论文中文题名: |
回采巷道主应力方向及塑性区形态的 煤柱尺寸效应研究
|
姓名: |
强旭博
|
学号: |
19203077019
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0819
|
学科名称: |
工学 - 矿业工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
能源学院
|
专业: |
矿业工程
|
研究方向: |
巷道围岩控制理论与技术
|
第一导师姓名: |
李季
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-22
|
论文答辩日期: |
2022-05-26
|
论文外文题名: |
Study on Coal Pillar Size Effect of Principal Stress Direction and Plastic Zone Shape of Mining Roadway
|
论文中文关键词: |
主应力方向 ; 塑性区形态 ; 回采巷道 ; 煤柱尺寸
|
论文外文关键词: |
principal stress direction ; shape of plastic zone ; mining roadway ; coal pillar size
|
论文中文摘要: |
︿
煤柱护巷作为我国煤炭井工开采中维护巷道稳定的常规方法一直沿用至今。基于“蝶形塑性区理论”,研究了巷道围岩塑性区偏转特性的形成机制,并分析了巷道断面形状及围岩性质对塑性区偏转特性的影响。以赵固二矿11030运输巷为工程背景,对不同煤柱尺寸条件下回采巷道主应力方向及塑性区形态分布特征和演化规律进行了系统性研究,揭示了主应力方向和塑性区形态的煤柱尺寸效应形成机制,在此基础上,探讨了煤柱尺寸效应与围岩稳定性的关系,通过现场探测验证了巷道围岩破坏情况,针对性提出了支护参数优化方案。主要研究内容及结果如下:
(1)以非静水压力场下圆孔周围塑性区边界方程为基础,推导出主应力偏转角度与极坐标角度的余弦四次隐性方程,在此基础上研究发现围岩塑性区具有偏转特性:当主应力发生偏转时,围岩塑性区会随之偏转相同角度;同时,围岩塑性区的偏转特性基本不会因巷道断面形状或围岩性质发生改变。
(2)以赵固二矿11030运输巷为工程背景,利用数值模拟研究发现不同煤柱尺寸条件下,巷道围岩主应力方向分布特征存在较大差异。且随着煤柱尺寸的增加,围岩区域应力场中的最大主应力逐渐向竖直方向偏转,同时,巷道围岩不同位置的最大主应力方向偏转对煤柱尺寸表现出不同的敏感性。
(3)通过数值模拟进一步对不同煤柱尺寸条件下的围岩塑性区进行研究发现:回采巷道围岩塑性区会因煤柱尺寸不同而呈现差异化分布特征,同时,巷道不同位置围岩塑性区形态对煤柱尺寸改变表现出不同的敏感度,导致巷道围岩变形呈现非均匀特征,即煤柱尺寸效应对巷道不同位置围岩稳定性的影响程度不同。
(4)通过现场探测验证发现11030运输巷围岩非均匀变形特征与围岩塑性区分布形态高度一致,基于煤柱尺寸效应,对11030运输巷进行支护参数优化,提出采用高延伸率、高强度支护材料进行补强支护,现场工业性试验表明支护方案可以减少围岩60%以上变形量,保证巷道围岩安全稳定。
本研究为不同煤柱尺寸条件下回采巷道围岩稳定性控制提供理论参考。
﹀
|
论文外文摘要: |
︿
Coal pillar roadway protection has been used up to now as a conventional method to maintain roadway stability in coal mining in my country. Based on the "butterfly plastic zone theory", the formation mechanism of the deflection characteristics of the plastic zone of the surrounding rock of the roadway is studied, and the influence of the cross-sectional shape of the roadway and the properties of the surrounding rock on the deflection characteristics of the plastic zone is analyzed. Taking the 11030 transport roadway of Zhaogu No. 2 Mine as the engineering background, a systematic study was carried out on the principal stress direction and the shape distribution characteristics and evolution law of the plastic zone in the mining roadway under different coal pillar sizes. On this basis, the relationship between the coal pillar size effect and the surrounding rock stability was discussed, and the damage of the surrounding rock of the roadway was verified through field detection, and the optimization scheme of supporting parameters was proposed. The main research contents and results are as follows:
(1) Based on the boundary equation of the plastic zone around the circular hole under the non-hydrostatic pressure field, the cosine quartic invisible equation of the deflection angle of the principal stress direction and the polar coordinate angle is derived. On this basis, it is found that the plastic zone of the surrounding rock has deflection characteristics : When the principal stress direction is deflected, the plastic zone of the surrounding rock will deflect by the same angle; at the same time, the deflection characteristics of the plastic zone of the surrounding rock will not change due to the shape of the roadway section or the properties of the surrounding rock.
