- 无标题文档
查看论文信息

论文中文题名:

 认知无线电频谱感知与功率控制研究    

姓名:

 温宇昕    

学号:

 18207205069    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 认知无线电    

第一导师姓名:

 殷晓虎    

第一导师单位:

 西安科技大学    

第二导师姓名:

 李俊    

论文提交日期:

 2022-03-03    

论文答辩日期:

 2021-12-04    

论文外文题名:

 Research on Spectrum Sensing and Power Control of Cognitive Radio    

论文中文关键词:

 认知无线电 ; 频谱感知 ; 能量检测 ; 粒子群优化算法 ; 功率控制    

论文外文关键词:

 Cognitive radio ; Spectrum sensing ; Energy detection ; Particle swarm optimization algorithm ; Power control    

论文中文摘要:

随着无线接入设备数的增长及各种移动业务的快速发展,静态的频谱资源分配方式己经不能满足当下的通信需求。认知无线电能够在无线用户之间智能调度空闲频谱,从而提高其利用率。频谱感知与功率控制技术是认知无线电系统功能得以实现的关键。传统认知无线电单节点频谱感知方法中,频谱感知只发生于特定时段,忽略了其他时段次用户所接收信息对频谱感知的支持作用。多目标粒子群优化算法是一种高效的多目标优化算法,很适合应用于解决衬底式认知无线电功率控制优化问题,但会陷于局部最优。

针对以上问题,本文主要完成了以下研究工作:一,机会式认知无线电系统中,利用传输阶段信息进行频谱感知的能量检测算法的研究与仿真,及一种最优检测门限的计算方法。二,将高斯变异机制引入传统多目标粒子群算法的粒子位置更新中,并采用一种基于密度的参考线法对算法解集档案进行维护。将改进后的算法应用于解决衬底式认知无线电次用户功率控制优化问题。

经仿真验证表明,相较于传统频谱感知的能量检测算法,本文所述算法通过对传输阶段所接收信息的二次利用进行频谱感知,从系统机制层面节约了频谱感知所用时间,有效提高次用户间通信效率。应用改进后的粒子群优化算法对衬底式认知无线电系统中次用户发射功率进行控制,同等条件下次用户可用发射功率及信噪比明显优于标准粒子群算法。

论文外文摘要:

With the increase in the number of wireless access devices and the rapid development of various mobile services, static spectrum resource control methods can no longer meet the current communication needs. Cognitive radio can intelligently schedule idle spectrum among wireless users, thereby improving its utilization rate. Spectrum sensing and power control technology is the key to the realization of cognitive radio system functions. In the traditional, the spectrum sensing of cognitive radio single-node only occurs in a specific time period, ignoring the support effect of the information received by the secondary users in other time periods on the spectrum sensing. The multi-objective particle swarm optimization algorithm is an efficient multi-objective optimization algorithm, which is very suitable for solving the power control optimization problem of substrate-based cognitive radio, but it is easier to fall into the local optimum.

In view of the above problems, this thesis mainly completes the following research work: First, the research and simulation of the energy detection algorithm based on the transmission stage information for spectrum sensing in the opportunistic cognitive radio system, and an optimal detection threshold calculation method. Secondly, Gaussian mutation mechanism is introduced into the particle position update of the traditional multi-objective particle swarm optimization algorithm, and a density-based reference line method is used to maintain the solution set file of the algorithm. The improved algorithm is applied to solve the secondary user power control optimization problem of cognitive radio.

Simulation verification shows that compared with the traditional spectrum sensing energy detection algorithm, the algorithm described in this article performs spectrum sensing through the secondary utilization of the information received in the transmission phase, which saves the time spent on spectrum sensing from the system mechanism level and effectively improve the communication efficiency between secondary users. The improved particle swarm optimization algorithm is used to control the transmission power of the secondary user in the substrate-based cognitive radio system. Under the same conditions, the secondary user available transmission power and signal-to-noise ratio are significantly better than the traditional particle swarm algorithm under the same conditions

参考文献:

[1] 杜涛,王林.无线电监测由识别向感知和认知发展的探索[J].中国无线电,2019(11):57-59.

