,水平移动系数为0.39;4-2、5-2煤层开采条件下,导水裂隙带高度为93m,地表下沉系数为0.45,水平移动系数为0.58。相比于单煤层开采,双煤开采导水裂隙带进一步发育(均导通地表),下沉系数增大。 通过相似材料模拟,对过沟区域采动地表裂缝的发育特征进行了分析。回采方向与坡向一致时,随工作面推进斜坡上先出现微小裂缝,进而发育成反错台,地表裂缝宽度具有由小变大、再到稳定的动态变化规律;沟底坡脚随工作面推进先出现微小裂缝,由于坡体下滑推挤作用进而发育成微小隆起,地表裂缝宽度随着工作面推采具有开裂-(半)闭合-张开-稳定的动态变化规律;回采方向与坡向相反时,地表裂缝宽度具有开裂-闭合-稳定的动态变化规律。 |
论文外文摘要: |
Overburden mining and surface movement destruction of shallow coal seam in northern Shaanxi coal mine area will not only cause ground collapse, but also cause water damage of surface gully, which poses a serious threat to coal mine safety production.Therefore, the failure law of overburden and surface movement in shallow coal seam mining is an important problem to be solved in disaster prevention and control in coal mine production.Taking Lucaogou trench mining face in the central and western part of Hongliulin Coal Mine in Yushenfu mining area as the research object, this paper uses the methods of theoretical analysis, numerical simulation and similar material simulation to study the failure law of overlying rock and surface movement in shallow coal seam trench mining, so as to provide reference basis for water disaster prevention and control in shallow coal seam trench mining. Based on the key layer theory, the key strata of overlying strata under different coal seams in Lucaogou in Hongliulin mine field are analyzed and discriminated. The development height of water diversion fracture zone and the law of surface movement and deformation in different first mining coal seams in different sections of Lucaogou are studied by using similar material simulation and FLAC3D numerical simulation.The split mining ratio of 2-2 coal seam is more than 28.3, the surface subsidence coefficient is 0.66, the horizontal movement coefficient is 0.27, the surface subsidence coefficient is more than 20, the surface subsidence coefficient is 0.75, the horizontal movement coefficient is 0.55, the split mining ratio of 4-2 coal seam is greater than 11.5, the surface subsidence coefficient is 0.4, and the horizontal movement coefficient is 0.84.According to the simulation of similar materials, numerical simulation and the measured results of boreholes in the adjacent area, it is comprehensively determined that the fracture zone of water diversion in the first mining coal seam leads to the bottom of the valley when the fracture ratio of single coal seam is 29.5 2-2, 3-1 and 4-2, and the development of water-conducting fracture zone is restrained when there is a key layer in the upper part. When there is a key layer in the overlying strata, the subsidence curve of the surface is the largest in the middle, which is obviously larger than that on both sides. Through the study of similar material simulation and FLAC3D numerical simulation, the development height of water diversion fracture zone and the law of surface movement and deformation in double coal seam mining in different sections of Lucaogou are obtained.In double coal seam mining, it can lead to the goaf of the overlying