- 无标题文档
查看论文信息

论文中文题名:

 工作面坚硬夹矸层CO2耦合压裂机理研究    

姓名:

 刘华    

学号:

 17103077012    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081901    

学科名称:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 采矿工程    

研究方向:

 岩层控制    

第一导师姓名:

 邓广哲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Study on mechanism of CO2 coupling fracturing of hard gangue layer in working face    

论文中文关键词:

 大采高综采 ; 厚硬砂岩夹矸层 ; CO2-水-岩耦合 ; 孔隙结构 ; 破碎机理    

论文外文关键词:

 Large height fully mechanized mining ; Thick hard sandstone gangue layer ; CO2-water-rock coupling ; Pore Structure ; Crushing mechanism    

论文中文摘要:

~由于成煤环境及地质构造等原因,坚硬夹矸岩层的存在对煤层开采产生严重影响,常规破岩手段往往难以有效破碎坚硬夹矸岩层,导致大采高开采采掘困难、能效下降、安全成本增加及环境污染等问题。本文采用理论分析、实验室试验、数值模拟及现场试验等综合研究方法,开展贯穿工作面的综采煤层厚硬砂岩夹矸层的整体破碎机理研究。通过对夹矸层三种砂岩物理力学性质、CO2耦合压裂材料力学特征、压裂过程中的CO2-水-岩耦合作用砂岩裂隙演化规律与强度劣化关系研究,揭示了砂岩夹矸层CO2-水-岩耦合作用裂缝起裂和扩展演化规律,分析了砂岩夹矸层CO2耦合破碎的影响因素。取得的主要结论如下:
(1)基于应力-应变曲线法与矿物组分法计算的三种岩样脆性系数均大于50%,适合压裂改造。粉砂岩、细粒砂岩和粗粒砂岩孔隙以封闭型为主,且连通性差,孔径分布范围分别为1.1~129nm、1.5~238nm和1.1~257nm,平均孔径分别为10.93nm、8.5nm和12.35nm,核磁共振(NMR)测得有效孔隙率分别为0.92%、3.11%和2.05%。根据CO2-H2O体系pH值随温度和压力的变化规律,构建CO2耦合压裂液体系,相比纯水,CO2耦合压裂液的表面张力及与砂岩的接触角均大幅降低,表现出更强的孔隙润湿性。
(2)CO2-水-岩耦合作用促使岩体发生力学与化学损伤,CO2质量分数为8%的耦合压裂液(CW-8)酸性最强,对岩样强度弱化作用最为显著。温度降低、孔隙压力增大,CO2在水中溶解度升高,CO2耦合压裂液pH值减小、酸性增强,加剧了耦合压裂液对岩体的化学损伤作用,造成岩体强度降低。相比温度和孔隙压力,CO2-水-岩耦合作用时间对岩样抗拉强度的弱化作用更为显著,作用时间越长,抗拉强度降低幅度越大。
(3)CO2-水-岩耦合作用后,三种砂岩试样孔隙中矿物质被溶蚀,孔隙数量增加,孔径变大,孔隙分形维数增加,孔隙结构的复杂程度提高,比表面积减小及孔容增大的同时,均存在微孔向中、大孔的转化。NMR测得三种砂岩试样耦合作用后总孔隙率、有效孔隙率及采用Coates模型计算的渗透率增幅显著;孔裂隙形态由封闭型向开放型转变,并与微观裂隙交切贯通,进一步疏通了压裂液的渗流通道。对三种砂岩试样的CT扫描图像进行双阈值分割,识别出岩样内部的孔裂隙、基质及矿物分布区域,实现耦合作用前后岩样内部结构三维重建,根据等效球体模型及分形几何理论,得到CO2-水-岩耦合作用后,粉砂岩、细粒砂岩和粗粒砂岩的孔裂隙体积分数分别增加了1.71%、1.96%和0.19%,矿物体积分数分别减少了0.44%、0.58%和0.28%,孔裂隙分形维数增加而矿物分形维数减少。
(4)根据压裂液特征,建立了考虑增压速率的CO2耦合压裂起裂压力计算模型,并分析耦合压裂液性质及作用时间对钻孔周向应力分布的影响规律。构建 型裂缝扩展准则(拉伸破坏)及 拉剪、压剪复合型断裂裂缝扩展准则并分析其影响因素。利用自研的多场多相三轴耦合压裂试验系统,分别开展夹矸岩样的清水和CO2耦合压裂相似模拟试验,发现采用CW-8压裂岩样的破裂压力最小,岩样内部损伤发展导致渗透性变形最大。
(5)明确了CO2耦合压裂过程中,温度场(T)、渗流场(H)、应力场(M)和化学场(C)间的相互作用关系,构建了夹矸层CO2耦合压裂THMC全耦合模型,利用Comsol Multiphysics中的固体力学和PDE模块联合进行求解,对比分析压裂损伤演化、损伤3D效果、弹性模量及渗透率变化规律等物理特征,验证CO2耦合压裂破岩效果。
(6)以小保当矿区112201首采和112204智能掘进两个典型工作面为工业性试验基地,设计现场压裂工艺参数并进行试验,通过安全性、效果、效率及效益等指标,验证了该技术在工作面坚硬夹矸岩层破碎软化方面的适用性。

论文外文摘要:

