论文中文题名: |
黄土丘陵沟壑区坡沟系统形态发育与侵蚀产沙关系研究
|
姓名: |
黄珂瑶
|
学号: |
20210061036
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
0816
|
学科名称: |
工学 - 测绘科学与技术
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘科学与技术
|
研究方向: |
地貌遥感与水土保持
|
第一导师姓名: |
李朋飞
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-16
|
论文答辩日期: |
2023-06-05
|
论文外文题名: |
Morphological development of slope-gully systems and its relationship with erosion in the hilly and gully Loess Plateau
|
论文中文关键词: |
坡沟系统侵蚀 ; TLS ; 形态 ; 侵蚀-沉积-产沙 ; 黄土丘陵沟壑区
|
论文外文关键词: |
Erosion of slope-gully system ; TLS ; morphology ; erosion-deposition-sediment yield ; Hilly and gully Loess Plateau
|
论文中文摘要: |
︿
坡沟系统是黄土丘陵沟壑区侵蚀产沙的主要源地,沟蚀是坡沟系统土壤侵蚀的主要形式。已有坡沟系统侵蚀研究多基于室内模拟试验,难以反映野外真实沟蚀规律,尤其对坡沟系统侵蚀形态与产沙过程的交互作用及其机理认识不足。三维激光扫描技术(Terrestrial laser scanning,TLS)可以迅速、准确地构建出三维地形,为土壤侵蚀过程的精细化研究提供了有力的支持。本文针对黄土丘陵沟壑区自然坡沟系统的土壤侵蚀形态特征变化问题,采用室外模拟试验方法,建立5个相同条件下的径流小区,结合放水冲刷试验(流量为25、40、55、70、85 L/min)与TLS技术,获取高精度地形信息,基于点云数据计算梁峁坡细沟几何形态、衍生特征、地形形态特征和分形维数、地貌信息熵、分叉比等量化指标,以及沟谷坡沟头形态特征、地形形态特征、侵蚀特征和地貌信息熵等量化指标。探明坡沟系统侵蚀形态特征演变规律、侵蚀-沉积-产沙时空分布特征规律,分析坡沟系统侵蚀形态特征及其与累计侵蚀量、沉积量和产沙量的关系,并构建坡沟系统侵蚀产沙过程的形态指标体系,为坡沟系统侵蚀产沙机制研究提供参考。主要研究结论如下:
(1)形态参数方面。随着冲刷次数增加,各流量梯度梁峁坡细沟断面宽度、断面深度、细沟平均深度、细沟割裂度和粗糙度以及沟谷坡横剖面面积、粗糙度大多呈递增趋势。而细沟宽深比与流量大小相关,低流量(25 L/min)下细沟发育以横向拓宽为主,呈“宽浅式”;较低流量(40 L/min)和高流量(85 L/min)下细沟发育以纵向下切为主,呈“窄深式”;中流量(55 L/min)和较高流量(70 L/min)纵向下切和横向拓宽交替发生在细沟侵蚀过程中,细沟形态在“宽浅式”与“窄深式”间交替变化。剖面凹度指数与沟谷形态有较大关系,沟头不断发生回退,沟谷横剖面在放水流量较小时,总体上为凸形;当放水流量较大时,由凸形转变为凹形。沟谷不断发生内凹,沟谷纵剖面均从近直线形转变为凹形。低流量下梁峁坡分形维数整体趋于平稳,其余流量波动较大。中流量下分叉比呈上升趋势,其余流量下均呈下降趋势。地貌信息熵在不同地貌单元的演变规律不同,在各流量梯度下呈波动变化。
(2)侵蚀-沉积-产沙时空过程变化方面。坡沟系统累计侵蚀量和沟谷坡产沙量随着冲刷次数的变化基本呈递增趋势。沟谷坡在试验结束后累计侵蚀量、产沙量与放水流量大小呈正相关,累计沉积量在试验前期变化迅速,后期变化较平稳。在不同放水流量下,梁峁坡侵蚀区域主要集中于中上部,整个坡沟系统沉积区域主要集中于下部。随冲刷试验进行,梁峁坡侵蚀沉积逐渐达到稳定,沟缘线和沟谷坡的侵蚀则不断加强,但不同流量下的空间分布存在差异。
(3)形态参数与累计侵蚀量、沉积量、产沙量关系方面。细沟平均长度、平均断面深度和细沟平均深度可分别用于评估较低流量下梁峁坡面累计沉积量、侵蚀量和产沙量;平均断面宽度、平均断面深度及细沟平均深度可用于评估较高流量下梁峁坡累计侵蚀量。同时可用梁峁坡细沟平均深度、沟谷坡粗糙度和横剖面面积评估低流量下累计侵蚀量和产沙量;沟头长度分形维数可评估低流量沟谷坡面累计侵蚀量、沉积量和产沙量;横剖面凹度指数可较精准的评估低流量和高流量沟谷坡面累计侵蚀量和产沙量。此外,随着流量的增大,梁峁坡各形态指标与累计侵蚀量、沉积量和产沙量关系的显著性减弱。在整个坡沟系统(不同地貌单元)地貌信息熵与产沙量的变化趋势基本一致,能够较好反映土壤侵蚀的动态变化,是评价坡沟系统形态的最佳形态指标。
﹀
|
论文外文摘要: |
︿
The slope-gully system is the main source of catchment sediment yield. Gully erosion is the main way in which soil erosion occurs in the slope-gully system. Previous studies on slope-gully system erosion have mostly been based on indoor simulation experiments, which cannot reproduce the real field erosion processes, especially the insufficient understanding of the interaction between slope-gully system erosion morphology and erosion-deposition process and its mechanisms. Terrestrial Laser Scanning (TLS) is able to quickly and accurately construct three-dimensional topography, thus providing a powerful support for the detailed study of soil erosion processes. In this study, field runoff scouring experiments were conducted to investigate the morphological characteristics and changes in soil erosion of the natural slope-gully system in the hilly and gully Loess Plateau. Five runoff plots were established under the same conditions, and the high-precision topographic information was obtained by combining the water erosion test (flow rates of 25, 40, 55, 70, 85 L/min) with TLS technology. Based on point cloud data, quantitative indicators including the geometric morphology, derived features, topographical morphology characteristics, fractal dimension, landscape information entropy. Quantitative indicators such as gully head morphology characteristics, topographical morphology characteristics, erosion characteristics. The study aims to explore the evolution of the morphological characteristics of slope-gully system erosion and the spatiotemporal distribution patterns of erosion-deposition-sediment yield production in slope-gully systems. The study also examined the relationship between the morphological characteristics of slope-gully system erosion and the cumulative erosion amount, deposition amount, and sediment yield, and constructed a morphological index system for the erosion and sedimentation processes of the slope-gully system. The study provided a useful reference for revealing the mechanism of slope-gully system erosion. Main findings are as follows:
