- 无标题文档
查看论文信息

论文中文题名:

 含填充物裂隙的冻胀扩展机制研究    

姓名:

 赵思琪    

学号:

 20204228077    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 贾海梁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-09    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on frost heave propagation mechanism of cracks containing filling material    

论文中文关键词:

 裂隙岩体 ; 含填充物裂隙 ; 冻融损伤 ; 有机玻璃 ; 冰楔作用 ; 冻胀力演化 ; 损伤断裂机制    

论文外文关键词:

 Jointed rock mass ; Cracks with filling material ; Frost damage ; Organic glass ; Frost wedging ; Evolution of frost-heaving pressure ; Damage and fracture mechanism    

论文中文摘要:

冻融作用引起裂隙岩体的损伤破坏是导致一系列工程冻害的重要原因。随着人类活动不断向高寒、高海拔地区推进,工程建设将会面临更多的裂隙岩体冻融损伤诱发的灾害问题。岩体裂隙中存有大量碎石、砂砾等矿物颗粒,和自然界中的水分共同影响着裂隙的冻融损伤过程。含填充物裂隙在冻结过程能否形成冻胀力(即形成冰楔)以及冻胀力如何演化,是决定冻融损伤是否产生的关键前提。为了深入揭示含填充物裂隙岩体冻融损伤机制,本文以含相同深度裂隙的有机玻璃和灰岩为研究对象,实时监测了冻融过程中裂隙水的温度场变化、冰楔的形成过程、冻胀力及冻胀变形的演化过程;同时研究填充物含量、含水量、填充物粒径等关键因素的影响;结合冰楔作用下裂隙扩展过程中声发射信号的变化,及对裂隙扩展过程和扩展形态的细观观测结果,讨论了含填充物裂隙的冻融过程和岩体裂隙的扩展规律,揭示了其力学机制。主要得到以下结论:

1.含填充物裂隙和纯水裂隙随环境温度变化呈现出相似的水热相变规律,具有明显的阶段性。不同位置含填充物裂隙在冻结过程均有明显的潜热释放和热弛豫现象,填充物比水冻结得快,填充物的存在使开始冻结的时间提前并且加速了相变过程。

2.含填充物裂隙冻融过程中的冻胀力演化曲线与纯水裂隙呈现相同趋势,均可分为5个阶段,但冻胀力更大;冻胀变形演化曲线也呈现5个阶段变化趋势,但各阶段变化规律与纯水裂隙相比有所不同。

3.不同填充物含量、含水量、填充物粒径下裂隙内部的温度变化、冻胀力演化和裂隙端部变形表现出相似的变化规律。冻结和融化过程中冻胀力峰值的大小受影响最大,冻结阶段冻胀力达到峰值的时间随填充物含量的增大逐渐前移;含水量越大冻胀力越大,达到峰值的时间逐渐后移;填充物粒径越大冻胀变形越小。

4.纯水裂隙和含填充物裂隙均由外向内冻结和融化,在冻结过程中因冻胀作用产生冰裂缝,二者冻融过程相比,纯水裂隙冻结时的未冻水区域和融化时的未融化区域位于裂隙底部,而含填充物裂隙位于裂隙中部,且相变阶段的持续时间更短。

5.反复冻融循环下冻胀力驱动岩体发生裂隙扩展导致其一分为二断裂,冻胀作用会对岩体造成严重的冻融损伤破坏。

6.断裂面细观破裂破坏类型与在体视镜下的观察结果相对应,三种破坏类型所表现出的形态特征与拉伸断裂相对应,为I型断裂过程提供了直接的理论依据。

本文揭示了冻融过程中纯水裂隙和含填充物内部温度、冻胀力的演化规律,阐明了冰楔作用下裂隙内的冻融机制和岩体裂隙扩展的力学机制。本论文的研究结果对于指导寒区工程冻害防护具有重要的理论参考价值。

论文外文摘要:

