- 无标题文档
查看论文信息

论文中文题名:

 基于云模型的商业综合体火灾风险评估及应用研究    

姓名:

 周慧    

学号:

 21320226002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 火灾风险评估    

第一导师姓名:

 成连华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Research on Risk Assessment and Application of Commercial Complex Based on Cloud Model    

论文中文关键词:

 商业综合体 ; 火灾风险评估 ; 熵值法 ; 评估体系构建 ; 云模型    

论文外文关键词:

 Commercial complex Fire risk assessment ; Entropy method ; Evaluation system construction ; Cloud model    

论文中文摘要:

在现代经济的快速发展下,商业综合体的数量持续增加,频繁发生的商业综合体火灾安全事故对公众的生命财产安全构成了严重威胁。火灾风险评估作为应对火灾事故的关键环节,具有预防事故发生的作用,并且能够为相关管理工作提供有力的参考依据。因此,有必要对商业综合体的火灾安全隐患进行识别和评估,并实施有力的预防措施,这对于商业综合体的安全管理具有实际意义。

针对目前商业综合体火灾特点以及火灾防控存在的问题,发现商业综合体火灾风险的影响因素存在多方面,且相互之间存在复杂的关联关系,为了准确评估商业综合体的火灾风险因素,本研究以商业综合体火灾事故的风险评价为导向,以信息熵理论、云模型理论作为理论基础,提出基于云模型的商业综合体火灾风险评估方法。首先通过分析多个商业综合体典型案例及相关文献法律法规,结合系统论观点,从风险因素的识别、归类与整理入手,着眼建筑特性、火源情况、消防设备、安全疏散、消防管理5个核心维度建立指标体系,并对指标分级做出详细说明;然后基于层次分析法和熵值法提出了主客观组合赋权模型,通过层次分析法基于专家经验和主观判断确定主观权重,熵值法根据指标信息熵计算客观权重,引入云模型法,介绍云模型实施步骤,构建基于云模型的商业综合体火灾风险评估模型。最后选取A商业综合体为实际案例运用云模型进行验证,有效处理模糊性和随机性,运用MATLAB软件创建云图,从而达到了定性描述与定量描述的彼此转换,得到较为直观、精确和客观的评价结果,能够为商业综合体的火灾风险防控提出针对性的意见及改进措施。

通过层次分析法和熵值法的结合,很好的解决了评判结果主观性的问题,再运用云模型进行评估,有效地处理模糊性和随机性,得到较为直观、精确和客观的评价结果,能够为综合商业体火灾风险防控提供指导,同时也能为综合商业体火灾风险评价体系及评价方法的研究提供新的参考借鉴。

论文外文摘要:

With the rapid development of modern economy, the number of commercial complexes continues to increase, and frequent fire safety accidents in commercial complexes pose a serious threat to the safety of public life and property. As a key link to deal with fire accidents, fire risk assessment plays a significant role in preventing accidents, and can provide a powerful reference for related management. Therefore, it is necessary to identify and evaluate the fire safety hazards of the commercial complex, and implement effective preventive measures, which has practical significance for the safety management of the commercial complex.

Aiming at the current fire characteristics of commercial complex and problems in fire prevention and control, it is found that there are many factors affecting the fire risk of commercial complex, and there are complex correlations among them. In order to accurately evaluate the fire risk factors of commercial complex, this study takes the risk assessment of fire accidents of commercial complex as the guidance. Based on information entropy theory and cloud model theory, a fire risk assessment method of commercial complex based on cloud model is proposed. Firstly, through the analysis of several typical cases of commercial complexes and related literature, laws and regulations, combined with the viewpoint of system theory, the index system is established from the identification, status of the source of fire, focusing on the five core dimensions of building characteristics, fire source and fire load, fire fighting equipment, safe evacuation and fire management, and the index classification is explained in detail. Then, based on analytic hierarchy process (AHP) and entropy method, A combination of subjective and objective weights was proposed. The subjective weights were determined by AHP based on expert experience and subjective judgment, and the objective weights were calculated by entropy method based on index information entropy.

Finally, commercial complex A was selected as a practical case and verified by cloud model to effectively deal with fuzziness and randomness, and cloud maps were created by matlab software. Thus, the conversion of qualitative description and quantitative description is achieved, and more intuitive, accurate and objective evaluation results are obtained, which can put forward targeted opinions and improvement measures for the fire risk prevention and control of commercial complex.