Due to the coal-forming environment and geological structure, the existence of hard gangue layers in coal seams has a serious impact on coal mining, and it is often difficult to effectively break the hard gangue layers by conventional rock-breaking means, which leads to mining difficulties, energy efficiency decline, increased safety costs and environmental pollution in large mining height. In this paper, comprehensive research methods such as theoretical analysis, laboratory tests, numerical simulation and field tests are used to carry out the study of the overall crushing mechanism of thick hard sandstone gangue layers of fully mechanized coal seam running through long working faces. By studying the physical and mechanical properties of three types of sandstones of gangue layers, the mechanical characteristics of CO2 coupling fracturing materials, the fracture evolution law and strength degradation relationship of CO2-water-rock coupling sandstone during fracturing, reveal the fracture initiation and expansion evolution law of CO2-water-rock coupling sandstone gangue, and analyze the influencing factors of CO2 coupling fracturing of sandstone gangue layers. The main conclusions obtained are as follows:
(1) The brittleness coefficients of the three types of rock samples calculated based on the stress-strain curve method and the mineral composition method are all greater than 50%, which are suitable for fracturing stimulation.The pores of siltstone, fine-grained sandstone and coarse-grained sandstone are mainly closed and poorly connected. The pore size distribution ranges from 1.1 to 129 nm, 1.5 to 238 nm and 1.1 to 257 nm, and the average pore sizes are 10.93 nm, 8.5 nm and 12.35 nm, respectively. The effective porosity measured by NMR was 0.92%, 3.11% and 2.05%, respectively. According to the variation law of pH value of CO2-H2O system with temperature and pressure, the CO2 coupling fracturing fluid system was constructed. Compared with pure water, the surface tension and contact angle of CO2 coupling fracturing fluid with gangue rock sample are greatly reduced, which shows stronger pore wettability.
(2) The CO2-water-rock coupling interaction causes mechanical damage to the rock mass. The coupling fracturing fluid (CW-8) with a CO2 mass fraction of 8% is the most acidic and has the most significant weakening effect on the strength of the rock samples. The decrease of temperature and increase of pore pressure lead to the increase of CO2 solubility in water, the decrease of pH value and increase of acidity of CO2 coupling fracturing fluid, which intensifies the chemical damage effect of coupling fracturing fluid on rock mass and decreases the tensile strength. Compared with temperature and pore pressure, the time of CO2-water-rock coupling interaction has a more significant weakening effect on the tensile strength of rock samples, and the longer the action time, the greater the reduction of tensile strength.
(3) After CO2-water-rock coupling interaction, the minerals in the pores are dissolved, the number of pores increases, and the pore size becomes larger, the fractal dimension of pores increases after the coupling interaction of three types of gangue rock samples, the complexity of pores increases, the specific surface area of rock samples decreases, the pore volume increases, and the micropores transform to medium and large pores. The total porosity, effective porosity and permeability calculated by the Coates model after the coupling interaction of the three types of sandstone samples measured by nuclear magnetic resonance (NMR) increased significantly. The shape of pores and fissures changed from closed to open, t the pore openness increases, and the pores and microscopic fissures intersected and penetrated to increase the seepage channel of water. The CT images of three kinds of sandstone samples were segmented by double thresholds to identify the pores, fissures, matrix and mineral distribution areas inside the rock samples, and realize the three-dimensional reconstruction of the internal structure of the rock samples before and after the coupling action. According to the equivalent sphere model and the fractal geometry theory, After the CO2-water-rock coupling effect was obtained, the pore and fracture volume fractions of siltstone, fine-grained sandstone and coarse-grained sandstone increased by 1.71%, 1.96% and 0.19%, respectively, and the mineral volume fraction decreased by 0.44%, 0.58% and 0.28%, respectively, the fractal dimension of pores and fractures increases while the fractal dimension of minerals decreases.
(4) Based on the characteristics of fracturing fluid, a calculation model of CO2 coupling fracturing initiation pressure considering the pressurization rate is established, and the influence of the properties and action time of the coupled fracturing fluid on the circumferential stress distribution of the borehole are analyzed. The  -type crack propagation criterion (tensile failure) and the   tensile-shear and compression-shear composite fracture propagation criterion were constructed and their influencing factors were analyzed. Using the self-developed multi-field and multi-phase coupled fracturing test system, a similar simulation test of clear water and CO2 coupling fracturing was carried out on the gangue sample,and found that the fracture pressure of rock samples fractured with CW-8 was the smallest and the time to reach the fracture pressure was the longest, and analyzed the permeability deformation characteristics of the fracturing process.
(5) The interaction relationship among the temperature field (T), seepage field (H), stress field (M) and chemical field (C) of CO2 coupling fracturing was clarified, and the THMC fully coupled model of CO2 coupling fracturing in the gangue layer was constructed. The solid mechanics and PDE modules in Comsol Mutiphysics are used to solve the problem, and the physical characteristics such as fracturing damage evolution, damage 3D effect, elastic modulus and permeability change laws are compared and analyzed, and the rock breaking effect of CO2 coupling fracturing is verified.
(6) Taking the two typical working faces of 112201 first mining and 112204 intelligent excavation in Xiaobaodang mining area as the industrial test base, the fracturing process parameters are designed and field tests are carried out, and the applicability of the technology in crushing and softening the hard gangue layer at the working face is verified by the indexes of safety, effectiveness, efficiency and benefit.
 

参考文献:

[1] 《中国能源发展报告2021》.

[2] 《中国能源形势分析与预测报告》.

[3] 潘泱波,刘泽功. 含硬夹矸高瓦斯低透气性煤层多向聚能爆破技术研究[J]. 中国安全生产科学技术,2019,15(11):144-150.

[4] 张金锁,张伟,宋世杰. 区域煤炭资源安全绿色高效开采评价指标体系与标准-以陕北侏罗纪煤田为例[J]. 中国煤炭,2015,41(06):49-54.

[5] 张顶立,王悦汉,曲天智. 夹层对层状岩体稳定性的影响分析[J]. 岩石力学与工程学报,2000(02):140-144.

[6] 邹冠贵,李来春. 构造煤地球物理响应特征及成因分析——以晋城矿区赵庄煤矿为例[J]. 矿业科学学报,2018,3(05):417-424.

[7] 赵文秀,李瑞,乌效鸣,等. 利用酸化技术提高煤储层渗透率的室内初探[J]. 中国煤层气,2012,9(01):10-13.

[8] 赵善坤. 深孔顶板预裂爆破与定向水压致裂防冲适用性对比分析[J]. 采矿与安全工程学报,2021,38(04):706-719.

[9] 杨敬轩,于斌,匡铁军,等. 基于煤岩深孔爆破问题的液体炸药研发与技术[J]. 煤炭学报,2021,46(06):1874-1887.

[10] 邱宇超,梁卫国,李静,等. 非均质弹塑性煤体水压致裂裂纹形态研究[J/OL]. 煤炭学报:1-12[2022-03-11].

[11] 邓广哲. 煤体致裂软化理论与应用[M]. 西安:陕西科学技术出版社,2003.

[12] 王爱文,高乾书,潘一山,等. 预制钻孔煤样冲击倾向性及能量耗散规律[J]. 煤炭学报,2021,46(03):959-972.

[13] Feng Yixuan, Haugen Kjetil, Firoozabadi Abbas. Phase-Field Simulation of Hydraulic Fracturing by CO2, Water and Nitrogen in 2D and Comparison With Laboratory Data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11).

[14] Deng Bozhi, Zhang Dongming, Chen Jiaqi. Dilation behavior and acoustic emission response to water/CO2 injection-induced shear fracturing in coal seams[J]. Journal of Natural Gas Science and Engineering, 2021, 94.

[15] 梁卫国,贺伟,阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J/OL]. 煤炭学报:1-12[2022-03-11].