(1) As the number of scouring increased, the width, depth, average depth, incision ratio, and roughness of rill cross-sections, as well as the cross-sectional area and roughness of the valley transverse profile, mostly showed an increasing trend. The width-depth ratio of the rills was related to the flow rate, and under low inpout flow rates (25 L/min), the development of rills was mainly characterized by transverse widening, presenting a "wide and shallow" form; under relatively low (40 L/min) and high input flow rates (85 L/min), the development of rills was mainly characterized by longitudinal downcutting, presenting a "narrow and deep" form; while at medium (55 L/min) and relatively high input flow rates (70 L/min), the longitudinal downcutting and transverse widening alternately occured during the erosion process, and the rill morphology changes alternately between "wide and shallow" and "narrow and deep". The profile concavity index was closely related to the morphology of the channel, as the channel head constantly experienced backcutting, resulting in a generally convex cross-sectional profile at low discharge and a transition to concave at high discharge. Additionally, the channel underwent continuous entrenchment, with the longitudinal profile transitioning from near-linear to concave. The overall fractal dimension of the slope decreased with increasing discharge, except for at low input flow rates where it remained relatively stable. The bifurcation ratio increased at intermediate input flow rates, but decreased at other input flow rates. The evolution of the geomorphic entropy varied among different geomorphic units and exhibited fluctuating changes at different flow gradients.
(2) The cumulative erosion and sediment yield of the slope-gully system generally exhibited an increasing trend with the number of scouring events. The cumulative erosion and sediment yield of the gully slope were positively correlated with the water discharge at the end of the experiment. The cumulative sedimentation varied considerably at the early stages of the experiments and then stabilized during the later stages. Under different flow conditions, the erosion of the hillslope was mainly concentrated in the upper-middle part, while the deposition of the entire slope-gully system was mainly concentrated in the lower part. With the progress of the scouring experiments, the erosion and deposition of the hillslope gradually reached a steady state, while the erosion of the gully shoulder line and gully slope continuously increased, but there were differences in their spatial distribution under different flow conditions.
(3) The average length, average cross-sectional depth, and average channel depth of rills can be used to evaluate the cumulative sedimentation, erosion, and sediment yield of hillslope under low flow conditions, whereas the average cross-sectional width, average cross-sectional depth, and average channel depth of rills can be used to evaluate the cumulative erosion of hillslope under high flow conditions. In addition, the average channel depth, valley gully slope roughness, and transverse profile area of the hillslope rills can be used to evaluate the cumulative erosion and sediment yield under low flow conditions. The fractal dimension of channel head length can be used to evaluate the cumulative erosion, sedimentation, and sediment yield of the gully slope valley under low flow conditions, while the concavity index of transverse profile can accurately evaluate the cumulative erosion and sediment yield of gully slope under both low and high flow conditions. Moreover, as the input flow rate increased, the significance of the relationships between the various geomorphic indices of the hillslope and the cumulative erosion, deposition, and sediment yield decreased. The variation trend of the geomorphic entropy of the entire slope-gully system (different geomorphic units) was consistent with that of the sediment yield and can better reflect the dynamic changes of soil erosion, making it the best indicator for evaluating slope-gully system morphology.