Through the combination of analytic hierarchy process (AHP) and entropy method, the subjective problem of evaluation results is well solved. Then, cloud model is applied to evaluate, effectively deal with ambiguity and randomness, and more intuitive, accurate and objective evaluation results are obtained, which can provide guidance for the fire risk prevention and control of comprehensive commercial entities. At the same time, it can provide a new reference for the research of comprehensive commercial fire risk evaluation system and evaluation method.

参考文献:

[1]邹伟.新发展格局下都市圈城镇化率统计机制研究[J].经济研究参考, 2023(1):83-96.

[2]马天妹. 以商业综合体为中心的街区商业空间结构特征及其形成机制研究[D]. 北京: 北京建筑大学, 2020.

[3]王献.商业综合体消防管理现状及火灾事故预防对策[J].中国住宅设施, 2022(6):54-56.

[4]石秋生.商业综合体消防工程项目风险管理[J].大众标准化, 2023(21):110-112.

[5]Nan L, Becerik-Gerber B, Krishnamachari B, et al. A BIM Centered Indoor Localization Algorithm To Support Building Fire Emergency Response Operations[J]. Automation in Construction, 2014, 42(jun. ): 78-89.

[6]Hasofer A M, Odigie D O. Stochastic Modelling For Occupant Safety in a Building Fire. Fire Safety Journal[J]. Fire Safety Journal, 2001, 36(3): 269-289.

[7]Khan M A, Khan A A, Usmani A S, et al. Can Fire Cause The Collapse of Plasco Building: A Numerical Investigation[J]. Fire and Materials, 2021, 46(3): 560-575.

[8]Torgrim L. Indoor Relative Humidity as a Fire Risk Indicator[J]. Building and Environment, 2017, 111: 238-248.

[9]Bilal Z, Mohammed K,Brahim H. Bayesian Network and Bow-tie to Analyze the Risk of Fire and Explosion of Pipelines[J]. Process Safety Progress, 2016, 36(3): 318-318.

[10]Eremina T, Korolchenko D, Minailov D. Empirical Studies of Structural Material with Given Parameters at Various Fire Factors[J]. IOP Conference Series: Materials Science and Engineering, 2020, 1001(1): 012017.

[11]Anonymous. Vacant Building Fire Information[J]. Firehouse, 2021, 46(8). 1137-1142.

[12]张无敌, 陈一洲, 李琪等. 城市大型公共建筑火灾风险因素影响程度及可能性分析[J]. 安全与环境学报, 2021, 21(04): 1434-1439.

[13]贾晗曦, 林均岐, 刘金龙. 基于随机森林的火灾损失影响因素研究[J]. 消防科学与技术, 2019, 3 8(11): 1642-1644.

[14]王燕, 尹盼盼, 沈梦露. 基于事故树的铁路客运站火灾风险因素分析[J]. 中国安全科学学报, 2019, 29(S1): 44-47.

[15]宗妍.城市大型建筑商业综合体火灾隐患成因分析及消防安全管理探讨[J].居舍, 2022(18):157-160.

[16]Brzezinska D. Bryant Paul. Risk Index Method-A Tool for Building Fire Safety Assessments[J]. Applied Sciences, 2021, 11(8): 103390.

[17]Masoumi S, Emami A, Mirsaeedie L. Elderly Mobility and Architectural Factors in Apartment Units: A Hierarchical Regression Analysis[J]. Journal of Aging and Environment, 2021, 35(3). 273-294.

[18]于嘉琪. 基于事故致因理论的大型体育馆疏散感知及优化设计策略[D]. 哈尔滨工业大学, 2021.

[19]Winandari M I R, Wijayanto P, Faradila H. Fire Risk Based on Building Density in Dense Settlement[J]. IOP Conference Series: Earth and Environmental Science, 2021, 780(1): 012053.

[20]Benson C M, S. Elsmore S. Reducing Fire Risk in Buildings: the Role of Fire Safety Expertise and Governance in Building and Planning Approval[J]. Journal of Housing and the Built Environment, 2021, 4(4): 1-24.

[21]Jiang J, Chen L A. Fire Safety Assessment of Super Tall Buildings: A Case Study on Shanghai Tower[J]. Case Studies in Fire Safety, 2015, 4(1): 28-38.

[22]Lau C K, Lai K K, Lee Y P, et al. Fire Risk Assessment with Scoring System, Using the Support Vector Machine Approach[J]. Fire Safety Journal, 2015, 78(3): 188-195.

[23]Lee E. Analysis of the Working Conditions of Fire Protection Systems in the Goyang Bus Terminal Building Fire[J]. Fire Science And Engineering, 2018, 32(3): 95-107.

