- 无标题文档
查看论文信息

论文中文题名:

 基于惠更斯超表面的聚焦透镜设计    

姓名:

 王豫香    

学号:

 20207223055    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 超表面透镜    

第一导师姓名:

 田丰    

第一导师单位:

 西安科技大学通信与信息工程学院    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Design of Focusing Lens Based on Huygens’ Metasurface    

论文中文关键词:

 惠更斯超表面 ; 超透镜 ; 透镜天线 ; 增益 ; 波束聚焦    

论文外文关键词:

 Huygens' metasurface ; Metalens ; Metalens antenna ; Gain ; Beam focusing    

论文中文摘要:

透镜和天线的组合可实现更高的增益和更窄的波束,在通信、雷达等领域中具有广泛应用。传统的透镜存在体积大、加工制造复杂等问题,而惠更斯超表面是一种新型的电磁材料,具有灵活调控电磁波的特性,可用于设计小型化的透镜,以满足现代通信和雷达等领域中对小型化器件的需求,因此本文主要基于惠更斯超表面的电磁特性及其在超透镜天线方面的应用展开研究。

针对传统贴片天线辐射方向性差、增益低的问题,设计一个单极化超透镜。基于惠更斯原理,提出了一个透射系数高于0.8时实现相位全覆盖的超表面单元,然后按聚焦相位分布排列组合成超透镜。在5.8-6.3 GHz内,超透镜能够将以0-5°方向入射的y极化波在30-55 mm内汇聚。将超透镜与一个贴片天线组合成透镜天线,在距离天线30-55 mm内,超透镜可以将贴片天线辐射的球面波转化为平面波,提高辐射波束的方向性。与贴片天线相比,超透镜天线的增益提高了11 dBi。通过自由空间法对超透镜天线进行了实验测试,测试结果与仿真结果吻合。

针对当前惠更斯超透镜只能实现单一极化波聚焦的问题,设计一个双极化超透镜。基于惠更斯理论提出了一个透射系数高于0.86时实现相位全覆盖的双极化超表面单元,然后按聚焦相位分布排列成超透镜。在18-21 GHz内,超透镜能够将以0-20°方向入射的x极化波和y极化波在30-55 mm处内进行汇聚。将超透镜加载到贴片天线上,超透镜能够将贴片天线辐射的球面波转化为方向性较高的笔形波束,并将贴片天线的增益最大提升14.57 dBi。通过自由空间法对超透镜天线进行了实验测试,测试结果与仿真结果吻合。

实测结果表明,所设计的单极化、双极化超透镜能够较好地改善贴片天线辐射性能和提高天线增益,为超透镜的设计提供一定的理论参考价值。

论文外文摘要:

The combination of lenses and antennas can achieve higher gain and narrower beamwidth, which has wide applications in communication, radar, and other fields. Traditional lenses have problems such as large volume and complex manufacturing, while the Huygens metasurface is a new type of electromagnetic material with the flexible control of electromagnetic waves, which can be used to design miniaturized lenses to meet the demands of miniaturized devices in modern communication and radar fields. Therefore, this paper mainly focuses on the electromagnetic properties of Huygens metasurface and its application in metalens antennas.

To address the issues of poor radiation directionality and low gain of traditional patch antennas, a single-polarization metalens is designed. Based on the Huygens principle, a metasurface unit is proposed that achieves phase coverage with a transmittance coefficient greater than 0.8, and is arranged in a focusing phase distribution to form a metalens. At 5.8-6.3 GHz, the metalens can converge y-polarized waves incident in the 0-5° direction within 30-55 mm. When combined with a patch antenna, the metalens can convert the spherical wave radiated by the patch antenna into a planar wave within 30-55 mm from the antenna and improve the directionality of the radiation beam. Compared with the patch antenna, the gain of the metalens antenna is increased by 11 dBi. The metalens antenna is experimentally tested using free space methods, and the results match the simulated results.

To address the problem that the current Huygens' metalenses can only focus on single-polarization waves, a dual-polarization Huygens' metalens is designed. Based on the Huygens' principle, a dual-polarized metasurface unit that achieves full phase coverage at transmission coefficients higher than 0.86 is proposed, and then arranged into a metalens according to the focusing phase distribution. At 18-21 GHz, the metalens can converge x-polarized and y-polarized waves incident in 0-20° direction within 30-55 mm from the antenna. When loaded onto a patch antenna, the metalens can convert the spherical wave radiated by the patch antenna into a pencil-shaped beam with high directionality, and increase the gain of the patch antenna by a maximum of 14.57 dBi. The experimental test of the metalens antenna is carried out by the free-space method, and the test results are consistent with the simulated results.

The experimental results show that the designed single-polarization and dual-polarization metalenses can effectively improve the radiation performance of patch antennas and increase antenna gain, providing certain theoretical reference value for the design of metalenses.