﹀
|
参考文献: |
︿
[1]杨雪. 基于横剖面的黄土沟谷形态特征研究 [D]. 南京: 南京师范大学,2020. [2]李桂芳. 典型黑土区坡面土壤侵蚀影响因素与动力学机理研究 [D]. 杨凌: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2016. [3]WANG J, LU P, VALENTE D, et al. Analysis of soil erosion characteristics in small watershed of the loess tableland Plateau of China [J]. Ecological Indicators. 2022, 137: 108765. [4]BORRELLI P, ROBINSON DA, PANAGOS P, et al. Land use and climate change impacts on global soil erosion by water (2015-2070) [J]. Proceedings of the National Academy of Sciences, 2020, 117(36): 21994-22001. [5]陈超, 雷廷武, 班云云, 等. 东北黑土坡耕地不同水力条件下坡长对土壤细沟侵蚀的影响(英文)[J]. 农业工程学报, 2019, 35(05): 155-162. [6]刘冉, 余新晓, 蔡强国, 等.陕北黄土丘陵沟壑区坡面侵蚀—沉积过程试验研究 [J]. 水土保持通报, 2022, 42(02): 31-37. [7]SHEN N, WANG Z, GUO Q, et al. Soil detachment capacity by rill flow for five typical loess soils on the Loess Plateau of China [J]. Soil and Tillage Research, 2021, 213: 105159. [8]LI P, CHEN J, ZHAO G, et al. Determining the drivers and rates of soil erosion on the Loess Plateau since 1901 [J]. Science of the Total Environment, 2022, 823: 153674. [9]张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究 [J]. 工程地质学报, 2011, 19(04): 530-540. [10]王玲玲, 姚文艺, 王文龙, 等. 黄丘区坡沟系统不同时间尺度下的侵蚀产沙特征 [J]. 水利学报, 2013, 44(11): 1347-1351. [11]魏霞, 李占斌, 李勋贵. 黄土高原坡沟系统土壤侵蚀研究进展 [J]. 中国水土保持科学, 2012, 10(01): 108-113. [12]魏霞, 李勋贵, 李占斌. 黄土高原坡沟系统径流泥沙过程 [J]. 兰州大学学报: 自然科学版, 2010, 46(05): 7-10+18. [13]郑粉莉, 杨勤科, 王占礼. 水蚀预报模型研究 [J]. 水土保持研究, 2004, (04): 13-24. [14]CHEN X, ZHAO Y, MI H, et al. Estimating rill erosion process from eroded morphology in flume experiments by volume replacement method [J]. Catena, 2016, 136: 135-140. [15]LOCH R J. Field rainfall simulator studies on two clay soils of the Darling Downs, Queensland. I. The effect of plot length and tillage orientation on erosion processes and runoff and erosion rates [J]. Australian Journal of Soil Research, 1983, 21(01): 1-15. [16]和继军, 黎雪晴, 蔡强国, 等. 典型黄土坡面土壤侵蚀特征及径流流速空间变化试验研究 [J]. 地理研究, 2022, 41(05): 1327-1337. [17]BEUSELINCK L, GOVERS G, HAIRSINE P B, et al. The influence of rainfall on sediment transport by overland flow over areas of net deposition [J]. Journal of Hydrology, 2002, 257(1-4): 145-163. [18]李朋飞, 黄珂瑶, 胡晋飞, 等. 黄土丘陵沟壑区细沟发育形态的变化及其与侵蚀产沙的关系 [J]. 农业工程学报, 2022, 38(18): 92-102. [19]QIN C, ZHENG F, XU X, et al. A laboratory study on rill network development and morphological characteristics on loessial hillslope [J]. Journal of Soils and Sediments, 2018, 18(04): 1679-1690. [20]杨明义, 田均良. 坡面侵蚀过程定量研究进展 [J]. 地球科学进展, 2000, 15(06): 649-653. [21]MONTGOMERY D R, FOUFOULA‐GEORGIOU E. Channel network source representation using digital elevation models [J]. Water Resources Research, 1993, 29(12): 3925-3934. [22]ZHANG P, TANG H, YAO W, et al. Experimental investigation of morphological characteristics of rill evolution on loess slope [J]. Catena, 2016, 137, 536-544. [23]丁文峰, 张平仓, 王爱娟, 等. 几种坡面土壤侵蚀测量方法的比较研究 [J]. 长江科学院院报, 2015, 32(11): 14-18. [24]陈若, 夏永华, 杨明龙, 等. 基于TLS的全风化花岗岩地区水土保持措施减沙效益研究 [J]. 激光与光电子学进展, 2022, 59(10): 439-446. [25]覃超. 基于立体摄影技术的黄土坡面细沟侵蚀发育过程量化研究 [D].