(2) Taking the 11030 transport roadway of Zhaogu No. 2 Mine as the engineering background, it is found that the distribution characteristics of the principal stress direction of the surrounding rock of the roadway are quite different under the condition of different coal pillar sizes. And with the increase of the coal pillar size, the direction of the maximum principal stress in the stress field in the surrounding rock area gradually deflects to the vertical direction. At the same time, the deflection of the maximum principal stress direction at different positions of the surrounding rock of the roadway shows different sensitivities to the coal pillar size.
(3) Numerical simulation was used to further study the plastic zone of surrounding rock under different coal pillar sizes. It was found that the surrounding rock plastic zone of the mining roadway will show differentiated distribution characteristics due to different coal pillar sizes. The different sensitivities of the shape of the area to the change of the coal pillar size lead to the non-uniform deformation characteristics of the surrounding rock of the roadway, that is, the coal pillar size effect has different degrees of influence on the stability of the surrounding rock at different positions of the roadway.
(4) Through field detection and verification, it was found that the non-uniform deformation characteristics of the surrounding rock of the 11030 transportation roadway were highly consistent with the distribution shape of the surrounding rock plastic zone. Based on the coal pillar size effect, the support parameters of the 11030 transportation roadway were optimized. The strength support material is used for reinforcement support, and the on-site industrial test shows that the support scheme can reduce the deformation of the surrounding rock by more than 60%, and ensure the safety and stability of the surrounding rock of the roadway.
This study provides a theoretical reference for the stability control of surrounding rock in the mining roadway under the conditions of different coal pillar sizes.
﹀
|
参考文献: |
︿
[1] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960. [2] 梁玲,孙静,岳脉健,等. 全球能源消费结构近十年数据对比分析[J]. 世界石油工业, 2020,27(03): 41-47. [3] 姜春海,闫振好,宋志永. 基于ARIMA和GM(1,1)模型的煤炭市场需求预测研究[J]. 产业经济评论(山东大学), 2019, 18(03): 54-86. [4] 谢和平,高峰,鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178. [5] Lei Fan, Weijun Wang, Chao Yuan, et al. Research on large deformation mechanism of deep roadway with dynamic pressure[J]. Energy Science & EngineeringVolume, 2020, 08(09): 3348-3364. [6] S.K. Palei, S.K. Das. Sensitivity analysis of support safety factor for predicting the effects of contributing parameters on roof falls in underground coal mines[J]. International Journal of Coal Geology, 2008, 75(4) : 241-247. [7] 赵志强,马念杰,郭晓菲,等. 