[16] 张矿生,白晓虎,刘顺,等. 致密油藏注CO2增能效果及参数优化[J]. 科学技术与工程,2020,20(26):10751-10758.

[17] Cong Ziyuan, Li Yuwei, Pan Yishan, et al. Study on CO2 foam fracturing model and fracture propagation simulation[J]. Energy, 2022, 238(PB).

[18] Hou Lei, Zhang Sheng, Elsworth Derek, et al. Review of fundamental studies of CO2 fracturing: Fracture propagation, propping and permeating[J]. Journal of Petroleum Science and Engineering, 2021, 205.

[19] 邓广哲,朱维申. 岩体非线性卸荷与熵变的基本特点[J]. 西安矿业学院学报,1997(04):35-38.

[20] 邓广哲,朱维申. 岩体裂隙非线性蠕变过程特性与应用研究[J]. 岩石力学与工程学报,1998(04):10-17.

[21] 邓广哲. 硬煤裂隙能量补偿原理与应用[J]. 岩石力学与工程学报,2000(04):440-443.

[22] 邓广哲. 煤层裂隙应力场控制渗流特性的模拟实验研究[J]. 煤炭学报,2000(06):593-597.

[23] 邓广哲. 封闭型煤层裂隙地应力场控制水压致裂特性[J]. 煤炭学报,2001(05):478-482.

[24] 邓广哲,黄炳香,王广地,等. 圆孔孔壁裂缝水压扩张的压力参数理论分析[J]. 西安科技学院学报,2003(04):361-364.

[25] 邓广哲,黄炳香,石增武,等. 节理脆性煤层水力致裂技术与应用[C]. 中国岩石力学与工程学会第七次学术大会论文集,中国,西安,2002:649-651.

[26] 邓广哲,王世斌,黄炳香. 煤岩水压裂缝扩展行为特性研究[J]. 岩石力学与工程学报,2004(20): 3489-3493.

[27] 黄炳香,邓广哲,刘长友. 煤岩体水力致裂弱化技术及其进展[J]. 中国工程科学,2007(04):83-88.

[28] 高朋杰. 节理岩石透水机理的试验研究[D]. 西安科技大学,2008.

[29] 邓广哲,朱徽,贾光明,等. 一种煤岩软化活性压裂装置[P]. 中国专利:ZL201720216187.8,2018-10-13.

[30] 郝珠成,邓广哲,吴学松,等. 注水对顶煤强度及冒放性的影响机理研究[J]. 西安科技大学学报,2012,32(05):571-575.

[31] 王有熙,邓广哲. 煤层注水破坏机理的能量耗散分析[J]. 西安科技大学学报,2013,33(02):143-148.

[32] 邓广哲,王有熙. 煤层定向水压致裂机理研究[J]. 西安科技大学学报,2014,34(06):664-669.

[33] 张憧. 低渗透煤层孔隙结构的分形特征及力学性质研究[D]. 西安科技大学,2015.

[34] 邓广哲,张憧. 煤体孔隙结构及分形特征的实验研究[J]. 煤炭技术,2015,34(02):294-296.

[35] 邓广哲. 冲击灾害煤岩压裂软化新材料及装备. 陕西省,西安科技大学,2018-03-14.

[36] 王有熙. 大段高顶煤定向水压致裂机理研究[D]. 西安科技大学,2015.

[37] 刘冬. 压裂液作用下煤体软化性及水压裂缝扩展规律研究[D]. 西安:西安科技大学,2012.

[38] 邓广哲,齐晓华,王雷. 水压致裂提高块煤率的机理及应用[J]. 西安科技大学学报,2017,37(02):187-193.

[39] 邓广哲. 煤炭开采粒级控制理论与应用[M]. 北京:科学出版社,2021.

[40] Haimson B, Fairhurst C. Initiation and extension of hydraulic fractures in rocks[J]. SPE Journal, 1967, 7(3): 310-318.

[41] Detournay E M, Cheng Alex. Influence of pressurization rate on the magnitude of the breakdown pressure[C]. In Rock Mechanics Proceedings of the 33rd U.S. Symposium, Publ by A A Balkema, 1992: 325-333.

[42] Griffith A A. Theory of rupture[C]. Proceedings of the 1st Int. Congress of Appl. Mech. 1924: 55-63.

[43] Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Appl, Mech, 1957, 48(12): 361-364.

[44] Bowie O L, Freeze C E. Elastic analysis for a radial crack in a circular ring[J]. Eng, Frac, Mech, 1972, 4(2): 315-321.

[45] Zheltov Y P, Khristianovich S A. Hydraulic rupture of an oil bed [J]. Izv, Akad, Nauk SSSR, OTN, 1955 (5): 3-41.

[46] Khristianovich S A, Kovalenko J F, Kurlasev A R. Method of extracting crude oil from oil well: WIPO Patent 1994015068[P]. 1994: 7-8.

[47] Barenblast G I, Zheltov Y P. Fundamental equations of filtration of homogeneous liquids in fissured rocks[C]. Soviet Physics Doklady. 1960, 5: 522.

[48] Bell G J, Jones A H, Morales R H, et al. Coal seam hydraulic fracture propagation on a laboratory scale[C]. Proceedings of the 1989 Coalbed Methane Symposium, the university of Alabama/Tuscaloosa, 1989: 417-424.

[49] Abass H H, Hedayati S, Kim C M. Mathematical and experimental simulation of hydraulic fracturing in shallow coal seams[C]. SPE Eastern Regional Meeting, 22-25 October, Lexington, Kentucky, USA, 1991.

[50] M M Rahman, M M Hossain, D G. Crosby. Analytical numerical and experimental investigations of transverse fracture propagation from horizontal wells[J]. Journal of Petroleum Science and Engineering. 2002(35): 127-15.

[51] Detournay E, Carbonell R. Fracture mechanics analysis of break-down process in minifrac or leak of tests[A]. Rotterdam: Balkema, 1994: 399-407.

[52] Hossain M M, Rahman M K, Rahman S S. A comprehensive monograph for hydrnulic fracture initiation from deviated wellbores under arbitrary stress regimes[J]. SPE, 54360, 1999.

[53] Hossain M M, Rahman M K. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes[J]. J Pet, Sci, Eng, 2000(27): 129-149.

[54] Liu L. Katsabanis P D. Development of continnum damage model for blast analysis. Int, J, Rock mech, min, sci, 1997, 34(2): 217-213.

[55] 康红普. 水对岩石的损伤[J]. 水文地质工程地质,1994(03):39-40.

[56] 周群力,刘格非. 脆性材料的压剪断裂[J]. 水利学报,1982 (07):63-69.