杨凌: 西北农林科技大学, 2018. [26]LI L, NEARING M A, NICHOLS M H, et al. Using terrestrial LiDAR to measure water erosion on stony plots under simulated rainfall [J]. Earth Surface Processes and Landforms, 2020, 45(02): 484-495. [27]WIRTZ S, SEEGER M, RIES J B. Field experiments for understanding and quantification of rill erosion processes [J]. Catena, 2012, 91: 21-34. [28]Wang P, Jin X, Li S. Application of Handheld 3D Scanner in Quantitative Study of Slope Soil Erosion [C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, 170(02): 022178. [29]张姣, 郑粉莉, 温磊磊, 等. 利用三维激光扫描技术动态监测沟蚀发育过程的方法研究 [J]. 水土保持通报, 2011, 31(06): 89-94. [30]EVANS M, LINDSAY J. High resolution quantification of gully erosion in upland peatlands at the landscape scale [J]. Earth Surface Processes & Landforms, 2010, 35(08): 876-886. [31]LI P, HAO M, HU J, et al. Spatiotemporal patterns of hillslope erosion investigated based on field scouring experiments and terrestrial laser scanning [J]. Remote Sensing, 2021, 13(09): 1674. [32]LU X, LI Y, WASHINGTON-ALLEN R A, et al. The effect of grid size on the quantification of erosion, deposition, and rill network [J]. International Soil and Water Conservation Research, 2017, 5(03): 241-251. [33]冯凯月, 马利霞, 陈洋, 等. 利用地基激光雷达估算不同地表条件下土方量 [J]. 农业工程学报, 2021, 37(23): 90-99. [34]CHEN X Y, ZHAO Y, MI H, et al. Estimating rill erosion process from eroded morphology in flume experiments by volume replacement method [J]. Catena, 2016, 136, 135-140. [35]杨春霞, 李莉, 王佳欣, 等. 坡沟系统侵蚀时空分布特征试验研究 [J]. 人民黄河, 2017, 39(01): 95-97. [36]MAHMOODABADI M, SAJJADI S A. Effects of rain intensity, slope gradient and particle size distribution on the relative contributions of splash and wash loads to rain-induced erosion [J]. Geomorphology, 2016, 253: 159-167. [37]陈浩, 蔡强国, 等. 沟道流域坡面与沟谷侵蚀演化关系——以晋西王家沟小流域为例 [J]. 地理研究, 2004, (03): 329-338. [38]ZHANG Q, LEI T, HUANG X. Quantifying the sediment transport capacity in eroding rills using a REE tracing method [J]. Land Degradation & Development, 2017, 28(02): 591-601. [39]DI STEFANO C, FERRO V, PAMPALONE V. Measuring field rill erodibility by a simplified method[J]. Land Degradation & Development, 2016, 27(02): 239-247. [40]付兴涛, 王奇花, 王锦志. 降雨条件下晋西黄绵土坡面室内外径流侵蚀试验差异分析 [J]. 农业工程学报, 2021, 37(01): 116-124. [41]唐辉, 李占斌, 李鹏, 等. 模拟降雨下坡面微地形量化及其与产流产沙的关系 [J]. 农业工程学报, 2015, 31(24): 127-133. [42]覃超, 何超, 郑粉莉, 等. 黄土坡面细沟沟头溯源侵蚀的量化研究 [J]. 农业工程学报, 2018, 34(06): 160-167. [43]李龙, 张鹏, 郭跃, 等. 自然降雨条件下砒砂岩坡面细沟微形态及其侵蚀特征 [J]. 水土保持通报, 2021, 41(06): 15-22. [44]王睿, 李鹏, 韩建纯, 等. 沟头高度和土壤质地对细沟溯源侵蚀特征和形态发育的影响 [J]. 农业工程学报, 2021, 37(10): 91-99. [45]黄河中游水土保持委员会. 1954—1963黄河中游水土保持径流测验资料 天水,西峰,绥德站小流域部分 [M]// 陕西: 黄河中游水土保持委员会, 1966: 192-299. [46]陈永宗. 黄土高原土壤侵蚀规律研究工作回顾 [J]. 地理研究, 1987, (01): 76-85. [47]张科利, 蔡强国, 柯奇画. 中国土壤侵蚀研究重大成就及未来关键领域 [J]. 水土保持通报, 2022, 42(04): 373-380. [48]陈永宗. 我国土壤侵蚀研究工作的新进展 [J]. 中国水土保持, 1989, (09): 9-13+64. [49]朱显谟. 黄土高原水蚀的主要类型及其有关因素 [J]. 水土保持通报, 1981, (03): 1-9. [50]朱显谟. 黄土高原水蚀的主要类型及其有关因素 [J]. 水土保持通报, 1982, (01): 25-30. [51]朱冰冰, 霍云霈, 周正朝. 黄土高原坡沟系统植被格局对土壤侵蚀影响研究进展 [J]. 中国水土保持科学, 2021, 19(04): 149-156. [52]郑粉莉. 黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究 [J]. 土壤学报, 1998, 35(01): 95-103. [53]陆兆熊, 蔡强国, 朱同新, 等. 黄土丘陵沟壑区土壤侵蚀过程研究 [J]. 中国水土保持, 1991, (11): 21-24+64-65. [54]郑粉莉, 高学田. 