- 无标题文档
查看论文信息

论文中文题名:

 便携式宽窄融合应急通信系统设计与实现    

姓名:

 段优超    

学号:

 18207205051    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 应急通信    

第一导师姓名:

 李文峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-19    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Design and Implementation of Portable Broadband and Narrowband Fusion Emergency Communication System    

论文中文关键词:

 应急通信系统 ; 宽窄融合 ; B-TrunC ; Mesh网络 ; DMR    

论文外文关键词:

 Emergency communication system ; broadband and narrowband fusion ; B-TrunC ; Mesh network ; DMR    

论文中文摘要:

       随着高速率和多业务宽带通信技术的发展,窄带通信技术已经不能满足目前的应急通信需求,现阶段应急通信网络希望在保障关键语音的同时拥抱更多的宽带业务。当发生重大自然灾害时,原有的通信网络可能已经瘫痪无法为救护人员提供通信服务,在救灾现场迅速搭建好一套稳定健壮的应急通信网络,将有助于提高救援效率,减少人员伤亡和经济损失。因此,开发一种便携式的宽窄融合应急通信系统具有重要的意义。

       针对山地林区发生自然或人因灾害时,现场环境复杂,公共通信网络受损或无法覆盖问题,设计了一种便携式宽窄融合应急通信系统。该系统采用“LTE+DMR”的融合方案,将不同制式、不同网络的通信系统连成一张网,实现了不同制式终端设备之间的互联互通和统一管理调度。便携式宽窄融合应急通信系统由宽带集群通信系统、窄带数字通信系统、宽窄融合一体机和便携式应急电源组成。宽带集群通信系统采用B-TrunC技术,由便携式LTE专网基站实现灾难现场的宽带信号覆盖,无线Mesh网络实现灾难现场到前方指挥部之间1km的宽带信号回传,主要为救护队员提供高速的数据业务;窄带数字通信系统采用DMR技术,由DMR基站实现前方指挥部和灾难现场的窄带信号覆盖,主要为救护队员提供基础语音及低速率的数据业务;宽窄融合一体机部署在前线指挥部主要实现宽带集群通信系统和窄带数字通信系统的融合互通,采用互通网关融合互通方案,由互通网关完成两个异构通信系统之间信令、媒体消息以及号码格式的转换。便携式宽窄融合应急通信系统的控制面和媒体面分别由SIP协议和RTP协议承载;系统的供电采用电池容量为2000Wh的便携式应急电源,可为系统提供不小于4h的电能供应。

       系统测试结果表明,便携式宽窄融合应急通信系统在山地林区环境下的通信半径大于2km,供电时间大于4h,宽带传输主干网的通信带宽为26Mbps、丢包率小于0.1%、通信时延小于5ms。系统的各项功能指标合格,音视频清晰流畅。基本满足山地林区环境下应急通信系统便携、融合、可快速部署的需求,具有一定的实用价值。

论文外文摘要:

      With the development of high-speed and multi-service broadband communication technology, narrowband communication technology can no longer meet the current emergency communication needs. At this stage, emergency communication networks hope to embrace more broadband services while ensuring critical voice. When a major natural disaster occurs, the original communication network may be paralyzed and unable to provide communication services for rescue personnel. A stable and robust emergency communication network can be quickly built at the disaster relief site, which will help improve rescue efficiency and reduce casualties. Economic losses. Therefore, it is of great significance to develop a portable broadband and narrow emergency communication system.

       Aiming at the problem of natural or human-caused disasters in mountainous forest areas, the on-site environment is complicated, and the public communication network is damaged or cannot be covered, a portable broadband and narrow integrated emergency communication system is designed. The system adopts the "LTE+DMR" integration scheme, which connects communication systems of different standards and different networks into a network, and realizes the interconnection and intercommunication and unified management and scheduling of terminal equipment of different standards. The portable broadband and narrow convergence emergency communication system consists of a broadband trunking communication system, a narrowband digital communication system, a broadband and narrow convergence integrated machine and a portable emergency power supply. The broadband trunking communication system adopts B-TrunC technology. The portable LTE private network base station realizes broadband signal coverage at the disaster site, and the wireless Mesh network realizes the 1km broadband signal backhaul from the disaster site to the forward command. It mainly provides high-speed Data service: The narrowband digital communication system adopts DMR technology. The DMR base station realizes the narrowband signal coverage of the front command and the disaster site, and mainly provides basic voice and low-rate data services for the rescue team; the broadband and narrow integrated machine is deployed in the front command. To achieve the integration and intercommunication of the broadband trunking communication system and the narrowband digital communication system, the intercommunication gateway integration and intercommunication scheme is adopted, and the intercommunication gateway completes the conversion of signaling, media message and number format between the two heterogeneous communication systems. The control plane and media plane of the portable broadband and narrow emergency communication system are carried by SIP and RTP protocols respectively; the power supply of the system adopts a portable emergency power supply with a battery capacity of 2000Wh, which can provide the system with a power supply of no less than 4h.