[57] 潘别桐,唐辉明. 岩石压剪性断裂特性及Ⅰ-Ⅱ型复合断裂判据[J]. 地球科学,1988(04):413-421.

[58] 朱珍德,胡定. 裂隙水压力对岩体强度的影响[J]. 岩土力学,2000(01):64-67.

[59] 黄润秋,王贤能,陈龙生. 深埋隧道涌水过程的水力劈裂作用分析[J]. 岩石力学与工程学报,2000(05):573-576.

[60] 黄荣樽. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发,1981(05):62-74.

[61] 黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液,1995(03):18-24+28.

[62] 李传亮,孔祥言. 油井压裂过程中岩石破裂压力计算公式的理论研究[J]. 石油钻采工艺,2000(02):54-56+83.

[63] 杜春志,茅献彪,卜万奎. 水力压裂时煤层缝裂的扩展分析[J]. 采矿与安全工程学报,2008(02):231-234+238.

[64] 程亮,卢义玉,葛兆龙,等. 倾斜煤层水力压裂起裂压力计算模型及判断准则[J]. 岩土力学,2015,36(02):444-450.

[65] Chitrala Y, Moreno C, Sondergeld C, et al. An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions[J]. Journal of Petroleum Science and Engineering, 2013, 108(3): 151-161.

[66] Stanchits S, Surdi A, Gathogo P, et al. Onset of hydraulic fracture initiation monitored by acoustic emission and volumetric deformation measurements[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1521-1532.

[67] Li Shouding, Zhou Zhongming, Li Xiao, et al. One CT imaging method of fracture intervention in rock hydraulic fracturing test[J]. Journal of Petroleum Science and Engineering, 2017, 156: 582-588.

[68] Zou Yushi, Zhang Shicheng, Zhou Tong, et al. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 33-45.

[69] Wei Duan, Gao Zhiqian, Fan Tailiang, et al. Experimental hydraulic fracture propagation on naturally tight infra-platform shoal carbonate[J]. Journal of Petroleum Science and Engineering, 2017, 157: 980-989.

[70] Hubbert M K, Willis D G. Mechanics of hydraulic fracturing[J]. Transactions of Society of Petroleum Engineers of AIME, 1957, 210: 153-163.

[71] Abass H, Hedayati S, Meadows D. Nonplanar fracture propagation from a horizontal wellbore: experimental study[J]. 1996.

[72] Stanchits S, Burghardt J, Surdi A. Hydraulic fracturing of heterogeneous rock monitored by acoustic emission[J]. Rock Mechanics & Rock Engineering, 2015, 48(6): 2513-2527.

[73] Gale G E. The effects of fractwe type (induced versus natural) on the stress fracture closure permeability relationships[J]. In: Proc, 23th Symp, On Rock Mech, Berkeley, California, 1982.

[74] Yushi Z, Shicheng Z, Tong Z, et al. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J]. Rock Mechanics & Rock Engineering, 2016, 49(1): 33-45.

[75] Li D Q, Zhang S C, Zhang S A. Experimental and numerical simulation study on fracturing through interlayer to coal seam[J]. Journal of Natural Gas Science and Engineering, 2014(21): 386-396.

[76] Beugelsdijk L J L, Pater C J D, Sato K. Experimental hydraulic fracture propagation in a multi-fractured medium[C]. SPE Asia Pacific Conference on Integrated Modelling for Asset Management, 2000.

[77] Mao Ruibiao, Feng Zijun, Liu Zhenghe, et al. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 278-286.

[78] 孙逊,张士诚,马新仿,等. 基于高能CT扫描的煤岩水力压裂裂缝扩展研究[J]. 河南理工大学学报(自然科学版),2020,39(01):18-25.

[79] 魏元龙,杨春和,郭印同,等. 须家河组致密砂岩水力压裂裂缝形态的试验研究[J]. 岩石力学与工程学报,2016,35(S1):2720-2731.

[80] 黄炳香. 煤岩体水力致裂弱化的理论与应用研究[D]. 中国矿业大学,2009.

[81] 康红普,冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报,2012,37(12):1953-1959.

[82] 付世豪,侯冰,夏阳,等. 多岩性组合层状储层一体化压裂裂缝扩展试验研究[J/OL]. 煤炭学报:1-8.

[83] 田勇,俞然刚,李彦龙,等. 射孔水平井室内水力压裂物理模拟试验研究[J]. 实验力学,2021,36(04):563-570.

[84] 唐巨鹏,齐桐,代树红,等. 基于声发射能量分析的周期注水应力改造下煤系页岩裂缝扩展规律试验研究[J]. 实验力学,2020,35(04):639-649.

[85] 侯振坤,杨春和,王磊,等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(02):407-414.

[86] Carwford H R, Neill G H, Bucy B J, et al. Carbon dioxide-a multipurpose additive for effective well stimulation[J]. Journal of Petroleum Technology, 1963(3): 237-240.

[87] Gupta D V, Bobier D M. The history and success of liquid CO2 and CO2/N2 fracturing system. SPE 40016, 1998.

[88] Shang Zheng, Wang Haifeng, Li Bing, et al. Experimental investigation of Bleve in liquid CO2 phase-transition blasting for enhanced coalbed methane recovery[J]. Fuel, 2021, 292.

[89] Yongqing Zeng, Haibo Li, Xiang Xia, et al. Research on time-frequency characteristics for blasting vibration signal of CO2 blasting by frequency slice wavelet transform[J]. Engineering Letters, 2020, 28. 0(4.0).

[90] 陈枫,胡凡. 二氧化碳爆破技术在路基石方开挖中的应用探析[J]. 工程建设与设计,2019(10):102-104.

[91] 崔玉明,张福宝,宋战平. 二氧化碳爆破技术在隧道施工中的应用[J]. 公路交通科技(应用技术版),2019,15(05):254-256.

[92] 单发磊. 二氧化碳爆破在水库大坝施工中的应用分析[J]. 水利建设与管理,2019,39(01):39-43+34.

[93] 王兆丰,李豪君,陈喜恩,等. 液态CO2相变致裂煤层增透技术布孔方式研究[J]. 中国安全生产科学技术,2015,11(09):11-16.

[94] 王兆丰,周大超,李豪君,等. 液态CO2相变致裂二次增透技术[J]. 河南理工大学学报(自然科学版),2016,35(05):597-600.

[95] 张伟伟,李润芝,王伟. 屯兰煤矿高瓦斯煤层液态CO2增透技术的试验研究[J]. 煤炭技术,2019,38(06):103-104.