坡面土壤侵蚀过程研究进展 [J]. 地理科学, 2003, 23(02): 230-235. [55]王娜, 王璐, 宋昌海. 东北黑土区坡耕地土壤侵蚀及其治理研究进展 [J]. 南方农业, 2022, 16(17): 160-162+166. [56]程琴娟, 蔡强国. 我国水土流失典型区土壤溅蚀特征研究 [J]. 水土保持通报, 2010, 30(01): 17-21. [57]张洪江, 程金花. 土壤侵蚀原理.第3版 [M]. 北京: 科学出版社, 2014. [58]HORTON R E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology [J]. Geological Society of America Bulletin, 1945, 56(03): 275-370. [59]刘元保, 朱显谟, 周佩华, 等. 黄土高原土壤侵蚀垂直分带性研究 [J]. 水土保持研究, 1988, (01): 5-8. [60]张新和, 郑粉莉, 张鹏, 等. 黄土坡面侵蚀方式演变过程中汇水坡长的侵蚀产沙作用分析 [J]. 干旱地区农业研究, 2007, 104(06): 126-131. [61]王林华, 汪亚峰, 王健, 等. 地表粗糙度对黄土坡面产流机制的影响 [J]. 农业工程学报, 2018, 34(05): 120-128. [62]刘青泉, 李家春, 陈力, 等. 坡面流及土壤侵蚀动力学(Ⅱ)——土壤侵蚀 [J]. 力学进展, 2004, (04): 493-506. [63]郑粉莉, 徐锡蒙, 覃超. 沟蚀过程研究进展 [J]. 农业机械学报, 2016, 47(08): 48-59+116. [64]许建民. 黄土高原浅沟发育主要影响因素及其防治措施研究 [J]. 水土保持学报, 2008, 97(04): 39-41. [65]CASALI J, BENNETT S J, ROBINSON K M. Processes of ephemeral gully erosion [J]. International Journal of Sediment Research 2000, 15(01): 31-41. [66]朱显谟. 黄土高原水蚀的主要类型及其有关因素 [J]. 水土保持通报, 1982, (03): 40-44. [67]王志强, 杨萌, 张岩等. 暴雨条件下黄土高原长陡坡耕地细沟侵蚀特征 [J]. 农业工程学报, 2020, 36(12): 129-135. [68]LOU Y, GAO Z, SUN G, et al. Runoff scouring experimental study of rill erosion of spoil tips [J]. Catena, 2022, 214: 106249. [69]Elliot W J. A process based rill erosion model [M]. USA: Iowa State University, 1988. [70]王颢霖, 焦菊英, 唐柄哲, 等. 陕北子洲“7·26”暴雨后坡耕地细沟侵蚀及其影响因素分析 [J]. 农业工程学报, 2019, 35(11): 122-130. [71]王志强, 杨萌, 张岩, 等. 暴雨条件下黄土高原长陡坡耕地细沟侵蚀特征 [J]. 农业工程学报, 2020, 36(12): 129-135. [72]李龙, 张鹏, 郭跃, 等. 自然降雨条件下砒砂岩坡面细沟微形态及其侵蚀特征 [J]. 水土保持通报, 2021, 41(06): 15-22. [73]张科利, 唐克丽, 王斌科. 黄土高原坡面浅沟侵蚀特征值的研究 [J]. 水土保持学报, 1991, (02): 8-13. [74]张科利, 唐克丽. 浅沟发育与陡坡开垦历史的研究 [J]. 水土保持学报, 1992, 6(02): 59-62. [75]GONG J G, JIA Y W, ZHOU Z H, et al. An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes [J]. Geomorphology, 2011, 125(01): 203-213. [76]TANG K L, ZHENG S Q, XI D Q, et al. Soil loss and treatment in sloping farmland in Xingzihe Watershed [J]. Bull. Soil Water Conserv, 1983, 3(05): 43-48. [77]程宏, 伍永秋. 切沟侵蚀定量研究进展 [J]. 水土保持学报, 2003, (05): 32-35. [78]SCHUMM S A, HADLEY R F. Arroyos and the semiarid cycle of erosion [Wyoming and New Mexico] [J]. American Journal of Science, 1957, 255(03): 161-174. [79]MEYER A, MARTıNEZ-CASASNOVAS J. Prediction of existing gully erosion in vineyard parcels of the NE Spain: a logistic modelling approach [J]. Soil and Tillage Research, 1999, 50(3-4): 319-331. [80]POESEN J, NACHTERGAELE J, VERSTRAETEN G, et al. Gully erosion and environmental change: importance and research needs [J]. Catena, 2003, 50(2-4): 91-133. [81]于章涛, 伍永秋. 黑土地切沟侵蚀的成因与危害 [J]. 北京师范大学学报(自然科学版), 2003, (05): 701-705. [82]WU Y, CHENG H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system [J]. Catena, 2005, 63(2-3): 154-166. [83]李斌兵, 郑粉莉, 张鹏. 黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定 [J]. 水土保持通报, 2008, 28(05): 16-20. [84]张光辉, 杨扬, 符素华等. 切沟侵蚀预报研究进展与展望 [J]. 地球科学进展, 2022, 37(06): 551-562. [85]ZARE M, SOUFI M, NEJABAT M, et al. The topographic threshold of gully erosion and contributing factors [J]. Natural Hazards, 2022, 112(03): 2013-2035. [86]丁晋利, 郑粉莉, 张信宝, 等. 利用~7Be研究侵蚀性降雨前后坡面土壤侵蚀空间分布特征 [J]. 