[24]Eduardo E C, Luiz C. P, Silva F, et al. . Comparative Study of Building Fire Safety Regulations in Different Brazilian States[J]. Journal of Building Engineering, 2017, 10(1): 102-108.

[25]Chu G, Sun J. Quantitative Assessment of Building Fire Risk to Life Safety[J]. Risk Analysis, 2008, 28(3): 615-625.

[26]Darmon R. Quantitative fire risk assessment for an office building[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1138(1): 178-184.

[27]Emery S. Fire risk assessments for buildings of special architectural or historic interest[J]. Journal of Building Survey, Appraisal&: Valuation, 2021, 10(1): 18-33.

[28]Dongho R, Hayoung K. Study on Fire Risk Assessment Method by Considering Warehouse Characteristics[J]. Korean Society of Hazard Mitigation, 2020, 20(2): 105-112.

[29]范维澄, 孙金华, 陆守香. 火灾风险评估方法学[M]. 北京: 科学出版社, 2004.

[30]陈磊, 宋志刚, 张健等. 基于单体建筑风险的区域火灾风险评估[J]. 消防科学与技术, 2018, 37(10): 1428-1431.

[31]陈文涛. 超高层公共建筑火灾应急预案关键要素分析[J]. 安全, 2020, 41(11): 21-24.

[32]周建新, 李湖生. 城市公共安全风险评估一以高层建筑火灾为例[J]. 中国安全科学生产技术, 2013(03): 156-157.

[33]王粟. 基于灰色关联分析的高层建筑火灾风险评估[J]. 中国安全科学生产技术, 2013(08): 125127.

[34]谢道文. 基于数据挖掘的火灾分析模型及应用研究[D]. 湖南: 中南大学, 2014.

[35]张立宁. 高层建筑火灾风险评价及智能报警系统研究[D]. 北京: 北京理工大学, 2015.

[36]韩如适, 张向阳. 超高层建筑装修施工火灾风险与安全疏散现场调研及评估[J]. 安全与环境学报, 2016(04): 76-78.

[37]史俊伟, 王树栉, 陈章等. FRAME在高层建筑火灾风险评估中的应用[J]. 消防科学与技术, 2017(05): 97-101.

[38]方硕, 魏东, 冉义兵. 基于随机森林的城市建筑火灾风险等级评估方法[J]. 科学技术与工程, 2022, 22(1): 429-437.

[39]苏心伟. 古建筑火灾危险性分析及灭火救援对策[J]. 山西建筑, 2022(048-011).

[40]成连华, 魏凯, 曹东强. 基于模糊贝叶斯网络的高层建筑火灾风险评估方法[J]. 科学技术与工程, 2023, 23(13): 5707-5714.

[41]Ahsan F, Naseem A, Ahmad Y, et al. Evaluation of manufacturing process in low variety high volume industry with the coupling of cloud model theory and TOPSIS approach[J]. Quality Engineering, 2023, 35(2): 222-237.

[42]Maihemuti S, Wang W, Wang H, et al. New energy power system security and stability assessment based on Apirori and DEMATEL-AEW-dynamic weighted cloud model[J]. 2023:1-30.

[43]Weinman J. Axiomatic cloud theory[J]. Communications, Media and Entertainment Industry for Hewlett-Packard, 2011:1-29.

[44]Kavousi-Fard A, Niknam T, Fotuhi-Firuzabad M. A novel stochastic framework based on cloud theory and $\theta $-modified bat algorithm to solve the distribution feeder reconfiguration[J]. IEEE Transactions on Smart Grid, 2015, 7(2): 740-750.

[45]罗勋,谢文强,曾发镔.基于云模型的复杂艰险山区深埋隧道施工通风系统综合评估[J].铁道学报,2022,44(3):123-131.

[46]韩朝帅,王坤,潘恩超,等. 基于云理论的复杂装备维修性指标评价研究[J]. 兵器装备工程学报,2017,38(3):72-76.

[47]王青山.基于AHP-云模型的建设项目施工阶段成本控制风险评价研究[J].铁道建筑技术,2022(3):197-202.

[48]张凯,张明慧.基于云模型和证据理论的科技创新与持续发展能力评价[J].运筹与管理,2022,31(4):109-115.

[49]王祥,陈发达,吴贤国,等.基于云模型和D-S证据理论的岩溶盾构隧道掌子面稳定性评价[J].工业建筑,2023(11):65-72.

[50]贺金凤,李义军,崔庆安,徐松杰.基于D-S理论与云模型的企业社会责任评价[J].数学的实践与认识,2022,52(6):218-228.