[96] 郑天照. 液态CO2相变气爆爆破孔爆能分布特征研究[D]. 辽宁工程技术大学,2019.

[97] Xuelin Yang, Guangcai Wen, Tingkan, et al. Optimization and field application of CO2 gas fracturing technique for enhancing CBM extraction[J]. Natural Resources Research: Official Journal of the International Association for Mathematical Geosciences, 2020, 29(1): 1875-1896.

[98] 郭志兴. 液态二氧化碳爆破筒及现场试爆[J]. 爆破,1994(03):72-74.

[99] 聂政. 二氧化碳炮爆破在煤矿的应用[J]. 煤炭技术,2007(08):62-63.

[100] 张宏伟,朱峰,李云鹏,等. 液态CO2致裂技术在冲击地压防治中的应用[J]. 煤炭科学技术,2017,45(12):23-29.

[101] Lu T K, Wang Z F, Yang H M, et al. Improvement of coal seam gas drainage by under-panel cross-strata stimulation using highly pressurized gas[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 77(1): 300-312.

[102] 樊世星. 液态CO2压裂煤岩增透及裂缝形成机制研究[J]. 岩石力学与工程学报,2021,40(08):1728.

[103] Lilles A T, King S R. Sand fracturing with liquid carbon dioxide[C]. In SPE Production Technology Symposium, 8-9 November, Hobbs, New Mexico, 1982, SPE-11341-MS.

[104] Campbell S, Fairchild N R, L D. Liquid CO2 and sand stimulations in the lewis shale, San Juan Basin, New Mexico: A Case Study[C]. Spe Rocky Mountain Regional/low-permeability Reservoirs Symposium & Exhibition. Society of Petroleum Engineers, 2000.

[105] Setlari A, Bachman R C, Morrison D C. Numerical simulation of liquid CO2 hydraulic fracturing[M]. 1986.

[106] Bullen R S, Lillies A T. Carbon dioxide fracturing process and apparatus: US, US4374545[P]. 1983.

[107] Deng B, Yin G, Li M, et al. Feature of fractures induced by hydrofracturing treatment using water and L-CO2 as fracturing fluids in laboratory experiments[J]. Fuel, 2018, 226: 35-46.

[108] 宋振云,苏伟东,杨延增,等. CO2干法加砂压裂技术研究与实践[J]. 天然气工业,2014,34(06):55-59.

[109] 周长林,彭欢,桑宇,等. 页岩气CO2泡沫压裂技术[J]. 天然气工业,2016,36(10):70-76.

[110] 梁卫国,武鹏飞,王磊,等. 煤系地层超临界CO2压裂现状及研究进展[J]. 同煤科技,2019(04):1-4+8+61.

[111] 樊世星,文虎,程小蛟,等. 井下高压液态CO2压裂增透煤岩成套装备研制与应用[J]. 煤炭学报,2020,45(S2):801-812.

[112] 周大伟,张广清. 超临界CO2压裂诱导裂缝机理研究综述[J]. 石油科学通报,2020,5(02):239-253.

[113] Kolle J J. Coiled-tubing drilling with supercritical carbon dioxide[C]. In SPE/CIM International Conference on Horizontal Well Technology, 6-8 November, Calgary, Alberta, Canada, 2000, SPE-65534-MS.

[114] Zou Y, Li N, Ma X, et al. Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation[J]. J Nat Gas Sci Eng, 2018, 49: 145-156.

[115] Ye L, Zou Y S, Zhao Q Y, et al. Experimental research on the CO2 fracturing propagation laws of high sandstone[J]. Oil Drilling Production Technology. 2018, 40(03): 93-100.

[116] Jiang Y, Qin C, Kang Z, et al. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions[J]. J Nat Gas Sci Eng, 2018, 55: 382-394.

[117] Zhao Z, Li X, He J, et al. A laboratory investigation of fracture propagation induced by supercritical carbon dioxide fracturing in continental shale with interbeds[J]. J Petro Sci Eng, 2018, 166: 739-746.

[118] Li X, Feng Z, Han G, et al. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2[J]. Geomech Geophysics for Geo-Energy and Geo-Resources, 2016, 2(2): 63-76.

[119] Deng B, Yin G, Li M, et al. Feature of fractures induced by hydrofracturing treatment using water and L-CO2 as fracturing fluids in laboratory experiments[J]. Fuel, 2018, 226: 35-46.

[120] Sampath K, Perara M S A, Ranjithp G, et al. Evaluation of superiority of liquid CO2 as a non-aqueous fracturing fluid for coal seam gas extraction[C]. In 52nd U. S. Rock Mechanics/Geomechanics Symposium, 17-20 June, Seattle, Washington, 2018, ARMA-2018-101.

[121] 王磊,梁卫国. 超临界CO2/清水压裂煤体起裂和裂缝扩展试验研究[J]. 岩石力学与工程学报,2019,38(S1):2680-2689.

[122] 刘真光,邱正松,钟汉毅,等. 页岩储层超临界CO2压裂液滤失规律实验研究[J]. 钻井液与完井液,2016,33(01):113-117.

[123] Zhang Xinwei, Lu Yiyu, Tang Jiren, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017(190): 370-378.

[124] 刘国军,鲜学福,周军平,等. 超临界CO2致裂后页岩渗透率变化规律及影响因素[J]. 煤炭学报,2017,42(10):2670-2678.

[125] 卢义玉,周军平,鲜学福,等. 超临界CO2强化页岩气开采及地质封存一体化研究进展与展望[J]. 天然气工业,2021,41(06):60-73.

[126] 蔺海晓,冯鑫,张勃阳. 孔隙数量及空间分布对砂岩三轴抗压强度影响分析[J/OL]. 河南理工大学学报(自然科学版):1-8[2022-01-13].

[127] Xu F, Chaos Dong P. Fractalapproach to hydraulic properties in unsaturated porous media[J]. Solutions & Fractals, 2004, 19(3): 327-337.

[128] Zhang L C, Lu S F, Xiao D S, et al. Pore structure characteristics of tight sandstones in the northern Songliao Basin, China[J]. Mar Petrol Geol, 2017, 88: 170-180.

[129] Qiao J, Zeng J, Jiang S, et al. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: implications for macroscopic and microscopic heterogeneities[J]. Mar Petrol Geol, 2020, 111: 279-300.

[130] Pape H, Clauser C, Iffland J. Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model. Pure and Applied Geophysics, 2000, 157(4): 603-619.

[131] Dmitry B, Silin. Robust determination of pore space morphology in sedimentary rocks, paper SPE 84296, presented at the SPE Annual Technical Conference and Exhibition, Colorado, October, 2003.