水土保持通报, 2005, (02): 16-19. [87]董元杰, 史衍玺, 孔凡美, 等. 基于磁测的坡面土壤侵蚀空间分布特征研究 [J]. 土壤学报, 2009, 46(01): 144-148. [88]胡国庆, 董元杰, 史衍玺, 等. 坡面土壤侵蚀空间分异特征的磁性示踪法和侵蚀针法对比研究 [J]. 水土保持学报, 2010, 24(01): 53-57. [89]Haas F. Fluviale Hangprozesse in alpinen Einzugsgebieten der nördlichen Kalkalpen-Quantifizierung und Modellierungsansätze [M]. Germany: Profil-Verlag, 2008. [90]NEUGIRG F, KAISER A, HUBER A, et al. Using terrestrial LiDAR data to analyse morphodynamics on steep unvegetated slopes driven by different geomorphic processes [J]. Catena, 2016, 142: 269-280. [91]NOUWAKPO S K, WELTZ M A, MCGWIRE K. Assessing the performance of structure‐from‐motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots [J]. Earth Surface Processes and Landforms, 2016, 41(03): 308-322. [92]MILAN D J, HERITAGE G L, HETHERINGTON D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river [J]. Earth Surface Processes and Landforms, 2007, 32(11): 1657-1674. [93]丁文峰, 李勉, 张平仓, 等. 坡沟系统侵蚀产沙特征模拟试验研究 [J]. 农业工程学报, 2006, 22(03): 10-14. [94]范东明, 吴卿, 李志萍, 等. 基于模拟降雨的坡沟系统侵蚀产沙时空分布特征研究 [J]. 中国水土保持, 2016, 408(03): 43-46+73. [95]温永福, 高鹏, 穆兴民, 等. 野外模拟降雨条件下径流小区产流产沙试验研究 [J]. 水土保持研究, 2018, 25(01): 23-29. [96]VINCI A, BRIGANTE R, TODISCO F, et al. Measuring rill erosion by laser scanning [J]. Catena, 2015, 124: 97-108. [97]USMANOV B, YERMOLAEV O, GAFUROV A. Estimates of slope erosion intensity utilizing terrestrial laser scanning [J]. Proceedings of the International Association of Hydrological Sciences, 2015, 367: 59-65. [98]RENGERS F K, TUCKER G, MOODY J, et al. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar [J]. Journal of Geophysical Research: Earth Surface, 2016, 121(03): 588-608. [99]王一峰, 牛俊, 张长伟. 基于三维激光扫描仪技术的坡面径流小区土壤侵蚀运用研究 [J]. 中国农业信息, 2013, 159(23): 151-152. [100]李朋飞, 张晓晨, 党旭, 等. 基于三维激光扫描的坡沟系统侵蚀产沙过程研究 [J]. 水土保持研究, 2023, 30(02): 13-21. [101]MOHAMMED OLUDARE I, PRADHAN B. A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development [J]. International Journal of Speleology, 2016, 45(01): 71-88. [102]GOODWIN N R, ARMSTON J D, MUIR J, et al. Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland [J]. Geomorphology, 2017, 282: 195-208. [103]孔亚平, 张科利. 黄土坡面侵蚀产沙沿程变化的模拟试验研究 [J]. 泥沙研究, 2003, (01): 33-38. [104]张风宝, 杨明义. 基于~7Be示踪和细沟沟网分形维数研究坡面土壤侵蚀 [J]. 核农学报, 2010, 24(05): 1032-1037. [105]和继军, 宫辉力, 李小娟, 等. 细沟形成对坡面产流产沙过程的影响 [J]. 水科学进展, 2014, 25(01): 90-97. [106]GILLEY J E, KOTTWITZ E, SIMANTON J R. Hydraulic characteristics of rills [J]. Transactions of the American Society of Agricultural and Biological Engineers, 1990, 33(06): 1900-1906. [107]GOVINDARAJU R S, KAVVAS M L. A spectral approach for analyzing the rill structure over hillslopes. Part 1. Development of stochastic theory [J]. Journal of Hydrology, 1994, 158(3-4): 333-347. [108]BEWKET W, STERK G. Assessment of soil erosion in cultivated fields using a survey methodology for rills in the Chemoga watershed, Ethiopia [J]. Agriculture Ecosystems & Environment, 2003, 97(1-3): 81-93. [109]BRUNO C, STEFANO C D, FERRO V. Field investigation on rilling in the experimental Sparacia area, South Italy [J]. Earth Surface Processes and Landforms, 2008, 33(02): 263-279. [110]张攀, 姚文艺, 陈伟. 降雨驱动下黄土坡面细沟的分形和熵量化描述 [J]. 