大变形回采巷道蝶叶型冒顶机理与控制[J]. 煤炭学报, 2016, 41(12): 2932-2939. [8] 赵洪宝,程辉,王磊,等. 非静水压力条件下巷道围岩偏应力场分布特征与围岩破坏规律[J]. 煤炭学报, 2021, 46(02): 370-381. [9] Hai Wu, Xiaokang Wang, Weijun Wang, et al. Deformation characteristics and mechanism of deep subsize coal pillar of the tilted stratum[J]. Energy Science & EngineeringVolume, 2020, 08(02): 544-561. [10] 李季. 深部窄煤柱巷道非均匀变形破坏机理及冒顶控制[D]. 北京,中国矿业大学(北京),2016. [11] Newman D A. Planning and design for barrier Pillared recovery: Three case histories[J]. International conference on ground in mining, 1995(1): 1048-1053. [12] A A 鲍里索夫著. 矿山原理与计算[M].平寿康译.北京:煤炭工业出版社,1986:56-62. [13] KHAIRILA.A.. Study on stress rock arch development around dual caverns[D]. Singapore: College of Civil engineering, Nanyang techlogical University, 2003. [14] Sheorey P.R.. Coal pillar strength estimation from failed and stable cases: P.R. Sheorey, M.N. Das, D. Barat, R.K. Prasad and B. Singh (1987) Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.24(6), 347~355[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(5). [15] J M Galvin, B K Hepplewhite. Australian coal Pillar performance [J]. Report University of New South Male, 1996(3): 102-106. [16] 侯朝炯,马念杰. 煤层巷道两帮煤体应力和极限平衡区的探讨[J]. 煤炭学报, 1989(04): 21-29. [17] 李东升,李德海,宋常胜. 条带煤柱设计中极限平衡理论的修正应用[J]. 辽宁工程技术大学学报, 2003(01): 7-9. [18] 于远祥,柯达,王京滨,等. 基于弹性理论的煤帮极限平衡区宽度确定方法探讨[J]. 煤炭学报, 2019, 44(11): 3340-3348. [19] 王志强,王鹏,石磊,等. 基于沿空巷道围岩应力分析的防冲机理研究[J]. 中国矿业大学学报, 2020, 49(06): 1046-1056. [20] 华心祝,刘啸,黄志国,等. 动静耦合作用下无煤柱切顶留巷顶板成缝与稳定机理[J]. 煤炭学报, 2020, 45(11): 3696-3708. [21] 尹尚先. 陷落柱防水煤柱留设对围岩变形影响的数值模拟[J]. 煤炭学报, 2006(02): 179-182. [22] 金珠鹏,秦涛,张俊文. 深部大采高工作面支承压力分布特征及影响因素分析[J]. 煤炭科学技术, 2018, 46(S1): 97-99+134. [23] 王博,姜福兴,朱斯陶,等. 深井工作面顶板疏水区高强度开采诱冲机制及防治[J]. 煤炭学报, 2020, 45(09): 3054-3064. [24] A H Wilson. Pillar stability in log wall mining state of the art of ground control in long wall Mining and mining subsidence[J]. New York: Society of Mining Engineers, 1982: 77-88. [25] A H Wilson. A hypothesis concerning pillar stability. Min. Eng., 1972, 131: 409- 417. [26] D布洛克著. 工程断裂力学基础[M]. 王克仁等译. 北京: 科学出版社, 1980: 213-225. [27] 马其华,王宜泰. 深井沿空巷道小煤柱护巷机理及支护技术[J]. 采矿与安全工程学报, 2009, 26(04): 520-523. [28] 张广超,何富连,来永辉,等. 高强度开采综放工作面区段煤柱合理宽度与控制技术[J]. 煤炭学报, 2016, 41(09): 2188-2194. [29] 李学华,鞠明和,贾尚昆,等. 沿空掘巷窄煤柱稳定性影响因素及工程应用研究[J]. 采矿与安全工程学报, 2016, 33(05): 761-769. [30] 张震,徐刚,黄志增,等. 煤柱稳定性分析评价的高频电磁波CT技术研究[J]. 采矿与安全工程学报, 2018, 35(06): 1150-1157+1163. [31] 孙刘伟,鞠文君,潘俊锋,等. 基于震波CT探测的宽煤柱冲击地压防控技术[J]. 煤炭学报, 2019, 44(02): 377-383. [32] 马念杰,赵希栋,赵志强,等. 深部采动巷道顶板稳定性分析与控制[J]. 