      The system test results show that the communication radius of the portable broadband and narrow emergency communication system in the mountain forest environment is greater than 2km, the power supply time is greater than 4h, the communication bandwidth of the broadband transmission backbone network is 26Mbps, the packet loss rate is less than 0.1%, and the communication delay is less than 5ms. . The system's various functional indicators are qualified, and the audio and video are clear and smooth. It basically meets the needs of portable, integrated, and rapid deployment of emergency communication systems in mountain forest environments, and has certain practical value.

参考文献:

[1]李丹丽,张欣海,孙发帅.TD-LTE宽带集群组播切换优化[J].中国电子科学研究院学报,2020,15(12):1150-1154.

[2]王劲松,于志远.宽带无线多媒体集群系统的安全方案研究[J].移动通信,2016,40(19):38-43+48.

[3]黄志峰,孙鹏飞,宋秦涛,等.融合通信平台在应急指挥领域的应用和探索[J].移动通信,2020,44(11):99-104.

[4]S Michail, AP Avramova, L Dittmann. MIH based mobility for TETRA-LTE network[C]//5th Conference for Information and Communication Technologies (ICT Innovations 2013). Proceedings of ICT Innovations 2013.The Former Yugoslav Republic of Duration: in Proceedings of ICT Innovations,2013:180-189.

[5]RA Ferrús Ferré, Roig J S, Baldini G, et al. LTE: the technology driver for future public safety communications[J]. IEEE Communications Magazine, 2014, 51(10):154-161.

[6]Liberal F, Fajardo J O, Ramos M, et al. An IMS-based interoperable architecture for emergency services[C]// International Conference on Telecommunications & Multimedia. IEEE, 2014:13-18.

[7]Gajewski S, Gajewska M, Katulski R J. Trunked Radio Solutions for Special Applications[J]. International Journal of Electronics & Telecommunications, 2014, 60(4):309-314.

[8]Abhaykumar Kumbhar, Farshad Koohifar, Ismail Güvenc, et al. A Survey on Legacy and Emerging Technologies for Public Safety Communications.[J]. IEEE Communications Surveys and Tutorials,2017,19(1):97-124.

[9]陈理.宽窄带融合自组网终端的设计与实现[D].广东工业大学,2018.

[10]孙舒淼,顾晓峻,胡昌桂.基于Tetra和LTE无线通信系统融合的车载终端设计[J].铁道通信信号,2018,54(11):43-46.

[11]贺自斌.TETRA系统与LTE宽带集群系统互联互通的一种解决方案[J].移动通信,2015,39(21):75-79.

[12]岳晓东.TD-LTE与TETRA在轨道交通行业的对比分析[J].都市快轨交通,2018,31(05):1-4.

[13]隋宇,程小蓉,陈辉煌.基于TD-LTE的宽带集群通信系统研究[J].重庆邮电大学学报(自然科学版),2016,28(06):777-782.

[14]杜涛,邓晓辉,李钢.1.8 GHz TDD-LTE行业专网的运行环境影响分析[J].电信科学,2017,33(10):148-154.

[15]GB/T 37290-2019.基于LTE技术的宽带集群通信(B-TrunC)系统接口技术要求(第一阶段)空中接口[S].国家市场监督管理总局;中国国家标准化管理委员会,2019-03-25.

[16]李帅.宽带集群互联互通接口监测系统的设计与开发[D].北京交通大学,2018.

[17]GB/T 37291-2019.基于LTE技术的宽带集群通信(B-TrunC)系统总体技术要求(第一阶段)[S].国家市场监督管理总局;中国国家标准化管理委员会,2019-03-25.

[18]李娅楠,肖美华,李伟,等.基于事件逻辑的无线Mesh网络认证协议安全性证明[J].计算机工程与科学,2017,39(12):2236-2244.

[19]俞超杰,陈翔,姚振,等.软件定义无线Mesh网络中的可伸缩视频传输系统[J].计算机工程,2019,45(05):232-236.

[20]张彬,广晖,陈熹.基于智能合约的无线Mesh网络安全架构[J].计算机工程,2019,45(11):16-23+31.

[21]刘庆杰,王晨,王小英.基于MESH网络的舰船无线通信多信道分配方法[J].舰船科学技术,2020,42(04):127-129.

[22]Kim J W, Kim S T, Joo Y I. Distributed Channel Assignment Algorithm Based on Traffic Awareness in Wireless Mesh Networks[J]. Wireless Personal Communications, 2017, 95(2):4983-5001.

[23]徐忠林,刘彦琴,向泽,等.基于Mesh网络鲁棒性优化的电缆监控系统研究[J].高压电器,2021,57(01):123-128.

[24]V. NAZAROVS, J. JELISKIS, J. PORINS, etc. Architecture and research of M2M wireless mesh networks[C]//2017 Progress In Electromagnetics Research Symposium Spring (PIERS).St. Petersburg,Russia:IEEE,2018:2500-2503.

[25]Jiang H, Lu L, Han G, et al. Routing algorithm for supporting data-differentiated service in hybrid wireless mesh networks in underground mines[J]. International Journal of Distributed Sensor Networks, 2018, 14(11):1-17.