中国水土保持科学, 2014, 12(05): 17-22. [111]王小丹, 钟祥浩, 范建容, 等. 金沙江干热河谷元谋盆地冲沟沟头形态学特征研究 [J]. 地理科学, 2005, (01): 63-67. [112]王小丹, 范建容, 柴宗新等. 金沙江下游元谋盆地冲沟沟头弯曲度的分形研究 [J].水土保持学报, 2001(S1): 65-67. [113]张宝军, 熊东红, 董一帆, 等. 地貌信息熵理论在冲沟沟头活跃度评价中的应用初探 [J]. 中国水土保持, 2015, 394(01): 3-7+69. [114]NEARING M A, FOSTER G R, LANE L, et al. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology [J]. Transactions of the American Society of Agricultural and Biological Engineers, 1989, 32(05): 1587-1593. [115]雷廷武, NEARING M.A. 侵蚀细沟水力学特性及细沟侵蚀与形态特征的试验研究 [J].水利学报, 2000, (11): 49-54. [116]HESSEL R. Consequences of hyperconcentrated flow for process‐based soil erosion modelling on the Chinese Loess Plateau [J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2006, 31(09): 1100-1114. [117]景可. 黄土高原沟谷侵蚀研究 [J]. 地理科学, 1986, (04): 340-347. [118]甘枝茂. 地貌特征对土壤侵蚀的影响 [J]. 土壤通报, 1980, (05): 16-17. [119]陈永宗. 黄土高原沟道流域产沙过程的初步分析 [J]. 地理研究, 1983, (01): 35- 47. [120]郑粉莉, 武敏, 张玉斌, 等. 黄土陡坡裸露坡耕地浅沟发育过程研究 [J]. 地理科学, 2006, 26(04): 438-442. [121]詹松. 黄土高塬沟壑区沟头溯源侵蚀过程模拟试验 [D] 杨凌: 西北农林科技大学, 2014. [122]刘增文, 李雅素. 黄土残塬区侵蚀沟道分类研究 [J]. 中国水土保持, 2003, (09): 32-34+50. [123]陈绍宇, 许建民, 王文龙, 等. 黄土高塬沟壑区董志塬沟头溯源侵蚀特征及其防治途径 [J]. 水土保持通报, 2009, 29(04): 37-41. [124]STRAHLER A N. Dynamic basis of geomorphology [J]. Geological Society of America Bulletin, 1952, 63(09): 923-938. [125]艾南山. 侵蚀流域系统的信息熵 [J]. 水土保持学报, 1987, (02): 1-8. [126]励强, 陆中臣, 袁宝印. 地貌发育阶段的定量研究 [J]. 地理学报, 1990, (01): 110-120. [127]罗来兴, 祁延年. 黄土邱陵区沟壑发育与侵蚀量计算的实例——陕北绥德韮园沟流域 [J]. 地理学报, 1951, (02): 187-193. [128]HORTON R E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology [J]. Bulltin of the Geological Society of America, 1945, 50(03): 807-813. [129]SCHUMM S A. The role of creep and rainwash on the retreat of badland slopes [South Dakota] [J]. American Journal of Science, 1956, 254(11): 210–213. [130]STRAHLER A N. The earth sciences [M] New York and London: Harper and Row, 1963. [131]张楠, 张岩, 王佳希, 等. 黄土丘陵沟壑区小流域侵蚀沟数量及形态特征 [J]. 水土保持学报, 2023, 37(03): 1-7. [132]刘冉, 余新晓, 蔡强国, 等. 黄土丘陵沟壑区黄土坡面侵蚀过程及其影响因素 [J]. 应用生态学报, 2021, 32(08): 2886-2894. [133]蒋忠信. 西藏帕隆藏布泥石流沟谷纵剖面形态统计分析 [J]. 中国地质灾害与防治学报, 2001, (04): 43-49. [134]VANDEKERCKHOVE L, MUYS B, POESEN J, et al. A method for dendrochronological assessment of medium-term gully erosion rates [J]. Catena, 2001, 45(02): 123-161. [135]李晨瑞, 李发源, 马锦, 等. 黄河中游流域地貌形态特征研究 [J]. 地理与地理信息科学, 2017, 33(04): 107-112+2. [136]何宗宜, 阮依香, 尹为利, 等. 基于分形理论的水系要素制图综合研究 [J]. 武汉大学学报(信息科学版), 2002, (04): 427-431. [137]崔灵周, 肖学年, 李占斌. 基于GIS的流域地貌形态分形盒维数测定方法研究 [J]. 水土保持通报, 2004, (02): 38-40. [138]王民. 基于GIS的流域地貌多重分形特征与侵蚀产沙关系研究 [D] 西安: 西安理工大学, 2009. [139]曹建军, 方炫, 那嘉明, 等. 基于多重分形的黄土高原不同地貌类型区沟沿线起伏特征研究 [J]. 地理与地理信息科学, 2017, 33(04): 51-56. [140]Mandelbrot B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension [M]// Classics on Fractals. CRC Press, 2019: 350-358. [141]张艳如, 李国庆, 刘冠, 等. 陕西省延安市燕沟流域水系分形与地貌侵蚀发育研究 [J]. 水土保持研究, 2022, 29(02): 7-10. [142]ZHANG B, ZHANG G, YANG H, et al. Soil resistance to flowing water erosion of seven typical plant communities on steep gully slopes on the Loess Plateau of China [J]. Catena, 2019, 173: 375-383. [143]许强强, 张宽地, 任涓. 不同流量级组合下细沟侵蚀产沙机理研究 [J]. 