论文中文题名: | 文家坡煤矿41盘区综放工作面导水裂隙带发育特征研究 |
姓名: | |
学号: | 19209212064 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085217 |
学科名称: | 工学 - 工程 - 地质工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿井水害防治 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Research on the development characteristics of the water-conducting fracture zone of the fully mechanized caving working face in the 41th panel of Wenjiapo Coal Mine |
论文中文关键词: | |
论文外文关键词: | water-conducting fissure zone ; Coal seam mining height ; Fully mechanized caving mining ; security partition ; Wenjiapo Coal Mine |
论文中文摘要: |
煤层开采顶板水害是陕西彬长矿区各矿井安全生产的主要威胁之一,而导水裂隙带的发育高度对于顶板水害防治具有决定性影响。针对彬长矿区综放开采导水裂隙带发育特征不清的实际,本文以彬长矿区文家坡煤矿41盘区为研究区,以4105综放工作面为研究对象,开展煤层不同采高条件下覆岩破坏和导水裂隙带发育特征研究,对综放工作面导水裂隙带高度预计具有重要的理论与实际意义。 利用现有地质资料总结了研究区覆岩空间组合关系,分别为黄土覆盖类和基岩出露2大类。在此基础上,运用关键层理论对4105工作面覆岩地层结构进行判别,判定4煤上覆岩层有5个亚关键层,一个主关键层。 通过矿压监测分析了4105工作面周期来压规律,直接顶初次来压步距23.70m,基本顶初次来压步距52.05m,基本顶周期来压平均步距29.34m。上位关键层的破断导致下位亚关键层的提前破断致使矿压呈现出显著的大小周期来压,平均小的来压连续显现两次出现一次大的来压显现,大周期来压步距约50m,小周期来压步距约20m。 通过数值模拟、理论预计方法研究了4煤在7.5、8.5、9.5、10m采高条件下导水裂隙带高度发育规律。根据数值模拟结果,随着数值模拟工作面推进,不同采高条件下的导水裂隙带高度总体上随着推采进度呈阶梯式发育。综合分析数值模拟与理论预计方法结果,4煤开采导水裂隙带发育高度在覆岩关键层控制作用下,导水裂隙的发育高度随采高变化呈现阶梯式发育,阶梯落差与关键层厚度呈正相关关系。通过“两带”钻孔探查结果对该研究结果进行了验证。 根据导水裂隙带阶梯式发育规律对4105工作面走向剖面上导水裂隙带高度变化进行了分析。采用传统裂采比方法和本文导水裂隙带阶梯式发育方法对文家坡41盘区4煤开采导水裂隙带发育高度进行了预计,并对导通洛河组主要充水含水层的危险性进行了分区。通过洛河组含水层水位变化情况对两种危险性分区结果进行了验证,结果表明导水裂隙带阶梯式发育危险性分区更符合实际,在区域内关键层结构不改变导水裂隙带发育高度情况下,可通过导水裂隙带阶梯发育式危险性分区来合理增加煤层开采高度从而提高煤炭回采率。 |
论文外文摘要: |
Roof water hazard in coal seam mining is one of the main threats to the safety production of all mines in Binchang mining area, Shaanxi Province, and the development height of the water-conducting fracture zone has a decisive impact on the prevention and control of roof water hazard. In view of the fact that the development characteristics of the water-conducting fracture zone in the fully mechanized caving mining in the Binchang mining area are unclear, this paper takes the 41 panel area of the Wenjiapo coal mine in the Binchang mining area as the research area, and the 4105 fully mechanized caving face as the research object to carry out different mining height conditions of the coal seam. The research on the failure of the underlying rock and the development characteristics of the water-conducting fracture zone has important theoretical and practical significance for predicting the height of the water-conducting fracture zone in the fully mechanized caving face. Based on the existing geological data, the spatial assemblage relationship of the overlying rocks in the study area is summarized, which are divided into two categories: loess overburden and bedrock outcropping. On this basis, the overburden strata structure of the 4105 working face is judged by using the key layer theory, and it is determined that there are 5 sub-key layers and one main key layer in the overlying strata of the 4th coal. Through the mine pressure monitoring and analysis, the periodic pressure law of 4105 working face is analyzed. The initial pressure step distance of the direct top is 23.70m, the basic top pressure first time pressure step distance is 52.05m, and the basic top cycle time pressure average step distance is 29.34m. The rupture of the upper key layer leads to the early rupture of the lower sub-key layer, which causes