[26]杨路,李玉洁,王诗言,等.WMN中的干扰避免部分重叠信道分配算法[J].计算机工程与设计,2020,41(02):301-306.

[27]张维维,何家峰,高国旺,等.混合式无线Mesh网络路由与信道分配联合优化[J].吉林大学学报(工学版),2018,48(01):268-273.

[28]Alim A, Islam M J, Nurain N, et al. Channel Assignment Techniques for Multi-Radio Wireless Mesh Networks: A Survey[J]. IEEE Communications Surveys & Tutorials, 2016:988-1017.

[29]Shukr S M, Alwan N, Ibraheem I K. A Comparative Study of Single-Constraint Routing in Wireless Mesh Networks Using Different Dynamic Programming Algorithms[J]. University of Baghdad Engineering Journal, 2014, 20(2):49-60.

[30]Zhao, Xiongwen, Zhang, et al. A Multi-Radio Multi-Channel Assignment AlgorithmBased on Topology Control and Link Interference Weight for a Power DistributionWireless Mesh Network[J]. Wireless personal communications: An Internaional Journal, 2018, 99(1):555-566.

[31]张永忠,冯穗力.无线mesh网的跨层设计及其应用[J].电讯技术,2016,56(05):517-524.

[32]黄艳国,陈超,房罡,等.基于智能天线的定向传播路由协议在WSAN中的应用[J].现代电子技术,2019,42(21):28-31+35.

[33]马斋爱拜,楚宜民.无线编码技术在船用通信系统中的应用[J].舰船科学技术,2020,42(22):106-108.

[34]林旺,田洪现.基于SIP协议的嵌入式VoIP语音终端实现和协议分析[J].计算机科学,2016,43(06):86-90.

[35]Wen-Bin Hsieh, Jenq-Shiou Leu. Implementing a secure VoIP communication over SIP-based networks[J]. Wireless Networks,2018,24(8):2915-2926.

[36]姜燕.基于SIP的高性能可视电话方案的设计[J].计算机测量与控制,2014,22(12):4176-4180.

[37]李芳苑,孙旭峰,顾俊.基于SIP的矿井通信终端协议栈设计[J].工矿自动化,2017,43(12):90-94.

[38]李进东,王韬,吴杨,等.基于协议分析与模糊测试的SIP漏洞挖掘研究[J].计算机工程,2016,42(08):117-122.

[39]白慧.基于ONVIF标准的矿用视频传输系统的设计与实现[D].西安科技大学,2019.

[40]刘伟杰,李博.基于ARM11的高清网络实时监控系统[J].现代电子技术,2018,41(12):47-51.

[41]李钦德,周文安,马飞,等.基于RTP/RTCP的VoIP智能切换技术的实现方法研究[J].计算机科学,2011,38(02):68-71.

[42]付颖,文益君,吴鑫.森林火灾应急移动通信切换算法研究[J].中南林业科技大学学报, 2016, 36(009):70-73.

[43]熊杰.我国铁路下一代移动通信系统制式及演进探讨[J].西南交通大学学报,2018, 53(005):879-885.

[44]张志刚,蓝海盛,周昌盛.基于5G的警务集群系统[J].电讯技术,2020,60(10):1148-1154.

[45]李春铎,李辉,蔺伟.铁路LTE-R网络MCPTT的应用研究[J].铁道标准设计,2019,63(06):164-168.

[46]Brady C, Roy S. Analysis of Mission Critical Push-to-Talk (MCPTT) Services overPublic Safety Networks[J]. IEEE Wireless Communication Letters,2020,PP(99):1462-1466.

[47]Kim J, Jo O, Sang W C. State-Based Uplink-Scheduling Scheme for Reducing Control Plane Latency of MCPTT Services[J]. IEEE systems journal,2019,13(3):2547-2550.

[48]Sang W C, Song Y S, Shin W Y, et al. A Feasibility Study on Mission-Critical Push-to-Talk: Standards and Implementation Perspectives[J]. IEEE Communications Magazine,2019:81-87.

[49]赖晓阳,朵琳.宽带无线中继传输在应急通信中的应用研究[J].电视技术,2016,40(06):131-135.

[50]郑涛.警用数字集群(PDT)在地铁公安无线通信系统中的应用研究[J].城市轨道交通研究,2014,17(07):106-108.

[51]何新伟,金京涛.消防部队PDT数字集群通信系统解决方案[J].消防科学与技术,2014,33(08):923-926.

[52]汤明明,马伟杰.基于TETRA的轨道交通全自动运行系统运营功能研究[J].城市轨道交通研究,2019,22(S2):65-68.

[53]Luo W, Jie Z, Su X, et al. On the implementation of DMR system based on SDR structure[C]// Communications and Networking in China (CHINACOM),2013 8th International ICST Conference on.Guilin, China: IEEE, 2014:314-317.

[54]张成斌,康志杰.基于数字集群异系统的互联互通设计[J].计算机与网络,2020,46(05):65-67.

中图分类号:

 TN915    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式