The damage of fractured rock mass caused by freeze-thaw action is an important reason for a series of freezing damage in engineering. As human activities continue to advance to high cold and high-altitude areas, more disasters induced by freeze-thaw damage of fractured rock mass will be encountered in engineering construction. Rock cracks not only contain water, but also contain mineral particles such as gravel and gravel at the bottom of cracks, which jointly affect the freeze-thaw damage process of cracks. The formation of frost heave force (i.e., ice wedge formation) and the evolution of frost heave force are the key prerequisites to determine whether freeze-thaw damage occurs. In order to further reveal the freeze-thaw damage mechanism of fractured rock mass containing filled material, this paper takes limestone and plexiglass with cracks of the same depth as the research object, and real-time monitoring the temperature field changes of fractured water, the formation process of ice wedge, the evolution process of frost heave force and frost heave deformation during freeze-thaw process. At the same time, the effects of key factors such as filling content, water content and particle size were studied. Combined with the change of acoustic emission signal during crack propagation under the action of ice wedge and the microscopic observation results of crack propagation process and morphology, the freeze-thaw process of crack with filling material and the expansion law of rock crack are discussed, and the mechanical mechanism of crack propagation is revealed. The main conclusions are as follows:

1. The cracks with filling material and the cracks with pure water show similar hydrothermal phase transition law with the change of ambient temperature. Caulk freezes faster than water. The existence of caulk makes the freezing start time earlier and accelerates the phase transition process.

2. The evolvement curve of frost heave force in the crack with filling material shows the same trend as that in the crack with pure water, which can be divided into 5 stages, but the maximum frost heave force is larger. The frost heave deformation evolution curve also presents five stages, but the variation law of each stage is different from that of pure water fracture.

3. The temperature variation, frost heaving force evolution and crack end deformation show similar change rule under different fill content, water content and grain size. The peak value of frost heaving force was the most affected in the freezing and melting processes, and the time to reach the maximum value of frost heaving force in the freezing stage gradually moved forward with the increase of filling content. The higher the water content is, the greater the frost heave force is, and the time to reach the peak gradually moves later. The larger the filling particle size, the smaller the fracture end deformation.

4. In the freezing process, ice cracks are generated due to frost heave. Compared with the two freeze-thaw processes, the unfrozen water area and the unmelted area in the freezing process of the pure water crack are located at the bottom of the crack, while the filled crack is located in the middle of the crack, and the duration of phase transition is shorter.

5. Under the freeze-thaw cycle, the frost heave force drives rock cracks to expand into rock bisection and crack, and the frost heave will cause serious freeze-thaw damage to rock mass.

6. The meso-fracture failure types of the fracture surface correspond to the results observed under stereopicroscope, and the morphological characteristics of the three failure types correspond to the tensile fracture, which provides a direct theoretical basis for the process of type-I fracture.

In this paper, the evolution law of temperature and frost heave force in cracks with pure water and filled material during freeze-thaw process is revealed, and the propagation characteristics and mechanical cracking mechanism of crack end in rock mass under the action of ice wedge are expounded. The research results of this paper have important theoretical reference value for guiding the protection of freezing damage in cold areas.

参考文献:

[1] 陈仁升, 康尔泗, 吴立宗, 等. 中国寒区分布探讨[J]. 冰川冻土. 2005. 27(4): 469-475.

[2] 陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩体力学与工程学报. 2011. 30(7): 1318-1336.

[3] Krautblatter M, Funk D, Günzel F K. Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space[J]. Earth Surface Processes and Landforms. 2013. 38: 876-887.

[4] Pudasaini S P, Krautblatter M. A two-phase mechanical model for rock-ice avalanches[J]. Journal of Geophysical Research-Earth Surface. 2014. 119: 2272-2290

[5] 朱杰兵, 祝永锁, 汪斌等. 岩石冻胀力研究综述[J]. 人民长江, 2023, 54(03): 173-178.

[6] 乔趁, 李长洪, 王宇, 等. 冻融循环作用下中部锁固岩桥破坏试验研究[J]. 岩石力学与工程学报, 2020, 39(06): 1094-1103.

[7] Matsuoka N. Microgelivation versus macrogelivation: towards bridging the gap between laboratory and field frost weathering[J]. Permafrost and Periglacial Processes. 2001, 12(3): 299-313.

[8] 杨更社. 冻结岩体力学的研究现状与展望分析[J]. 力学与实践. 2009. 31(6): 9-16.

[9] 刘红岩, 张光雄, 邹宗山,等.考虑裂隙变形参数的岩体单轴压缩损伤模型[J]. 水文地质工程地质, 2023, 50(03): 85-92.

[10] 陈欣, 周小涵,许彬等.裂隙岩体宏细观剪切损伤力学行为研究[J]. 岩石力学与工程学报, 2022, 41(12): 2509-2521.