the mineral pressure to show significant periodic pressure. The average small pressure appears twice in a row, and a large pressure appears once. The large cycle pressure step is about 50m. , the small cycle to press the step distance is about 20m. Through numerical simulation and theoretical prediction method, the development law of water-conducting fractured zone height was studied under the conditions of mining heights of 7.5, 8.5, 9.5 and 10 m for 4 coals. According to the numerical simulation results, with the advancement of the numerical simulation working face, the height of the water-conducting fracture zone under different mining heights generally develops in a step-like manner with the progress of the mining. Comprehensive analysis of the results of numerical simulation and theoretical prediction methods, 4. The development height of the water-conducting fracture zone in coal mining is controlled by the key layer of the overlying rock. relationship. The research results are verified by the "two-zone" drilling exploration results. According to the stepped development law of the water-conducting fracture zone, the height variation of the water-conducting fracture zone on the strike section of the 4105 working face is analyzed. Using the traditional fracture-mining ratio method and the stepped development method of the water-conducting fractured zone in this paper, the development height of the water-conducting fractured zone in Wenjiapo 41 Panel 4 coal mining is predicted, and whether it leads to the main water-filled aquifers of the Luohe Formation is predicted. Hazards are zoned. The results of the two types of risk zoning are verified by the change of the water level of the Luohe Formation aquifer. The results show that the stepped development of the water-conducting fractured zone is more realistic, and the structure of the key layers in the region does not change the development height of the water-conducting fractured zone. Under the circumstance, the mining height of the coal seam can be reasonably increased through the step-by-step development of the water-conducting fracture zone, so as to improve the coal recovery rate. |
参考文献: |
[1] 吴钢,魏东,周政达等.我国大型煤炭基地建设的生态恢复技术研究综述[J].生态学报,2014,34(11):2812-2820. [2] 袁亮.我国煤炭资源高效回收及节能战略研究[J].中国矿业大学学报(社会科学版),2018,20(01):3-12. [3] 魏久传,肖乐乐,牛超等.2001—2013年中国矿井水害事故相关性因素特征分析[J].中国科技论文,2015,10(03):336-341+369. [4] 虎维岳,田干.我国煤矿水害类型及其防治对策[J].煤炭科学技术,2010,38(01):92-96. [5] 武谋达,王建辉,侯恩科等.大佛寺煤矿顶板涌水规律及影响因素[J].西安科技大学学报,2018,38(04):636-642. [7] Kurlenya M V, Oparin V N. Problems of nonlinear geomechanics. Part 1[J]. 1999, 35(3):216-230. [10] 张玉军,张志巍.煤层采动覆岩破坏规律与控制技术研究进展[J].煤炭科学技术,2020,48(11):85-97. [11] 煤科院北京开采所.煤矿地表移动与覆岩破坏规律及应用[M].北京:煤炭工业出版社,1981. [12] 宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1989. [13] 宋振骐,郝建,石永奎等.“实用矿山压力控制理论”的内涵及发展综述[J].山东科技大学学报(自然科学版),2019,38(01):1-15. [14] 钱鸣高,张顶立,黎良杰等.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994(03):6-11+80. [15] 钱鸣高,缪协兴,许家林.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003. [16] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996(03):2-7. [17] 许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000(05):21-25. [18] 侯忠杰.组合关键层理论的应用研究及其参数确定[J]. 煤炭学报, 2001, 26(06): 611-615. [19] 茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998(01):41-44. [20] 缪协兴,陈荣华,浦海等.