[51]崔宏艳,张恩典,王志鹏,李清富.基于云模型改进“3标度”AHP-物元理论的不良地质农田灌溉渠道施工风险评价[J].灌溉排水学报,2022,41(12):114-122.

[52]姜振翔,陈辉,陈柏全.基于云理论的大坝整体性态评价模型[J].工程科学学报,2022,44(3):464-473.

[53]杨文东, 杨栋, 谢全敏. 基于云模型的边坡风险评估方法及其应用[J]. 华中科技大学学报: 自然科学版. 2018, 46(04): 30-34.

[54]黄国雄. 论城市商业综合体的产生与发展[J]. 商业时代, 2013,(28): 25-26.

[55]陈鹏浩.大型购物中心的可持续设计探讨——以前滩太古里为例[J].居舍, 2023(5):111-114.

[56]洪柳.建筑火灾事故损失特性研究[J].建筑安全,2020,35(1):6.

[57]唐声强,黄晓家,谢水波,等.火灾对我国家庭财产保险需求影响的实证研究[J].消防科学与技术,2023,42(3):416-421.

[58]杨建帅,许文博,郑彬,等.地下商场火灾危险性及风险管控[J].科技经济导刊,2020(1):2.

[59]陈美琼,丁国胜.基于全生命周期管理理念的区域火灾风险评估与规划启示[J].2022.

[60]张大牛,王黎明,秦海彬.基于AHP赋权法和TOPSIS法的充电线收纳产品设计评价[J].工业设计, 2021, 000(008):157-158.

[61]崔和瑞.基于熵权的河北省节能减排效果模糊综合评价[J].电力学报, 2012(5):6.

[62]Siu Ming Lo.A Fire Safety Assessment System for Existing Buildings[J].Fire Technology,2014,35(2):131-152.

[63]韩梅,吴珊,常青,等.基于事故树和模糊贝叶斯网络的铁路超限货物运输风险评估[J].铁道学报,2021,43(5):9.

[64]王赫,刘盛华,郝立群,等.粮食储备库火灾事故的故障树分析[J].粮食加工, 2020, 45(3):3-5.

[65]易立新.城市火灾风险评价的指标体系设计[J].灾害学, 2000, 15(4):5.

[66]吴书强,邵必林,边根庆,等.基于多态模糊贝叶斯网络的高校宿舍火灾风险评价研究[J].灾害学, 2023, 38(2):31-36.

[67]谭丽丽,曲娜,韩磊,等.基于GIS-SAVEE模型的工业型城市火灾风险评估[J].防灾科技学院学报, 2023, 25(2):97-103.

[68]吕淑然,任泓瑗,侯捷,等.复杂网络下密室逃脱类场所火灾风险评估研究[J].安全与环境学报, 2023, 23(8):2571-2579.

[69]成连华,魏凯,曹东强.基于模糊贝叶斯网络的高层建筑火灾风险评估方法[J].科学技术与工程, 2023, 23(13):5707-5714.

[70]王亚男,王洪庆,王新建.中国省域森林火灾风险评价体系构建与风险评估[J].自然灾害学报, 2023, 32(4):94-103.

[71]陈星霖,林卫东,黄晓冬,等.基于模糊贝叶斯网络的超高层建筑火灾风险评估[J].安全与环境工程, 2023(6):40-47.

[72]方硕,魏东,冉义兵.基于随机森林的城市建筑火灾风险等级评估方法[J].科学技术与工程, 2022, 22(1):429-437.

[73]宋丹. 大型商场火灾风险关键部位辨识研究[D]. 沈阳: 沈阳航空工业学院, 2009.

[74]徐元元.基于动态贝叶斯网络的高层建筑火灾应急决策研究[D].郑州大学2024.

[75]安维. 高层建筑突发火灾应急决策研究[D]. 湖北: 武汉大学, 2013.

[76]辛晶, 周扬, 夏登友等. 城市商业综合体火灾事故情景推演模型[J]. 灾害学, 2020, 35(03): 63-66+89.

[77]沈宁宁. 城市商业综合体消防脆弱性评价研究[D]. 西安科技大学, 2020.

[78]王继艳. 大型商业综合体火灾风险评估与消防安全疏散设计分析[J]. 山东师范大学学报(自然科学版), 2017, 32(02): 131-134.

[79]刘邓. 基于事故链的风险评估及预防控制研究[D]. 辽宁: 东北大学, 2017

中图分类号:

 TU998.1    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式