[2] 陈兵,胡峰,朱琨.认知无线电研究进展[J].数据采集与处理,2016,31(03):440-451.

[3] Anughna N;Tanuja G,Sunita Panda.Cognitive Radio Techniques over Conventional Radio Systems [J].International Journal of Engineering and Advanced Technology,2019.

[4] 郭文祥,余志勇,逄晨,孙亚民.认知无线电频谱感知技术综述[J].通信技术,2018,51(20):261-265.

[5] 杨明哲.认知无线电频谱感知技术研究[J].信息通信,2017(09):33-34.

[6] 冉超,方志军,张彦宇.基于SDR和改进能量检测算法的频谱感知[J].计算机工程,2020,46(09):198-204.

[7] 刘乐.基于能量检测的认知无线电频谱感知算法研究[J].物联网技术,2019,9(05):15-17.

[8] Omar A M.基于能量检测的增强双门限频谱感知算法研究[D].哈尔滨工业大学, 2019.

[9] 赵肖迪, 李芳, 熊俊,等.应用形态学的自适应门限干扰检测算法[J].信号处理,2020,36;No.248(04):123-131.

[10] G. R. George,S. C. Prema.Cyclostationary Feature Detection Based Blind Approach for Spectrum Sensing and Classification[J].Radioengineering,2019,28(1).

[11] 卢光跃,施聪,吕少卿,周亮.基于LSTM神经网络的频谱感知算法[J].信号处理,2019,35(12):2070-2076.

[12] Yanqueleth Molina-Tenorio,Alfonso Prieto-Guerrero,Rafael Aguilar-Gonzalez,Silvia Ruiz-Boqué.Machine Learning Techniques Applied to Multiband Spectrum Sensing in Cognitive Radios[J].Sensors,2019,19(21).

[13] Bommidi Sridhar,T.Srinivasulu. Spectrum sensing in cognitive radio networks using kernel recursive least squares[J].Evolutionary Intelligence,2019,12(4).

[14] 张涌逸.认知无线传感器网络功率控制研究[J].无线互联科技,2020,17(21):7-8.

[15] 韩宾,邓冬梅,江虹.基于功率控制的认知无线网络能效研究[J].湖南大学学报(自然科学版),2019,46(04):115-120.

[16] 马忠贵,班莎,陈桂梅,陈林旗.认知无线网络自适应功率控制博弈算法[J].系统仿真学报,2015,27(03):584-590.

[17] 肖楠,梁俊,刘玉磊,王伟.基于非合作博弈的认知无线电网络功率控制[J].华中科技大学学报(自然科学版),2016,44(01):112-117.

[18] 谢显中,何露,杨和林,马彬.认知无线电中具有双重代价因子的联合功率控制与速率分配博弈算法[J].中国科学:信息科学,2015,45(09):1157-1168.

[19] 林瑞全,王俊.一种基于能量检测的鲁棒频谱感知方法[J].系统科学与数学, 2017, 37(003):674-684.

[20] 王宏志,姜方达,周明月.基于遗传粒子群优化算法的认知无线电系统功率分配[J].吉林大学学报(工学版),2019,49(04):1363-1368.

[21] Ramakrishnan Sabitha.Transmission power control using state estimation-based received signal strength prediction for energy efficiency in wireless sensor networks[J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES,2017,25(1).

[22] 苗成林,李彤,吕军,常成.基于注水算法的认知网络功率分配技术研究[J].通信技术,2017,50(04):684-689.

[23] K. Kanaka Vardhini,T. Sitamahalakshmi. A Review on Nature-based Swarm Intelligence Optimization Techniques and its Current Research Directions[J].Indian Journal of Science and Technology,2016,9(10).

[24] 刘衍民,赵庆祯,牛奔.基于自适应动态邻居和广义学习的改进粒子群算法[J].计算机应用,2010,30(10):2578-2581.

[25] Kim Tae Wook,Kong Hyung Yun. Relay Protocol applied to Optimal Power Allocation[J].The Journal of The Institute of Internet, Broadcasting and Communication,2015,15(4).

[26] 林法杰,薛伟,张玉兵.基于频谱池的认知无线电频谱切换分析[J].计算机与数字工程,2014(04):566-569.