coal seam because of its close distance with the overlying coal seam. Under the mining condition of 2-2 and 3-1 coal seams, the height of the water-conducting fracture zone is 112m, the surface subsidence coefficient is 0.77, and the horizontal movement coefficient is 0.29 under the mining conditions of 3-1 and 4-2 coal seams, the height of the water-conducting fracture zone is 109.5m, the surface subsidence coefficient is 0.71, and the horizontal movement coefficient is 0.39.Under the mining condition of 4-2 and 5-2 coal seams, the height of the water diversion fracture zone is 93m, the surface subsidence coefficient is 0.45 and the horizontal movement coefficient is 0.58.Compared with single coal seam mining, the water diversion fracture zone of double coal mining is further developed (both lead to the surface), and the subsidence coefficient increases.. Through the simulation of similar materials, the development characteristics of mining surface cracks in the trench area are analyzed.When the mining direction is consistent with the slope direction, small cracks first appear on the slope with the advance of the working face, and then develop into an anti-fault platform, and the surface crack width changes dynamically from small to large, and then to stable.With the advance of the working face, the micro-cracks first appear at the foot of the ditch slope, and then develop into a micro-uplift due to the sliding and pushing of the slope, and the surface crack width has a dynamic change law of cracking-(semi) closing-opening-stability with the pushing and mining of the working face; when the mining direction is opposite to the slope direction, the surface crack width has a dynamic change law of cracking-closing-stability. |
参考文献: |
[1] 从威,我国煤炭产能调控动力机制及模式研究[D].北京:中国矿业大学,2013. [2] 白海波,缪协兴.水资源保护性采煤的研究进展与面临的问题[J].采矿与安全工程学报,2009,26(3):253-262. [3] 甘林堂.煤矿开采动力灾害事故分析及防治对策研究[J].煤炭科学技术,2020,48(12):74-80. [4] 范立民.榆神府区煤炭开采强度与地质灾害研究[J].中国煤炭,2014,40(05):52-55. [5] 赵仕元.浅埋煤层高强度开采覆岩切落式塌陷灾害演化规律及影响因素分析[J].煤炭工程,2020,52(05):126-132. [6] 汤伏全,黄韩,孙学阳,等.黄土沟壑区开采沉陷对地形因子的影响研究[J].干旱区资源与环境,2016,30(05):124-128. [8] 黄汉富.薄基岩综放采场覆岩结构运动与控制研究[D].徐州:中国矿业大学,2012. [9] 弓培林.大采高采场围岩控制理论及应用研究[D].太原:太原理工大学,2006. [10] 钱鸣高,缪协兴,何富连.“采场砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557-562. [12] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225- 230. [13] 钱鸣高 ,茅献彪 ,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2): 135-139. [14] 韩红凯,王晓振,许家林,等覆岩关键层结构失稳后的运动特征与“再稳定”条件研究[J].采矿与安全工程学报,2018,35(04):734-741. [15] 侯忠杰. 组合关键层理论的应用研究及其参数确定[J].煤炭学报,2001,26(6) [16] 宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988:26-29. [17] 卢国志,汤建泉,宋振骐.传递岩梁周期断裂步距与周期来压步距差异分析[J].岩土工程学报,2010,32(4):538-541. [18] 卢少帅,高超,霍军鹏,等.韩家湾煤矿浅埋近距离煤层群覆岩破坏规律研究[J].煤炭工程,2022,54(01):107-111. [20] 孙学阳,张齐,李成,等.陕北某矿双煤层开采对覆岩影响的模拟对比[J].煤田地质与勘探,2020,48(04):183-189. [21] 黄万朋,高延法,王波,等.覆岩组合结构下导水裂隙带演化规律与发育高度分析[J].采矿与安全工程学报,2017,34(02):330-335. [22] 许延春,李俊成,刘世奇,等.综放开采覆岩“两带”高度的计算公式及适用性分析[J].煤矿开采,2011,16(2) :4-7,11. [23] 张东升,范钢伟,刘玉德,等.浅埋煤层工作面顶板裂隙扩展特征数值分析[J].