煤炭学报, 2015, 40(10): 2287-2295. [33] 李季,马念杰,赵志强. 回采巷道蝶叶形冒顶机理及其控制技术[J]. 煤炭科学技术, 2017, 45(12): 46-52. [34] 李季,马念杰,丁自伟. 基于主应力方向改变的深部沿空巷道非均匀大变形机理及稳定性控制[J]. 采矿与安全工程学报, 2018, 35(04): 670-676. [35] 刘中春,吕心瑞,李玉坤,等. 断层对地应力场方向的影响机理[J]. 石油与天然气地质, 2016, 37(03): 387-393. [36] 陈世杰,肖明,陈俊涛,等. 断层对地应力场方向的扰动规律及反演分析方法[J]. 岩石力学与工程学报, 2020, 39(07): 1434-1444. [37] 李元鑫,朱哲明,范君黎. 主应力方向对围岩稳定性的影响[J]. 岩土工程学报, 2014, 36(10): 1908-1914. [38] 王猛,牛誉贺,于永江,等. 主应力演化影响下的深部巷道围岩变形破坏特征试验研究[J]. 岩土工程学报, 2016, 38(02): 237-244. [39] 李桂明,周超,王晓东. 最大主应力方向对巷道围岩稳定性影响研究[J]. 工矿自动化, 2019, 45(10): 38-42+73. [40] Shi H. Y., Ma Z. K., Zhu Q. J., et al. Comparison of Shape Characteristics of Plastic Zone Around Circular Tunnel Under Different Strength Criteria [J]. Journal of Mechanics Volume, 2020, 36(02): 849-856. [41] Jaeger J C, Cook N G W. Fundamentals of rock mechanics [M]. London: Chapman and Hall, 1976. [42] Kastner H. 隧道与坑道静力学[M]. 同济大学,译.上海:上海科学技术出版社,1980. [43] Y. Jiang, H. Yoneda, Y. Tanabashi. Theoretical estimation of loosening pressure on tunnels in soft rocks[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2001, 16(2): 99-105. [44] Jiang Y, YonedaH, Tanabash iY. Theoretical estimation of loosening pressure on tunnels in so ft rocks [J]. Tunneling and Underground Space Techno logy, 2014, 16: 99-105. [45] C. Q. Zhang, H. Zhou, X. T. Feng. An Index for Estimating the Stability of Brittle Surrounding Rock Mass: FAI and its Engineering Application[J]. Rock Mechanics and Rock Engineering, 2011, 44(4). [46] 于学馥. 轴变论与围岩变形破坏的基本规律[J]. 铀矿冶, 1982(01): 8-17+7. [47] 董方庭,宋宏伟,郭志宏,等. 巷道围岩松动圈支护理论[J]. 煤炭学报, 1994(01): 21-32. [48] 王学滨,白雪元,马冰,等. 巷道围岩非均质性对其分区破裂化的影响[J]. 中国矿业大学学报, 2019, 48(01): 78-86. [49] 王明洋,陈昊祥,李杰,等. 深部巷道分区破裂化计算理论与实测对比研究[J]. 岩石力学与工程学报, 2018, 37(10): 2209-2218. [50] 李鹏,苗胜军. 中国煤矿矿区地应力场特征与断层活动性分析[J]. 煤炭学报, 2016, 41(S2): 319-329. [51] 马念杰,侯朝炯. 采准巷道矿压理论及应用[M]. 北京: 煤炭工业出版社, 1992. [52] 侯朝炯. 巷道围岩控制[M]. 徐州: 中国矿业大学出版社, 2013. [53] 高富强,康红普,林健. 深部巷道围岩分区破裂化数值模拟[J]. 煤炭学报, 2010, 35(01): 21-25. [54] 赵洪宝,程辉,刘绍强,等. 非等压应力场巷道围岩主应力差分布规律与稳定性分析[J]. 采矿与安全工程学报, 2021, 38(06): 1111-1121. [55] 王志强,武超,石磊,等. 基于复变理论的双向不等压圆形巷道围岩应力及塑性区分析[J]. 煤炭学报, 2019, 44(S2):419-429. [56] 陈立伟,彭建兵,范文,等. 基于统一强度理论的非均匀应力场圆形巷道围岩塑性区分析[J]. 煤炭学报, 2007(01): 20-23. [57] Ji Li. The coal pillar design method for a deep mining roadway based on the shape of the plastic zone in surrounding rocks[J]. Arabian Journal of Geosciences Volume, 2020, 13(12): 1005-1008. [58] Zuo Jianping, Wang Jintao, Jiang Yunqian. Macro/meso failure behavior of surrounding rock in deep roadway and its control technology[J]. International Journal of Coal Science and Technology, 2019, 6(3): 301-319. [59] 吴拥政,何杰,司林坡,等. 义马矿区深部矿井地应力分布规律研究[J]. 