[11] 崔圣华, 杨晴雯, 芮雪莲等. 裂隙岩体循环冻融变形特征及影响因素分析[J]. 地质科技通报, 2021, 40(06): 205-215.

[12] Matsuoka N, Murton J B. Frost Weathering: Recent Advances and Future Directions[J]. Permafrost and Periglacial Processes. 2008. 19: 195-210.

[13] Matsuoka N. A laboratory simulation on freezing expansion of a fractured rock: preliminary data[R]. Annual Report of the Institute of Geoscience, the University of Tsukuba 1995. 21:5–8.

[14] Matsuoka N, Sakai H. Rockfall activity from an alpine cliff during thawing periods[J]. Geomorphology, 1999, 28(3): 309-328.

[15] Gruber S, Haeberli W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2).

[16] 邵冬亮. 含充填断续节理岩体裂隙扩展试验与数值模拟研究[D]. 山东大学, 2012.

[17] 高峰, 杨根, 熊信等. 低温条件下边坡岩石动态力学特性实验研究[J]. 工程科学学报, 2023, 45(02): 171-181.

[18] 申艳军, 杨更社, 王铭, 等. 冻融循环过程中岩体热传导规律试验及理论分析[J]. 岩体力学与工程学报, 2016, 35(12): 2417-2425.

[19] 田镇, 李银平, 王贵宾等. 饱水红砂岩裂隙冻胀力与变形试验研究[J]. 岩石力学与工程学报, 2022, 41(S1): 2857-2868.

[20] Jia H, Ding S, Wang Y, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology, 2019, 168: 102893.

[21] 夏才初, 王岳嵩, 吕志涛, 等. 单向冻结条件下裂隙岩体冻胀特性试验[J]. 同济大学学报(自然科学版), 2019, 47(09): 1268-1276.

[22] Jia H, Leith K, Krautblatter M. Path‐dependent frost‐wedging experiments in fractured, low‐permeability granite[J]. Permafrost and Periglacial Processes, 2017, 28(4): 698-709.

[23] 李杰林, 朱龙胤, 周科平, 等. 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学. 2019. 40(09): 3524-3532.

[24] 徐光苗, 刘泉声, 张秀丽. 冻结温度下岩体THM完全耦合的理论初步分析[J]. 岩体力学与工程学报. 2004. 23(21): 3709–3713.

[25] 谭贤君, 陈卫忠, 贾善坡, 等. 含相变低温岩体水热耦合模型研究[J]. 岩体力学与工程学报. 2008. 27(7): 1455–1461.

[26] 贾蓬, 王晓帅, 王德超. 饱水裂隙岩石冻融变形特性研究[J]. 岩土力学, 2023, 44(02): 345-354.

[27] 吕志涛, 夏才初, 李强, 等. 单向冻结时开放条件下饱和砂岩冻胀试验及THM耦合冻胀模型[J]. 岩土工程学报, 2019, 41(08): 1435-1444.

[28] 王莉平, 李宁, 刘乃飞, 等. 低温岩体裂隙中水分迁移机理试验研究[J]. 地下空间与工程学报, 2018, 14(04): 999-1006.

[29] 常治国. 力-温度场作用下裂隙岩体损伤机理及边坡时效稳定性分析[D]. 中国矿业大学, 2019.

[30] 贾海梁, 项伟, 申艳军, 等. 冻融循环作用下岩石疲劳损伤计算中关键问题的讨论[J]. 岩石力学与工程学报, 2017, 36(02): 335-346.

[31] Jia H, Xiang W, Krautblatter M. Quantifying Rock Fatigue and Decreasing Compressive and Tensile Strength after Repeated Freeze-Thaw Cycles[J]. Permafrost and Periglacial Processes. 2015. 26(4): 368-377

[32] 吕志涛, 吴明超, 段君义等. 冻结岩体裂隙冻胀扩展的相场法模拟[J/OL]. 岩土工程学报: 1-11.

[33] Hallet B. Why do freezing rocks break? [J]. Science, 2006, 314(5802): 1092-1093.

[34] Matsuoka N. Direct observation of frost wedging in alpine bedrock[J]. Earth Surface Processes and Landforms. 2001. 26: 601-614.

[35] Battle W R B. Temperature observations in bergschrunds and their relationship to frost shattering[M]// Lewis W V. editor. Norwegian cirque glaciers. Royal Geographical Society Research series. 1960. 4: 83-95.