煤矿安全,2008(07):91-93. [24] 孙学阳,张齐,李成,等.陕北某矿双煤层开采对覆岩影响的模拟对比[J].煤田地质与勘探,2020,48(04):183-189. [27] 于斌.多煤层上覆破断顶板群结构演化及其对下煤层开采的影响[J].煤炭学报,2015,40(02):261-266. [28] 黄庆享,张文忠,侯志成.固液耦合试验隔水层相似材料的研究[J].岩石力学与工程学报,2010,29(S1):2813-2818. [29] 黄庆享,刘腾飞.浅埋煤层开采隔水层位移规律相似模拟研究[J].煤田地质与勘探,2006(05):34-37. [30] 黄庆享.浅埋煤层保水开采隔水层稳定性的模拟研究[J].岩石力学与工程学报,2009,28(05):987-992. [31] 范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(02):196-201. [32] 王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(01):7-14. [33] 张玉军,康永华.覆岩破坏规律探测技术的发展及评价[J].煤矿开采,2005,10(2):10-12. [34] 张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报.2008,33(11):18-21. [35] 孙亚军,徐智敏,董青红.小浪底水库下采煤导水裂隙发育监测与模拟研究[J].岩石力学与工程学报,2009,28(02):238-245. [36] 张彬,牟义,张俊英,等.瞬变电磁法在导水裂隙带高度探测中的研究应用[J].煤炭工程,2011(03):44-46. [37] 张平松,刘盛东,吴荣新,等.采煤面覆岩变形与破坏立体电法动态测试[J].岩石力学与工程学报,2009,28(09):1870-1875. [38] 王苏健,陈通,张严静,等.基于微电阻率扫描成像测井的土层导水裂缝带发育高度研究[C]/中国煤炭学会钻探工程专业委员会2017年钻探工程学术研讨会论文集.中国煤炭学会,2017. [39] 尹希文,常运飞.浅埋煤层综放工作面覆岩破坏规律研究[J].煤炭科学技术,2013,41(S2):22-25. [40] 侯恩科,范继超,谢晓深,等.基于微震监测的深埋煤层顶板导水裂隙带发育特征[J].煤田地质与勘探,2020,48(05):89-96. [41] 张玉军,张志巍.煤层采动覆岩破坏规律与控制技术研究进展[J].煤炭科学技术,2020,48(11):85-97. [42] 马立强,张东升,董正筑.隔水层裂隙演变机理与过程研究[J].采矿与安全工程学报,2011,28(03):340-344. [43] 高延法,黄万朋,刘国磊,等.覆岩导水裂缝与岩层拉伸变形量的关系研究[J].采矿与安全工程学报,2012,29(03):301-306. [44] 范志胜.变形分析法在计算覆岩导水裂缝带高度的应用[J].煤炭工程,2012(S1):97-99. [49] Kreitler C W. Fault Control of Subsidence[J]. Ground Water,1977,15(3):203-206. [50] 何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991. [51] 吴侃,胡振琪,常江,等.开采引起的地表裂缝分布规律[J].中国矿业大学学报,1997,26(2):56-59. [52] 范立民,马雄德,李永红,等.西部高强度采煤区矿山地质灾害现状与防控技术[J].煤炭学报,2017,42(02):276-285. [54] 刘文生,吴作启,李凡月,等.采空区上覆火成岩断裂致灾机理研究[J].安全与环境学报,2017,17(01):54-58. [55] 张峰.采动地表裂缝发育范围异常扩大成因分析[J].金属矿山,2015(04):154-156. [56] 何荣,杨文丽.大采高浅埋深开采地表裂缝成因分析研究[J].煤炭科学技术,2016,44(8):156-60,175. [57] 郭文兵,黄成飞,陈俊杰.厚湿陷黄土层下综放开采动态地表移动特征[J].煤炭学报,2010,35(S1):38-43. [58] 余学义,李邦帮,李瑞斌,等.西部巨厚湿陷性黄土层开采损害程度分析[J].中国矿业大学学报,2008(01):43-47. [59] 刘辉,刘小阳,邓喀中,等.基于UDEC数值模拟的滑动型地裂缝发育规律[J].煤炭学报,2016,41(03):625-632. [60] 汤伏全,张健.西部矿区巨厚黄土层开采裂缝机理[J].辽宁工程技术大学学报(自然科学版),2014,33(11):1466-1470. [61] 刁乃勤.巨厚覆盖层下特厚煤层综放开采岩移规律[J].煤矿安全,2015,46(02):197-200. [62] 王鹏,余学义,刘俊.浅埋煤层大采高开采地表裂缝破坏机理研究[J].煤炭工程,2014,46(05):84-86. [63] 王鹏.韩家湾煤矿大采高开采地表移动变形规律研究[D].西安科技大学,2012. [64] [陈俊杰,朱刘娟,闫伟涛,等.高强度开采地表裂缝分布特征及形成机理分析[J].中国安全生产科学技术,2015,11(08):96-100. [65] 侯恩科,张杰,谢晓深,等.无人机遥感与卫星遥感在采煤地表裂缝识别中的对比[J].地质通报,2019,38(Z1):443-448. [66] 余学义,王鹏,李星亮.大采高浅埋煤层开采地表移动变形特征研究[J].煤炭工程,2012(07):61-63+67. [67] 侯恩科,谢晓深,徐友宁,等.羊场湾煤矿采动地裂缝发育特征及规律研究[J].采矿与岩层控制工程学报,2020,2(03):99-106. [68] 刘辉,邓喀中,雷少刚,等.采动地裂缝动态发育规律及治理标准探讨[J].采矿与安全工程学报,2017,34(05):884-890. [69] 胡振琪,王新静,贺安民.风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J].煤炭学报,2014,39(01):11-18. [71] Kratcsch, H.Mining.Subsidence Engineering[M]. Springer Verlag, Berlin, 1983. [72] Brauner.Subsidence due to underground mining[M]. Bureau of Mines, USA,1973. [74] 周婷婷,苏丽娟,刘辉,等.神东矿区地表移动参数变化规律及影响机制[J].煤田地质与勘探,2021,49(03):189-198. [76] 王正忠,孔祥柯,毕玉成,等.依兰矿区古近系软岩地层地表沉陷与覆岩破坏规律研究[J].煤炭科学技术,2018,46(S2):206-209. |
中图分类号: | TD325 |
开放日期: | 2022-06-23 |