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005(08):1289-1295. [21] 刘英锋,王世东,王晓蕾.深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J].煤炭学报,2014,39(10):1970-1976. [22] 许家林,鞠金峰.特大采高综采面关键层结构形态及其对矿压显现的影响[J].岩石力学与工程学报,2011,30(08):1547-1556. [23] 高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996(01):51-56. [24] 于雷,闫少宏,刘全明.特厚煤层综放开采支架工作阻力的确定[J].煤炭学报,2012,37(05):737-742. [25] 闫少宏.综放开采矿压显现规律与支架-围岩关系新认识[J].煤炭科学技术,2013,41(09):96-99. [30] 李蕊瑞,陈陆望,欧庆华等.考虑覆岩原生裂隙的导水裂隙带模拟[J].煤田地质与勘探,2020,48(06):179-185+194. [31] 薛建坤,王皓,赵春虎等.鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,2020,37(06):1222-1230. [32] 曹祖宝,王庆涛.基于覆岩结构效应的导水裂隙带发育特征[J].煤田地质与勘探,2020,48(03):145-151. [33] 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017:76-77. [34] 胡炳南,张华兴,申宝宏,等.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M].北京:煤炭工业出版社,2017:34-35. [35] 范立民,马雄德.保水采煤的理论与实践[M].北京:科学出版社,2019. [36] 滕永海,唐志新,郑志刚.综采放顶煤地表沉陷规律研究及应用[M].北京:煤炭工业出版社,2009. [37] 许延春,李俊成,刘世奇等.综放开采覆岩“两带”高度的计算公式及适用性分析[J].煤矿开采,2011,16(02):4-7+11. [38] 张玉军,李凤明.高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J].岩石力学与工程学报,2011,30(S1):2994-3001. [39] 夏青森,刘飞,龚鹏,等.薄基岩特厚煤层综放开采相似模拟试验研究[J].河北北方学院学报(自然科学版),2017,33(01):45-49. [40] 孙学阳,李鹏强,寇规规等.特厚煤层导水裂隙带发育高度的模拟实验[J].煤炭技术,2018,37(06):143-144. [41] 刘贵.宽条带全柱开采覆岩破坏机理及地表沉陷规律研究[D].煤炭科学研究总院,2020. [42] 侯恩科,张萌,孙学阳等.浅埋煤层开采覆岩破坏与导水裂隙带发育高度研究[J].煤炭工程,2021,53(11):102-107. [43] 孙学阳,张齐,李成等.陕北某矿双煤层开采对覆岩影响的模拟对比[J].煤田地质与勘探,2020,48(04):183-189. [44] 王云广. 高强度开采覆岩破坏特征与机理研究[D].河南理工大学,2016. [45] 孙学阳,刘亮东,李成等.基于相似材料试验特厚煤层分层开采对断层影响研究[J].煤炭科学技术,2019,47(02):35-40. [46] 侯恩科,张中强.陕西省典型煤矿区地面塌陷机理及防治对策研究[R].西安:西安科技大学,2008. [47] 武忠山,王生全,彭涛等.曹家滩煤矿导水裂隙带发育规律影响因素数值模拟[J].科学技术与工程,2019,19(25):125-129. [48] 王守印.薛庙滩煤矿覆岩导水裂缝带发育机理研究[D].西安科技大学,2017. [49] 车晓阳,侯恩科,谢晓深等.煤层开采导水裂隙带发育高度分析[J].中国科技论文,2016,11(03):270-273. [50]郑训臻,王岩,赵海波等.固体充填开采矿压显现特征监测及数值模拟[J].煤矿安全,2019,50 (07):254-258. [51] 邓玉华.近水平上保护层开采覆岩破坏规律数值模拟研究[J].煤炭工程,2017,49(05):87-90. [52] 邓玉华,孙国文,黄滚.倾斜煤层深部开采覆岩破坏规律的数值模拟研究[J].矿业安全与环保,2015,42(05):15-20. [53] 王延蒙,白海波.司马煤矿薄基岩区导水裂隙带发育规律[J].煤矿安全,2015,46(03):25-28. [54] 张后全,杨天鸿,赵德深等.采场工作面顶板突水的渗流场分析[J].煤田地质与勘探,2004(05):17-20. [55] 侯忠杰,张小明,张杰.浅埋煤层开采固液耦合的数值模拟研究[J].矿业研究与开发,2007(05):10-12+30. [56] 王创业,薛瑞雄,李振凯.补连塔煤矿导水裂隙带发育规律研究[J].煤炭技术,2016,35(01):103-105. [57] 赵立钦.补连塔煤矿特厚煤层综采一次采全高覆岩破坏特征研究[D].煤炭科学研究总院,2018. [58]刘卓然,赵高博.综放开采覆岩破坏特征与导水断裂带高度模拟研究[J].矿业安全与环保,2021,48 (06):12-18. [59]石磊.基于PFC的覆岩破坏高度数值模拟及实测分析[J].矿业安全与环保,2021,48(03):43-49+55. [60] 康永华,王济忠,孔凡铭等.覆岩破坏的钻孔观测方法[J].煤炭科学技术,2002(12):26-28. [61]郭文兵,赵高博,白二虎.煤矿高强度长壁开采覆岩破坏充分采动及其判据[J].煤炭学报,2020,45(11):3657-3666. [62] 白汉营,李文平,李佩全.综采覆岩破坏离散元数值模拟分析[J].煤炭工程,2010(02):58-61. [63] 郭文兵,娄高中.覆岩破坏充分采动程度定义及判别方法[J].煤炭学报,2019,44(03):755-766. [64] 张玉军.基于固流耦合理论的覆岩破坏特征及涌水量预计的数值模拟[J].煤炭学报,2009,34(05):610-613. [65] 王振伟,张青波,刘天苹等.地下开采引起覆岩破坏的三维数值模拟研究[J].煤炭科学技术,2013,41(S2):121-124+127. [66] 蔡金龙,涂敏,付宝杰.极近距离厚煤层交错采场覆岩破坏数值模拟[J].煤矿安全,2013, 44 (03):37-39 +43. [67] 马少杰.煤层开采覆岩破坏数值模拟研究[J].煤矿安全,2012,43(12):54-56. [68] 高延法,曲祖俊,邢飞等.龙口北皂矿海域下H2106综放面井下导高观测[J].煤田地质与勘探,2009,37(06):35-38. [70] 于师建,程久龙.覆岩裂隙带电阻率响应特征[J].岩土工程学报,2000(03):336-339. [71] 疏义国,孔皖军,李全伦等.基于光纤传感技术的顶板覆岩破坏规律探测研究[J].煤炭工程,2020,52 (S1):122-127. [72] 张平松.煤层开采覆岩破坏发育规律动态测试分析[J].煤炭学报,2011,36(2):217-222. [73] 杨尚欢,侯成录等.采动条件下围岩破裂区域的微震监测研究[J].现代矿业,2017,10(10):165-168. [74] 侯恩科,范继超,谢晓深等.基于微震监测的深埋煤层顶板导水裂隙带发育特征[J].煤田地质与勘探,2020,48(05):89-96. |
中图分类号: | TD745 |
开放日期: | 2022-06-22 |