[132] В.В.霍多特. 煤与瓦斯突出[M]. 北京:中国工业出版社,1966.

[133] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mud rocks and a descriptive classification for matrix-related mud rock pores[J]. AAPG Bulletin, 2012, 96 (6): 1071-1098.

[134] Miller F P, Vandome A F, Mcbrewster J. International Union of Pure and Applied Chemistry [IUPAC][J]. Russian Journal of Bioorganic Chemistry, 2003, 29(4): 405-406.

[135] Shuang Xu, Quantang Fang, Yangbing Li, et al. Initial evaluation of coal seam pore-permeability characteristic in Eastern Yunnan and Western Guizhou area[J]. Journal of Research in Science and Engineering, 2021, 2(12).

[136] Tan Maojin, Wu Hongliang, Zhang Jinyan, et al. Influencing mechanics and correction method of nuclear magnetic resonance measurement in igneous rocks reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 208(PD).

[137] Cui Jingwei, Yuan Xuanjun, Wu Songtao, et al. Rock types and reservoir characteristics of shahejie formation marl in Shulu Sag, Jizhong Depression, Bohai Bay Basin[J]. Journal of Earth Science, 2021, 32(4):986-997.

[138] Golsanami Naser, Zhang Xuepeng, Yan Weichao, et al. NMR-based study of the pore types contribution to the elastic response of the reservoir rock[J]. Energies, 2021, 14(5): 1513-1513.

[139] 薛善彬. 基于中子成像和X射线CT的低渗砂岩非饱和渗流机理研究[D]. 中国矿业大学(北京),2018.

[140] 王苏健,冯洁,侯恩科,等. 砂岩微观孔隙结构类型及其对含水层富水性的影响——以柠条塔井田为例[J]. 煤炭学报,2020,45(09):3236-3244.

[141] 殷宏. 超临界CO2与页岩相互作用机理的实验研究[D]. 重庆大学,2018.

[142] 刘峰,黄杨杨. 基于压汞、氮气及二氧化碳吸附的页岩孔隙结构研究[J]. 中国煤层气,2021,18(02):8-12.

[143] 高志亮,穆景福,马东东,等. 致密砂岩中液态CO2和水压裂试验[J]. 沈阳工业大学学报,2021,43(03):356-360.

[144] Stingaciu L R, Weihe R Muller L, Haber-Pohlmeier S, et al. Determination of pore size distribution and hydraulic properties using nuclear magnetic resonance relaxometry: A comparative study of laboratory methods[J]. Water resources research, 2010 (46): 1-11.

[145] Yao Yanbin, Liu Dameng. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95(5): 152-158.

[146] Mandelbrot B B. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars[J]. Journal of Fluid Mechanics, 2006, 72(3): 401-416.

[147] 谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报,1992,14(1):14-24.

[148] 谢和平. 分形岩石力学导论[M]. 北京:科学出版社,1996.

[149] Ai T, Zhang R, Zhou H W, et al. Box-counting methods to directly estimate the fractal dimension of a rock surface[J]. Applied Surface Science, 2014, 314: 610-621.

[150] 丁自伟,李小菲,唐青豹,等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J]. 岩石力学与工程学报,2020,39(09):1787-1796.

[151] 徐吉钊,翟成,桑树勋,等. 基于低场核磁共振技术的液态CO2循环致裂煤体孔隙特征演化规律[J]. 煤炭学报,2021,46(11):3578-3589.

[152] Xia Binwei, Liu Xianfeng, Song Dazhao, et al. Evaluation of liquid CO2 phase change fracturing effect on coal using fractal theory[J]. Fuel, 2020: 119569.

[153] Potter G F. The effects of CO2 flooding on wettability of west texas dolomitic formations[C]. SPE 16716, 183-187.

[154] Wei Jianguang. Experimental and simulation investigations of carbon storage associated with CO2 eor in low-permeability reservoir[J]. International Journal of Greenhouse Gas Control, 2020: 103203.

[155] Broseta D, Tonnet N, Shah V. Are rocks still water-wet in the presence of dense CO2 or H2S? Geofluids, 2012, 12: 280-294.

[156] Javanbakht G, Sedghi M, Welch W, et al. Molecular dynamics simulations of CO2/water/quartz interfacial properties: impact of CO2 dissolution in water [J]. Langmuir, 2015, 31(21): 5812-5819.

[157] Liu S Y, Yang X N, Qin Y Molecular dynamics simulation of wetting behavior at CO2/water/solid interfaces[J]. Chinese Science Bulletin, 2010, 55(21): 2252-2257.

[158] Dickson J L, Gupta G, Horozov T S, et al. Wetting phenomena at the CO2/water/glass interface[J]. Langmuir, 2006, 22(5): 2161-2170.

[159] 姚振杰,黄春霞,马永晶,等. 延长油田CO2驱储层物性变化规律[J]. 断块油气田,2017,24(01):60-62.

[160] 肖娜,李实,林梅钦,等. CO2-水-岩石相互作用对砂岩储集层润湿性影响机理[J]. 新疆石油地质,2017,38(04):460-465.

[161] Ross G D, Todd A C, Tweedie J A. The effect of simulated CO2 flooding on the permeability of reservoir rocks[C]. In: Proceedings 3rd European Symposium Enhanced Oil Recovery, Bournemouth, U K, 1981, pp: 351-366.

[162] Farquhar S M, Pearce J K, Dawson G K W, et al. A fresh approach to investigating CO2 storage: Experimental CO2-water-rock interactions in a low-salinity reservoir system[J]. Chemical Geology, 2015, 399: 98-122.

[163] Cui G, Zhang L, Tan C, et al. Injection of supercritical CO2 for geothermal exploitation from sandstone and carbonate reservoirs: CO2-water-rock interactions and their effects[J]. Journal of CO2 Utilization, 2017, 20: 113-128.

[164] Shiraki R, Dunn T L. Experimental study on water-rock interactions during CO2 flooding in the ten sleep formation, wyoming, USA[J]. Applied Geochemistry, 2000, 15(1): 265-279.

[165] Kaszuba J P, Janecky D R, Snow M G. Experimental evaluation of mixed fluid reactions between super critical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository[J]. Chemical Geology, 2005, 217(3-4): 277-293.

[166] Omole O, Osoba J S. Carbon dioxide-dolomite rock interaction during CO2 flooding process[C]. 34th Annual Technical Meeting of the Petroleum Society of CIM, Canada, 1983.

[167] Watson M N, Zwingmann N, Lemon N M. The ladbroke grove-katnook carbon dioxide natural laboratory: a recent CO2 accumulation in a lithic sandstone reservoir[J]. Energy, 2004, 29(9): 1457-1466.