参考文献:

[1] Soukoulis C M, Wegener M. Past Achievements and Future Challenges in the Development of Three-Dimensional Photonic Metamaterials[J]. Nature Photonics, 2011, 5(9): 523-530.

[2] Fu Y-Y, Xu Y-D, Chen H-Y. Negative Refraction Based on Purely Imaginary Metamaterials[J]. Frontiers of Physics, 2018, 13(4): 134206.

[3] Al-Badri K S L. Design of Perfect Metamaetiral Absorber for Microwave Applications[J]. Wireless Personal Communications, 2021, 121(1): 879-886.

[4] Li Y, Lin J, Guo H, et al. A Tunable Metasurface with Switchable Functionalities: From Perfect Transparency to Perfect Absorption[J]. Advanced Optical Materials, 2020, 8(6): 1901548.

[5] Zhou J, Qian H, Luo H, et al. A Spin Controlled Wavefront Shaping Metasurface with Low Dispersion in Visible Frequencies[J]. Nanoscale, 2019, 11(36): 17111-17119.

[6] Sanusi O M, Wang Y, Roy L. Reconfigurable Polarization Converter Using Liquid Metal Based Metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(4): 2801-2810.

[7] Qi S, Assouar B. Ultrathin Acoustic Metasurfaces for Reflective Wave Focusing[J]. Journal of Applied Physics, 2018, 123(23): 234501.

[8] Hu Y, Liu X, Jin M, et al. Dielectric Metasurface Zone Plate for the Generation of Focusing Vortex Beams[J]. PhotoniX, 2021, 2(1): 10.

[9] Yu P, Besteiro L V, Huang Y, et al. Broadband Metamaterial Absorbers[J]. Advanced Optical Materials, 2019, 7(3): 1800995.

[10] Chen W T, Zhu A Y, Capasso F. Flat Optics with Dispersion-Engineered Metasurfaces[J]. Nature Reviews Materials, 2020, 5(8): 604-620.

[11] Hu Q, Chen K, Zhang N, et al. Arbitrary and Dynamic Poincaré Sphere Polarization Converter with a Time-Varying Metasurface[J]. Advanced Optical Materials, 2022, 10(4): 2101915.

[12] Wang J, Li Y, Jiang Z H, et al. Metantenna: When Metasurface Meets Antenna Again[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1332-1347.

[13] Yesilyurt O, Turhan-Sayan G. Metasurface Lens for Ultra-Wideband Planar Antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 719-726.

[14] Wang Y, Chen Q, Yang W, et al. High-Efficiency Broadband Achromatic Metalens for Near-IR Biological Imaging Window[J]. Nature Communications, 2021, 12(1): 5560.

[15] Abdelrahman A H, Elsherbeni A Z, Yang F. Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 690-697.

[16] Pfeiffer C, Grbic A. Metamaterial Huygens' Surfaces: Tailoring Wave Fronts with Reflectionless Sheets[J]. Physical Review Letters, 2013, 110(19): 197401.

[17] Viktor G V. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509.

[18] Pendry J B, Holden A J, Stewart W J, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776.

[19] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from Conductors and Enhanced Nonlinear Phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

[20] Shelby R A, Smith D R, Schultz S. Experimental Verification of a Negative Index of Refraction[J]. Science, 2001, 292(5514): 77-79.

[21] Caloz C, Itoh T. Transmission Line Approach of Left-handed (LH) Materials and Microstrip Implementation of an Artificial LH Transmission Line[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(5): 1159-1166.

[22] Kafesaki M, Tsiapa I, Katsarakis N, et al. Left-Handed Metamaterials: The Fishnet Structure and Its Variations[J]. Physical Review B, 2007, 75(23): 235114.

[23] Zhu W, Xiao F, Kang M, et al. Tunable Terahertz Left-Handed Metamaterial Based on Multi-Layer Graphene-Dielectric Composite[J]. Applied Physics Letters, 2014, 104(5): 051902.

[24] Smith D R, Mock J J, Starr A F, et al. Gradient Index Metamaterials[J]. Physical Review E, 2005, 71(3): 036609.

[25] Leonhardt U. Optical Conformal Mapping[J]. Science, 2006, 312(5781): 1777-1780.

[26] Liu R, Cui T J, Huang D, et al. Description and Explanation of Electromagnetic Behaviors in Artificial Metamaterials Based on Effective Medium Theory[J]. Physical Review E, 2007, 76(2): 026606.

[27] Cai W, Chettiar U K, Kildishev A V, et al. Optical Cloaking with Metamaterials[J]. Nature Photonics, 2007, 1(4): 224-227.

[28] Yang F, Mei Z L, Jin T Y, et al. Dc Electric Invisibility Cloak[J]. Physical Review Letters, 2012, 109(5): 053902.

[29] Jiang W X, Luo C Y, Ge S, et al. An Optically Controllable Transformation-Dc Illusion Device[J]. Advanced Materials, 2015, 27(31): 4628-4633.