[27] 汤璘,刘俊霞,赵丽,齐兴斌.基于M&S模型的分布式认知无线电网络时间同步机制[J].计算机科学,2017,44(12):64-67+93.

[28] 杨世康. 分布式认知无线电频谱分配利用的研究及改进[D].昆明理工大学,2015.

[29] Tran Trung Thai,Sowa Igor,Raisz David,Monti Antonello.An average consensus‐based power‐sharing among VOC‐based distributed generations in multi‐bus islanded microgrids[J].IET Generation, Transmission & Distribution,2020,15(4).

[30] 王小毛, 黄传河等. 模拟人群信任和决策机制的协作频谱感知方法[J].通信学报,2014,35(3):94-108.

[31] 张春晓. 基于IEEE 802.22的认知网络接入控制研究[D].北京交通大学,2014.

[32] 李李,卫萌菡,周朝荣.OFDM认知无线电网络低复杂度功率分配算法[J].计算机工程与设计,2016,37(04):872-876.

[33] 时安谊,杨震.针对NOMA和CR网络的功率分配方法[J].信号处理,2019,35(07):1224-1234.

[34] Suchita Shukla, Neelam Srivastava.An overview on cooperative spectrum sensing in cognitive radios[J].Int. J. of Wireless and Mobile Computing,2016,11(4).

[35] Arun Kumar,NandhaKumar P.OFDM system with cyclostationary feature detection spectrum sensing[J].ICT Express,2019,5(1).

[36] 张唯,杨维明,沈怡彦,赵楠博,彭菊红,周民.基于FPGA的LFM信号匹配滤波的时域实现[J].电子器件,2017,40(01):66-70.

[37] Sameh G. Salem. Enhancement of Matched Filter Response for Chirp Radar Signals using Signal Recovery Technique[J].International Journal of Innovative Technology and Exploring Engineering (IJITEE),2019,9(2).

[38] 崔巍.认知无线电中传输阶段频谱感知研究[J].中国新通信,2018,20(23):16-17.

[39] Dong Zhanqi, Chen Zhong, Zhang Xianda. Study on spectrum sensing for transmission phase in cognitive radio[J].Advanced Engineering Sciences,2018,50(1):120–124.

[40] 包子阳,余继周,杨杉.智能优化算法及其MATLAB应用[M].北京:电子工业出版社,2018.

[41] 张晓莉,王秦飞,冀汶莉.一种改进的自适应惯性权重的粒子群算法[J].微电子学与计算机,2019,36(03):66-70.

[42] Nannan Qiao,Jiali You,Yiqiang Sheng.An Efficient Algorithm of Discrete Particle Swarm Optimization for Multi-Objective Task Assignment[J].The Institute of Electronics, Information and Communication Engineers,2016,E99.D(12).

[43] Arfan Ali Nagra.混合粒子群优化算法研究及其应用[D].江苏大学,2019.

[44] 陈雷,王忆南,卢奔.自适应网格改进粒子群算法在多目标重构中的应用[J].信息记录材料,2019,20(08):70-71.

[45] BASMA SOLAIMAN.Energy optimization in wireless sensor networks using a hybrid K-means PSO clustering algorithm[J].TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES,2016,24(4).

[46] 许金,谷琼,蔡之华,龚文引.基于自适应ε占优的多目标差分演化算法[J].南京师大学报(自然科学版),2015,38(01):119-127.

[47] 赵知劲,吕曦,尚俊娜,王海泉.利用功率谱最大最小值的频谱感知算法[J].信号处理,2017,33(02):152-157.

[48] 张亚梅,张国平.基于拉格朗日对偶的认知无线电网络最优资源分配算法[J].现代电子技术,2016,39(19):6-10+15.

[49] María D. Fajardo,Margarita M. L. Rodríguez,José Vidal.Lagrange Duality for Evenly Convex Optimization Problems[J].Journal of Optimization Theory and Applications,2016,168(1).

[50] Mathematics Calculus.Research Conducted at Aalto University Has Provided New Information about Calculus (Strong Lagrange duality and the maximum principle for nonlinear discrete time optimal control problems)[J].Journal of Mathematics,2019.

中图分类号:

 TN925    

开放日期:

 2022-03-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式