[168] 王卫东,宫厚健,桑茜,等. 低渗透油藏CO2-地层水-岩石相互作用实验研究[C]. 2021油气田勘探与开发国际会议论文集(中册),2021:169-176.

[169] 邹雨时,李彦超,李四海. CO2前置注入对页岩压裂裂缝形态和岩石物性的影响[J]. 天然气工业,2021,41(10):83-94.

[170] 夏玉磊,王祖文,兰建平. 二氧化碳与储层岩石及主要堵塞元素的反应规律研究[C]. 2020油气田勘探与开发国际会议论文集,2020:1546-1556.

[171] 李四海,马新仿,张士诚,等. CO2-水-岩作用对致密砂岩性质与裂缝扩展的影响[J]. 新疆石油地质,2019,40(03):312-318.

[172] 张强,李小春,周英博,等. CO2/水作用下完整四川三叠系砂岩剪切特性的试验研究[J]. 岩土力学,2019,305(08):3028-3036.

[173] 刘明泽,白冰,李小春,等. CO2–水两相条件下砂岩致裂特征与有效应力模型的试验研究[J]. 岩石力学与工程学报,2016,35(02):250-259.

[174] 马鸿文. 工业矿物与岩石(第二版)[M]. 北京:北京北学工业出版社,200,4-52.

[175] 崔波,冯浦涌,杨浩,等. 中东地区某油田碳酸盐岩酸蚀微观特征研究[J]. 广东石油化工学院学报,2021,31(01):29-32+36.

[176] Hucka V, Das B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(10): 389-392.

[177] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: the mississippian barnett shale of north-central texas as one model for thermogentic shale-gas assessment[J]. Aapg Bulletin, 2007, 91(4): 475-499.

[178] Kent B. Recent development of the barnett shale play, Forth Worth Basin [J]. West Texas Geological Society Bulletin, 2003, 2: 6.

[179] 王亚. 基于巴西劈裂试验的茅口灰岩抗拉强度研究[D]. 湖南科技大学,2016.

[180] 张辉,程利兴,苏承东,等. 饱水煤样巴西劈裂强度和能量特征试验研究[J]. 中国安全生产科学技术,2015,11(12):5-10.

[181] 张辉,程利兴,李国盛. 基于巴西劈裂法的饱水煤样能量耗散特征研究[J]. 实验力学,2016,31(04):534-542.

[182] 冯动军,肖开华. 恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J]. 石油实验地质,2021,43(02):368-376.

[183] Li H, Li H, Gao B, et al. Study on pore characteristics and microstructure of sandstones with different grain sizes[J]. Journal of Applied Geophysics, 2017, 136: 364-371.

[184] Fu Shuaishi, Fang Qi, Li Aifen, et al. Accurate characterization of full pore size distribution of tight sandstones by low-temperature nitrogen gas adsorption and high-pressure mercury intrusion combination method[J]. Energy Science & Engineering, 2020, 9(1): 80-100.

[185] Dang Chen, Sui Zhili, Yang Xiuyuan, et al. Pore changes in purple mudstone based on the analysis of dry-wet cycles using nuclear magnetic resonance[J]. Shock and Vibration, 2022, 2022.

[186] 陈惠,冯春珍,赵建鹏,等. 基于分形与核磁共振测井的储层孔隙结构表征与分类[J]. 测井技术,2021,45(01):50-55.

[187] 张娜,赵方方,王水兵,等. 岩石孔隙结构与渗流特征核磁共振研究综述[J]. 水利水电技术,2018,49(07):28-36.

[188] 苏静,范翔宇,陈林. CO2黏度模型及求解[J]. 断块油气田,2009,16(05):81-83.

[189] 郭绪强,荣淑霞,杨继涛,等. 基于PR状态方程的粘度模型[J]. 石油学报,1999(03):64-69+6.

[190] Phillips P. The viscosity of carbon dioxide[J]. Proc Roy Soc, 1912(87A): 48-51.

[191] 郭绪强,荣淑霞,杨继涛,等. 纯组分高压流体的粘度模型[J]. 石油大学学报(自然科学版),1998(06):98-100.

[192] Chang Y B, Coats B K, Nolen J S, et al. A compositional model for CO2 floods including CO2 solubility in water[J]. SPEJ, 1998, 1(2): 155-160.

[193] Furnival J S, Horstmann S, Fischer K, et al. Experimental determination and prediction of gas solubility data for CO2+H2O mixtures containing NaCl or KCl at temperatures between 313 and 393K and pressures up to 10MPa[J]. Industrial & Engineering Chemistry Research, 2002, 41(1): 4393-4398.

[194] Duan Z, Sun R, Zhu C, et al. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K-, Ca2+, Mg2-, Cl- and SO42+[J]. Marine Chemistry, 2006, 98(2): 131-139.

[195] 侯大力,罗平亚,王长权,等. 高温高压下CO2在水中溶解度实验及理论模型[J]. 吉林大学学报:地球科学版,2015,45(2):564-572.

[196] Duan Z H, Moller N, Greenberg J, et al. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250℃ and from 0 to 1600 bar[J]. Geochimicaet Cosmochimica Acta, 1992(56): 1451-1460.

[197] 高歌,蒋景阳.在CO2-H2O体系中估算pH值及其应用[J].计算机与应用化学,2011,28(03):359-362.

[198] López S, Ramos M J, García-Vargas J M, et al. Carbon dioxide sorption and melting behaviour of mPEG-alkyne[J]. The Journal of Supercritical Fluids, 2021, 171.

[199] Wiebe R, Gaddy V L. Vapor phase composition of carbon dioxide-water mixtures at various temperatures and at pressures to 700 atmospheres[J]. Journal of the American Chemical Society, 1941, 63(2): 475-477.

[200] Hunter S E, Savage P E. Acid-catalyzed reactions in carbon dioxide enriched high-temperature liquid water[J]. Ind Eng Chem Res, 2003, 42(2): 290-294.

[201] Stumm W, Morgan J J. Aquatic Chemistry: chemical equilibria and rates in natureal water[J]. 3 rd, New York: Wiley: 1996.

[202] Marshall W L, Franck E U. Ion product of water substance, 0-1000℃, 1-10000 bars, new international formulation and its background[J]. Phys Chem Ref Data, 1981, 10(2): 295-304.

[203] Ziegler K J, Hanrahan J P, Glennon J D, et al. Producing ‘Ph switches’ in biphasic water-CO2 systems[J]. Supercrit Fluids, 200327(1): 109-117.