[36] Hang L A, Dl A, Cz B , et al. Deterioration of non-persistent rock joints: A focus on impact of freeze-thaw cycles[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 135.

[37]单仁亮, 白瑶, 孙鹏飞, 等. 裂隙红砂岩冻胀力特性试验研究[J]. 煤炭学报, 2019, 44(06): 1742-1752.

[38] 贾海梁. 多孔岩体及裂隙岩体冻融损伤机制的理论模型和试验研究[D]. 武汉: 中国地质大学, 2016.

[39] 贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩体力学与工程学报. 2016. 35(05): 879-895.

[40] Vlahou I, Worster M G. Freeze fracturing of elastic porous media: a mathematical model.[J]. Proceedings of the Royal Society A Mathematical Physical & EngineeringSciences. 2015. 471(2175): 50-51.

[41] Sass O. Rock moisture fluctuations during freeze-thaw cycles: preliminary results from electrical resistivity measurements[J]. Polar Geography. 2004. 28(1): 13-31

[42] Grawe O R. Ice as an agent of rock weathering: a discussion[J]. The Journal of Geology, 1936, 44(2, Part 1): 173-182.

[43] Lv Z, Xia C, Wang Y, et al. Frost heave and freezing processes of saturated rock with an open crack under different freezing conditions. Front. Struct. Civ. Eng. 14, 947–960 (2020).

[44] Taber S. Frost heaving[J]. The Journal of Geology, 1929, 37(5): 428-461.

[45] Taber S. Intensive frost action along lake shores[J]. American Journal of Science 1950, 248: 784-93.

[46] Mellor M. Phase composition of pore water in cold rocks. United States Army Engineers, Cold Regions Research and Engineering Laboratory Report[R]. 1970: 292

[47] O'Neill K, Miller R D. Numerical solutions for rigid ice model of secondary frost heave[C]. The 2nd International Conference on Ground Freezing. Trondheim. Norway. 1980.

[48] Gilpin R R. A model of the "liquid-like" layer between ice and a substrate with applications to wire revelation and particle migration[J]. Journal of Colloid and Interface Science. 1979. 68: 235-251.

[49] Fukuda M. The pore water pressure in porous rocks during freezing, in Proceedings[C]. 4th International Conference on Permafrost. Fairbanks. Alaska. Washington D.C. National Academy Press. 1983: 322-327.

[50] Walder J S, Hallet B. A theoretical model of the fracture of rock during freezing[J]. Geological Society of America Bulletin. 1985. 96(3): 336-346.

[51] Hallet B, Walder J S, Stubbs C W. Weathering by segregation ice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using acoustic emissions[J]. Permafrost and Periglacial Processes, 1991, 2(4): 283-300.

[52] Akagawa S, Fukuda M. Frost heave mechanism in welded tuff[J]. Permafrost and Periglacial Processes. 1991. 2(4): 301-309.

[53] Murton J B, Peterson R, Ozouf J C. Bedrock fracture by ice segregation in cold regions[J]. Science. 2006. 314(5802): 1127-1129.

[54] Toshev B V. Thermodynamic theory of thin liquid films including line tension effects[J]. Current Opinion in Colloid & Interface Science. 2008. 13(3): 100-106

[55] Atkinson B K, Rawlings R D. Acoustic emission during stress corrosion cracking in rocks[J]. Earthquake Prediction. 1981: 605-616

[56] 贾海梁, 赵思琪, 丁顺, 等. 含水裂隙冻融过程中冻胀力演化及影响因素研究[J]. 岩石力学与工程学报, 2022, 41(09): 1832-1845.

[57] 鲁祖德. 裂隙岩石水—岩作用力学特性试验研究与理论分析[D]. 中国科学院研究生院(武汉岩土力学研究所), 2010.

[58] Deprez M, De Kock T, De Schutter G, et al. The role of ink-bottle pores in freeze-thaw damage of oolithic limestone[J]. Construction and Building Materials, 2020, 246: 118515

[59] 李平, 唐旭海, 刘泉声, 等. 双裂隙类砂岩冻胀断裂特征与强度损失研究[J]. 岩石力学与工程学报, 2020, 39(01): 115-125.

[60] 刘泉声, 周越识, 卢超波, 张建明. 含裂隙泥岩注浆前后力学特性试验研究[J]. 采矿与安全工程学报.2016.