[30] Holloway C L, Kuester E F, Gordon J A, et al. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10-35.

[31] Kuester E F, Mohamed M A, Piket-May M, et al. Averaged Transition Conditions for Electromagnetic Fields at a Metafilm[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2641-2651.

[32] Holloway C L, Kuester E F, Dienstfrey A. Characterizing Metasurfaces/Metafilms: The Connection Between Surface Susceptibilities and Effective Material Properties[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1507-1511.

[33] 王晓坤, 李周. 一种具有异常透射功能的新型惠更斯超表面[J]. 光子学报, 2021, 50(02): 183-190.

[34] 黄帅, 吴天昊, 管春生,等. 波导谐振腔集成馈电型波前调控惠更斯超表面研究[J]. 物理学报, 2022, 71(22): 97-104.

[35] 苏东平, 张淮清, 肖辉,等. 用于微波无线能量传输的高效率惠更斯超表面透射阵[J]. 微波学报: 1-5.

[36] Jia S L, Wan X, Fu X J, et al. Low-Reflection Beam Refractions by Ultrathin Huygens Metasurface[J]. AIP Advances, 2015, 5(6): 067102.

[37] Wang Z, Ding X, Zhang K, et al. Huygens Metasurface Holograms with the Modulation of Focal Energy Distribution[J]. Advanced Optical Materials, 2018, 6(12): 1800121.

[38] Del Risco J P, Mikhalka I S, Lenets V A, et al. Optimal Angular Stability of Reflectionless Metasurface Absorbers[J]. Physical Review B, 2021, 103(11): 115426.

[39] Wong J P S, Selvanayagam M, Eleftheriades G V. Design of Unit Cells and Demonstration of Methods for Synthesizing Huygens Metasurfaces[J]. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12(4): 360-375.

[40] Chen M, Abdo-Sánchez E, Epstein A, et al. Theory, Design, and Experimental Verification of a Reflectionless Bianisotropic Huygens' Metasurface for Wide-Angle Refraction[J]. Physical Review B, 2018, 97(12): 125433.

[41] Wang Z, Liu J, Ding X, et al. Three-Dimensional Microwave Holography Based on Broadband Huygens' Metasurface[J]. Physical Review Applied, 2020, 13(1): 014033.

[42] Asadchy V S, Faniayeu I A, Ra’di Y, et al. Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption[J]. Physical Review X, 2015, 5(3): 031005.

[43] Londoño M, Sayanskiy A, Araque-Quijano J L, et al. Broadband Huygens' Metasurface Based on Hybrid Resonances[J]. Physical Review Applied, 2018, 10(3): 034026.

[44] Chen K, Feng Y, Monticone F, et al. A Reconfigurable Active Huygens' Metalens[J]. Advanced Materials, 2017, 29(17): 1606422.

[45] Liu M, Powell D A, Zarate Y, et al. Huygens' Metadevices for Parametric Waves[J]. Physical Review X, 2018, 8(3): 031077.

[46] Kim M, Eleftheriades G V. Guided-Wave-Excited Binary Huygens' Metasurfaces for Dynamic Radiated-Beam Shaping with Independent Gain and Scan-Angle Control[J]. Physical Review Applied, 2021, 15(5): 054037.

[47] Wan X, Zhang L, Jia S L, et al. Horn Antenna With Reconfigurable Beam-Refraction and Polarization Based on Anisotropic Huygens Metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4427-4434.

[48] Wu L W, Ma H F, Gou Y, et al. High-Transmission Ultrathin Huygens' Metasurface with 360° Phase Control by Using Double-Layer Transmitarray Elements[J]. Physical Review Applied, 2019, 12(2): 024012.

[49] Wang Z X, Wu J W, Wan X, et al. Broadband and Ultrathin Huygens Metasurface with High Transmittance[J]. Journal of Physics D: Applied Physics, 2020, 53(45): 455102.

[50] Lian J W, Ban Y L, Guo Y J. Wideband Dual-Layer Huygens’ Metasurface for High-Gain Multibeam Array Antennas[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7521-7531.

[51] Xue C, Sun J, Niu L, et al. Ultrathin Dual-Polarized Huygens’ Metasurface: Design and Application[J]. Annalen der Physik, 2020, 532(7): 2000151.

[52] Akram M R, He C, Zhu W. Bi-Layer Metasurface Based on Huygens' Principle for High Gain Antenna Applications[J]. Optics Express, 2020, 28(11): 15844-15854.

[53] Holloway C L, Mohamed M A, Kuester E F, et al. Reflection and Transmission Properties of a Metafilm: With an Application to a Controllable Surface Composed of Resonant Particles[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 853-865.

[54] Selvanayagam M, Eleftheriades G V. Circuit Modeling of Huygens Surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1642-1645.

中图分类号:

 TN821.5    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式