[204] 邓广哲. 一种煤岩软化活性压裂剂[P]. 中国专利:ZL201010107229.7,2012-12-12.

[205] 夏文成,毛玉强. 基于低场核磁共振表征的矿物孔隙润湿规律[J]. 煤炭学报,2021,46(02):602-613.

[206] 袁俊亮,邓金根,张定宇,等. 页岩气储层可压裂性评价技术[J]. 石油学报,2013,34(03):523-527.

[207] 张矿生,唐梅荣,王成旺,等. 致密砂岩储层抗拉强度评价方法研究[J]. 地球物理学进展,2021,36(01):318-324.

[208] 文虎,刘名阳,樊世星,等. 液态CO2溶浸煤体孔裂隙演化特征的实验研究[J]. 西安科技大学学报,2020,40(06):935-944.

[209] 申科,付厚利,秦哲,等. 花岗岩电镜扫描图像二值化阈值对分形维数影响的研究[J]. 地质与勘探,2019,55(01):87-94.

[210] 卜飞宇,祝青,王涛. 一种改进的基于最大类间方差的二值化方法[J]. 电脑知识与技术,2015,11(05):188-189+195.

[211] 陶云奇. 含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D]. 重庆大学,2009.

[212] 阎纪伟,要惠芳,李伟,等. μCT技术研究煤的孔隙结构和分形特征[J]. 中国矿业,2015,24(06):151-156.

[213] Meng Tao, Jianliang Pei, Feng Gan, et al. Permeability and porosity in damaged salt interlayers under coupled THMC conditions[J]. Journal of Petroleum Science and Engineering, 2022, 211.

[214] 黄乔松,赵文杰,杨济泉,等. 核磁共振渗透率模型研究与应用[J]. 青岛大学学报(自然科学版),2004(04):37-40.

[215] Ehab Moustafa Kamel Karim, Gerard Pierre, Colliat Jean-Baptiste, et al. Modelling stress-induced permeability alterations in sandstones using CT scan-based representations of the pore space morphology[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 150.

[216] 杜锋,王凯,董香栾,等. 基于CT三维重构的煤岩组合体损伤破坏数值模拟研究[J]. 煤炭学报,2021,46(S1):253-262.

[217] 李伯平,郭冬发,李黎. 三维X-CT成像技术在岩石矿物中的应用[J]. 世界核地质科学,2020,37(04):296-315.

[218] 刘慧,杨更社,叶万军,等. 基于CT图像三值分割的冻结岩石水冰含量及损伤特性分析[J]. 采矿与安全工程学报,2016,33(06):1130-1137.

[219] 丁锐,刘甲甲,李柏林,等. 改进的Otsu图像多阈值分割方法[J]. 计算机应用,2013,33(S1):214-217.

[220] 张艳博,徐跃东,刘祥鑫,等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学,2021,42(10):2659-2671.

[221] He C Z, Hua M Q. Fractal geometry description of reservoir pore structure[J]. Oil and Gas Geology, 1998, 19(1): 15-23.

[222] 何涛. 坚硬顶煤注水软化性研究[D]. 西安:西安科技大学,2009.

[223] 余寿文,冯西桥. 损伤力学[M]. 北京:清华大学出版社,1997.

[224] 金衍,陈勉,张旭东. 利用测井资料预测深部地层岩石断裂韧性[J]. 岩石力学与工程学报,2001(04):454-456.

[225] Bezzie Yihunie Mognhod, Woldemichael Dereje Engida. Effects of graded-index and Poisson's ratio on elastic-solutions of a pressurized functionally graded material thick-walled cylinder[J]. Forces in Mechanics, 2021, 100032.

[226] Ito T. Effect of pore pressure gradient on fracture initiation in fluid saturated porous media: Rock[J]. Engineering Fracture Mechanics, 2008, 75(7): 1753-1762.

[227] Guo Q, Jin Z H, Feng Y Z. Pore pressure and chemical stresses around a borehole in a shale formation[C]. The 42nd US Rock Mechanics Symposium (USRMS), San Francisco, USA: American Rock Mechanics Association, 2008.

[228] Garagash D, Detournay E. Influence of pressurization rate on borehole breakdown pressure in impermeable rocks[C]. 2nd North American Rock Mechanics Symposium. Montreal, Quebec, Canada: American Rock Mechanics Association, 1996: 19-21.

[229] Song I, Haimson B C. Effect of pressurization rate and initial pore pressure on the magnitude of hydrofracturing breakdown pressure in table rock sandstone[J]. Rock Mechanics in the National Interest, 2001, 35(8): 235-242.

[230] 陈立强,田守嶒,李根生,等. 超临界CO2压裂起裂压力模型与参数敏感性研究[J]. 岩土力学,2015(S2):125-131.

[231] 任德生. 松辽盆地火山岩裂缝形成机理及预测研究[D]. 吉林大学,2004.

[232] 李世愚,和泰名,尹祥础. 岩石断裂力学导论[M]. 安徽:中国科学技术大学出版社,2010.

[233] Sangsefidi Milad, Akbardoost Javad, Zhaleh Ali Reza. Assessment of mode I fracture of rock-type sharp V-notched samples considering the size effect[J]. Theoretical and Applied Fracture Mechanics, 2021, 116.

[234] 高庆. 工程断裂力学[M]. 重庆:重庆大学出版社,1985.

[235] 周群力. 岩石压剪断裂判据及其应用[J]. 岩土工程学报,1987(03):33-37.

[236] 朱万成,魏晨慧,张福壮,等. 流固耦合模型用于陷落柱突水的数值模拟研究[J]. 地下空间与工程学报,2009,5(05):928-933.

[237] 张凤婕,吴宇,茅献彪,等. 煤层气注热开采的热-流-固耦合作用分析[J]. 采矿与安全工程学报,2012,29(04):505-510.

[238] Wu Y, Liu J, Chen Z, et al. A dual poroelastic model for CO2-enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2011, 86(3): 177-189.

[239] Wu Y, Liu J, Elsworth D, et al. Development of anisotropic permeability during coalbed methane production[J]. Journal of Natural Gas Science & Engineering, 2010, 2(4): 197-210.

[240] Kozeny J. Ueber kapillare leitung des wassers im boden[J]. Sitzungsber Akad. Wins, Wien, 1927, 136(2a): 271-306.

[241] 邓广哲,王雷,刘华,等. 压裂煤层综采截割比能耗模型及应用[J]. 辽宁工程技术大学学报(自然科学版),2019,239(01):26-32.

中图分类号:

 TD32    

开放日期:

 2024-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式