煤炭科学技术, 2018, 46(10): 16-21. [60] 黄炳香,张农,靖洪文,等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报, 2020, 45(03): 911-926. [61] 张文忠. 地堑状断层组影响下采动主应力偏转规律研究[J]. 安徽理工大学学报(自然科学版), 2019, 39(06): 44-49. [62] 周钢,李玉寿,张强,等. 陈四楼矿综采工作面采场应力监测及演化规律研究[J]. 煤炭学报, 2016, 41(05): 1087-1092. [63] 李季,强旭博,马念杰,等. 巷道围岩蝶形塑性区蝶叶方向性形成机制及工程应用[J]. 煤炭学报, 2021, 46(09): 2838-2852. [64] 黄聪,王卫军,袁超,等. 主应力方向变化对巷道围岩塑性区形态特征的影响[J]. 矿业工程研究, 2020, 35(01): 7-11. [65] 于学馥,郑颖人,刘怀恒,等. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1983: 161-169. [66] 郭晓菲,马念杰,赵希栋,等. 圆形巷道围岩塑性区的一般形态及其判定准则[J]. 煤炭学报, 2016, 41(8): 1871-1877. [67] 王卫军,董恩远,袁超. 非等压圆形巷道围岩塑性区边界方程及应用[J]. 煤炭学报, 2019, 44(1): 105-114. [68] 马念杰,李季,赵志强. 圆形巷道围岩偏应力场及塑性区分布规律研究[J]. 中国矿业大学学报, 2015, 44(2): 206-213. [69] 马念杰,郭晓菲,赵希栋,等. 煤与瓦斯共采钻孔增透半径理论分析与应用[J]. 煤炭学报, 2016, 41(1): 120-127. [70] 蔡美峰,陈长臻,彭华,等. 万福煤矿深部水压致裂地应力测量[J]. 岩石力学与工程学报, 2006(05): 1069-1074. [71] 康红普,林健,颜立新, 等.山西煤矿矿区井下地应力场分布特征研究[J]. 地球物理学报, 2009, 52(07): 1782-1792. [72] 李鹏,苗胜军.中国煤矿矿区地应力场特征与断层活动性分析[J].煤炭学报,2016,41(S2):319-329.DOI:10.13225/j.cnki.jccs.2016.0303. [73] Brown E T, Hoek E. Technical note trends in relationships between measured in-situ stress and depth[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15(4): 211-215. [74] 陈斌. 矩形巷道围岩应力弹性解与塑性区宽度研究[D]. 徐州,中国矿业大学,2015. [75] 蒋力帅,马念杰,白浪,等. 巷道复合顶板变形破坏特征与冒顶隐患分级[J]. 煤炭学报, 2014, 39(7): 1205-1211. [76] 肖宇. 复合顶板采动巷道围岩蝶形破坏机理研究[D]. 湖南,湖南科技大学, 2020. [77] 刘俸菁. 层状围岩巷道塑性区与稳定性控制研究[D]. 湖南,湖南科技大学,2017. [78] 袁超,张建国,王卫军,等. 基于塑性区分布形态的软弱破碎巷道围岩控制原理研究[J]. 采矿与安全工程学报, 2020, 37(03): 451-460. [79] 贺丽萍,于永江. 围岩性质对采空区地基稳定性的影响[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(03): 323-326. [80] 贾后省,马念杰,朱乾坤. 巷道顶板蝶叶塑性区穿透致冒机理与控制方法[J]. 煤炭学报, 2016, 41(6): 1384-1392. [81] 陈上元,宋常胜,郭志飚, 等. 深部动压巷道非对称变形力学机制及控制对策[J]. 煤炭学报, 2016, 41(1): 246-254. [82] 侯朝炯. 巷道围岩控制[M]. 徐州: 中国矿业大学出版社,2013. [83] 康红普,颜立新,郭相平, 等. 回采工作面多巷布置留巷围岩变形特征与支护技术[J]. 岩石力学与工程学报, 2012, 31(10): 2022-2036. [84] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报, 2021, 40(1): 1-30. [85] Yan S, Bai J, Wang X, et al. An innovative approach for gateroad layout in highly gassy longwall top coal caving[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59: 33-41. [86] Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion-2002 edition[J]. Proceedings of NARMS-Tac, 2002, 1: 267-273. [87] 李季,王文硕,强旭博. 深部沿空掘巷主应力差分布规律及煤柱宽度优化[J]. 西安科技大学学报, 2020, 40(05): 869-877. [88] 王婧雅. 重复采动巷道围岩塑性区叠加扩展形态特征研究[D]. 内蒙古,内蒙古科技大学, 2021. [89] 康红普,林健,吴拥政.全断面高预应力强力锚索支护技术及其在动压巷道中的应用[J].煤炭学报,2009,34(09):1153-1159. [90] 李季,冯吉成,张胜凯,等. 软岩巷道长短锚杆协调支护技术研究[J]. 煤炭科学技术, 2015, 43(3): 17-21. [91] 王飞,刘洪涛,张胜凯,等. 高应力软岩巷道可接长锚杆让压支护技术[J]. 岩土工程学报, 2014, 36(9): 1666-1673.
﹀
|
中图分类号: |
TD322
|
开放日期: |
2022-06-23
|