节水灌溉, 2022, 323(07): 71-78. [144]张攀, 唐洪武, 姚文艺, 等. 细沟形态演变对坡面水沙过程的影响 [J]. 水科学进展, 2016, 27(04): 535-541. [145]季翔, 黄炎和, 林金石, 等. 基于DEM的坡形与水土流失的关系——以西溪小流域为研究区 [J]. 中国农业大学学报, 2019, 24(02): 161-171. [146]高学田, 郑粉莉, 等. 黄土坡面土壤侵蚀过程与模拟 [M]. 西安:陕西人民出版社, 2000: 96-119. [147]田世民, 王兆印, 李志威, 等. 黄土高原土壤特性及对河道泥沙特性的影响 [J]. 泥沙研究, 2016(05): 74-80. [148]HUANG D, SU L, ZHOU L, et al. Assessment of gully erosion susceptibility using different DEM-derived topographic factors in the black soil region of Northeast China [J]. International Soil and Water Conservation Research, 2023, 11(01): 97-111. [149]景可. 黄土高原侵蚀分区探讨 [J]. 山地学报, 1985, (03): 35-39. [150]党维勤, 党恬敏. 辛店沟水土保持科技示范园景观资源及其美学意境分析 [C]// 2015海峡两岸水土保持学术研讨会. 2015海峡两岸水土保持学术研讨会论文集.太原: 中国水土保持学会, 2015: 213-219. [151]党维勤. 辛店沟试验场 [J]. 中国水土保持, 2016, (09): 95. [152]于德文, 赵志普. 从辛店试验场的实践看黄土丘陵沟壑区的治理 [J]. 人民黄河, 1983, (06): 42-45. [153]賈振嵐. 辛店沟水土保持科学试验场的试验成果 [J]. 中国水利, 1963, (24): 5-6. [154]康宏亮, 王文龙, 薛智德, 等. 冲刷条件下黄土丘陵区浅沟侵蚀形态及产流产沙特征 [J]. 农业工程学报, 2016, 32(20): 161-170. [155]LAGUE D, BRODU N, LEROUX J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ) [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 10-26. [156]沈海鸥, 郑粉莉, 温磊磊. 细沟发育与形态特征研究进展 [J]. 生态学报, 2018, 38(19): 6818-6825. [157]张建文. 覆沙坡面细沟侵蚀发育过程与形态特征研究 [D]. 西安: 西安理工大学, 2020. [158]艾南山, 岳天祥. 再论流域系统的信息熵 [J]. 水土保持学报, 1988, (04): 3-11. [159]TAROLLI P, CAVALLI M, MASIN R. High-resolution morphologic characterization of conservation agriculture [J]. Catena, 2019, 172: 846-856. [160]DENG Q, QIN F, ZHANG B, et al. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou Dry-Hot Valley [J]. Geomorphology, 2015, 228: 703-713. [161]金鑫, 刘浩楠, 宋颖, 等. 细沟向浅沟发育过程中沟道几何形态特征变化规律研究 [J]. 中国农村水利水电, 2022, 482(12): 8-16. [162]牛耀彬, 高照良, 等. 工程堆积体坡面细沟形态发育及其与产流产沙量的关系 [J]. 农业工程学报, 2016, 32(19): 154-161. [163]吕刚, 贾晏泽, 刘雅卓, 等. 褐土与棕壤坡耕地细沟侵蚀发生的阶段性水沙变化 [J]. 水土保持学报, 2020, 34(05): 42-48. [164]李龙, 秦富仓, 钱秋颖, 等. 冲刷条件下裸露砒砂岩区坡面细沟微形态变化及其侵蚀特征 [J]. 2021, 35(05): 37-43. [165]郭明明, 王文龙, 李建明, 等. 野外模拟降雨条件下矿区土质道路径流产沙及细沟发育研究 [J]. 农业工程学报, 2016, 32(24): 155-163. [166]赵龙山, 侯瑞, 吴发启. 黄土坡面细沟侵蚀研究进展与展望 [J]. 中国水土保持, 2017, 426(09): 47-51+67. [167]李霞, 金鑫, 谢斯琴, 等. 间歇降雨对红壤坡面土壤侵蚀特征的影响 [J]. 水土保持学报, 2021, 35(01): 96-102. [168]张攀, 姚文艺, 唐洪武, 等. 黄土坡面细沟形态变化及对侵蚀产沙过程的影响 [J]. 农业工程学报, 2018, 34(05): 114-119. [169]杨维鸽, 郑粉莉, 王占礼, 等. 地形对黑土区典型坡面侵蚀—沉积空间分布特征的影响 [J]. 土壤学报, 2016, 53(03): 572-581. [170]GAO C, LI P, HU J, et al. Development of gully erosion processes: A 3D investigation based on field scouring experiments and laser scanning [J]. Remote Sensing of Environment, 2021, 265: 112683. [171]RICE S P, BUFFIN‐BéLANGER T, REID I. Sensitivity of interfacial hydraulics to the microtopographic roughness of water‐lain gravels [J]. Earth Surface Processes and Landforms, 2014, 39(02): 184-199. [172]SAMBROOK SMITH G H, NICHOLAS A P. Effect on flow structure of sand deposition on a gravel bed: Results from a two‐dimensional flume experiment [J]. Water Resources Research, 2005, 41(10). [173]WANG L, ZHANG G, ZHU L, et al. Biocrust wetting induced change in soil surface roughness as influenced by biocrust type, coverage and wetting patterns [J]. Geoderma, 2017, 306: 1-9.
﹀
|
中图分类号: |
P237
|
开放日期: |
2024-06-16
|