[61] 王志, 李龙, 王朝雅. 含裂隙类岩体注浆加固后破坏试验研究[J]. 中南大学学报.2018

[62] 胡巍, 隋旺华, 王档良, 马路兴. 裂隙岩体化学注浆加固后力学性质及表征单元体的试验研究[J]. 2013.

[63] 刘泉声, 黄诗冰, 康永水, 崔先泽. 裂隙岩体冻胀损伤研究进展与思考[J]. 岩体力学与工程学报. 2015. 34: 452-471.

[64] 杨更社, 张全胜. 冻融环境下岩体细观损伤及水热迁移机制分析[M]. 西安: 陕西科学技术出版社. 2006: 20–45.

[65] 刘艳章, 郭赟林, 黄诗冰, 蔡原田, 李凯兵, 王刘宝, 李伟. 冻融作用下裂隙类砂岩断裂特征与强度损失研究[J]. 岩土力学. 2018, 39(S2): 62-71.

[66] 刘泉声, 黄诗冰, 康永水, 刘建平. 裂隙冻胀压力及对岩体造成的劣化机制初步研究[J]. 岩土力学. 2016. 37(06): 1530-1542.

[67] 李新平, 路亚妮, 王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩体力学与工程学报. 2013. 32(11): 2307-2315.

[68] 刘红岩, 刘冶, 邢闯锋, 等. 循环冻融条件下节理岩体损伤破坏试验研究[J]. 岩土力学. 2014. 35 (6): 1547-1554.

[69] 申艳军, 杨更社, 荣腾龙, 刘慧. 低温环境下含表面裂隙硬岩温度场及冻胀演化过程分析[J]. 岩土力学. 2016. 37(S1): 521-529.

[70] 邓红卫, 田维刚, 周科平, 等. 2001~2012 年岩体冻融力学研究进展[J]. 科技导报. 2013. 31(24): 74-79.

[71] Davidson G P, Nye J F. A photoelastic study of ice pressure in rock cracks[J]. ColdRegions Science and Technology. 1985. 11(2): 141-153.

[72] Matsuoka N. A laboratory simulation on freezing expansion of a fractured rock:preliminary data[R]. Annual Report of the Institute of Geoscience, the University ofTsukuba. 1995. 21: 5-8

[73] Bost M, Pouya A. Stress generated by the freeze–thaw process in open cracks of rock walls: empirical model for tight limestone[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(4): 1491-1505.

[74] Thorn C E, Darmody R G, Dixon J C, et al. The chemical weathering regime of Kärkevagge, arctic–alpine Sweden[J]. Geomorphology. 2001. 41(1): 37-52.

[75] Murton J B, Ozouf J C, Peterson R. Heave, settlement and fracture of chalk during physical modelling experiments with temperature cycling above and below 0 °C[J]. Geomorphology. 2016. 270: 71-87.

[76] Duca S, Alonso E E, Scavia C. A permafrost test on intact gneiss rock[J]. International Journal of Rock Mechanics and Mining Sciences. 2015. 77: 142-151.

[77] Kleinberg, R.L., 1996. Utility of NMR T2 distributions, connection with capillary pressure,

clay effect, and determination of the surface relaxivity parameter ρ2. Magn. Reson. Imaging 14 (7–8), 761–767.

[78] Jia, H., Zi, F., Yang, G., Li, G., Shen, Y., Sun, Q., Yang, P., 2019. Influence of Pore Water (Ice) Content on the Strength and Deformability of Frozen Argillaceous Siltstone. Rock Mech. Rock. Eng.

[79] 朱权洁, 张尔辉, 李青松, 等. 岩体破坏失稳的声发射响应与损伤定量表征研究[J]. 中国安全生产科学技术, 2020, 16(01): 92-98.

[80] Jiang R, Dai F, Y Liu, et al. Frequency Characteristics of AEs Induced by Crack Propagation in Rock Tensile Fracture[J]. Rock Mechanics and Rock Engineering, 2021(3).

[81] Atkinson B K, Rawlings R D. AE during stress corrosion cracking in rocks[J]. Earthquake Prediction. 1981: 605-616.

[82] Aufmuth R E, Aleszka J C. A scanning electron microscope investigation of statically loaded foundation materials[J]. Bulletin of the Association of Engineering Geologists, 1976, 13(2): 137-149.

中图分类号:

 TU458    

开放日期:

 2024-06-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式