论文中文题名: | 近距离煤层采动覆岩协同运动致灾机理及防治研究 |
姓名: | |
学号: | B201512029 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 0819 |
学科名称: | 工学 - 矿业工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山压力与岩层控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-25 |
论文答辩日期: | 2023-06-01 |
论文外文题名: | Study on the Law and Prevention of the Disaster Caused by the Coordinated Movement of Overlying Strata in Close Coal Seam Mining |
论文中文关键词: | |
论文外文关键词: | close distance coal seam ; overlying strata movement law ; dynamic pressure disaste ; coupling fracturing |
论文中文摘要: |
近距离煤层群随着煤层间距的减小,煤层开采相互影响会逐渐增大,下部煤层采前其顶板的完整程度已经受到上部煤层开采影响,上部煤层采空区或者是上部煤层开采后残留区段煤柱在底板形成的集中应力,将会导致下部煤层开采过程中顶板运动结构和应力环境发生显著变化,从而出现许多新的动压灾害。 本文运用理论分析、试验分析、数值模拟计算、相似模拟实验以及现场工业试验等研究手段,分析了近距离煤层开采强矿压显现特征及影响因素,揭示了近距离煤层开采矿山压力规律,模拟计算了近距离煤层开采覆岩位移及裂隙发育过程,在传统的水压致裂的基础上,建立煤岩体气液耦合压裂裂隙起裂扩展准则,推导出耦合压裂岩层起裂压力计算模型,提出应用耦合压裂技术释放上煤层间隔煤柱采空区集中应力控制动载矿压方法,为有效控制近距离煤层间隔煤柱下开采动载矿压切顶压架灾害提供了依据。研究结果表明: (1)通过观测韩家湾矿矿压数据分析工作面来压特征:工作面强矿压主要出现在上覆岩层残留煤柱区下方,在进出大煤柱区域时会造成切顶且支架活柱出现压缩现象;工作面的初次来压和周期来压受到上覆残留煤柱区的影响均较大;强矿压会造成地震效应,能量主要集中在上覆残留的煤柱及煤柱上方的顶板。 (2)通过研究韩家湾矿的地质、技术条件及煤岩体的物理力学性质分析诱发近距离煤层开采强矿压显现的影响因素有两个主要方面:当下煤层开采厚度较大时,破断岩块较大回转量而无法形成稳定的平衡“砌体梁”结构并且容易失稳,当结构发生失稳会对工作面来压产生影响;煤柱上方关键块体相对回转运动传递的过大载荷造成了块体E“砌体梁”结构的滑落失稳,从而导致工作面顶板直接沿断裂线切落。 (3)以韩家湾矿2-2煤和3-1煤为研究对象,运用FLAC3D、UDEC研究覆岩应力分布规律、覆岩的运动规律、覆岩裂隙发育、液压支架承受载荷及压缩量,分析可知:当3-1煤工作面在2-2煤充分采动区下推进时,工作面超前应力最小;工作面在2-2煤小煤柱区下方推进时,由于煤柱群发生剪切破坏失稳上覆岩层应力得到一定的释放,工作面的超前应力比2-2煤未采动区下有所降低;工作面在2-2煤大煤柱区下方推进时,由于应力在煤柱底板集中,工作面超前应力明显增加;3-1煤工作面在2-2煤房柱区尤其是大煤柱区下推进时垮落步距较未采动区和充分采动区稍大,裂隙发育更加充分并与2-2煤采动后形成的裂隙贯通;液压支架通过不同区域受到的载荷及压缩量均有差别,在大煤柱下方受到的载荷、压缩量最大。 (4)采用实验方法来分析不同溶液耦合压裂作用对煤岩体的破坏情况:水、CO2溶液、ClO2溶液耦合作用后使煤岩体单轴强度分别下降了4.32%、45.26%、62.92%;对煤岩体进行核磁共振(NMR)实验,水、CO2溶液、ClO2溶液耦合作用后孔隙率增加了0.93%、19.13%、19.40%,渗透率增加了25.56%、70.92%、81.15%;在扫描电镜(SEM)观测下发现,煤样内部裂隙在溶液耦合作用下得到了萌生和扩展,特别是与ClO2溶液耦合后裂隙呈网格状分布。结合水力压裂裂缝延伸模型及摩尔库伦准则分析耦合压裂破坏裂缝扩展作用的机理,可以验证溶液耦合压裂对煤岩体的破坏作用。 (5)搭建韩家湾煤矿近距离煤层开采相似模拟模型,对模型进行模拟开采分析可知:未采动区下工作面回采期间的覆岩运动规律和矿压显现规律与单一煤层开采并无差异;工作面在小煤柱区下开采,来压步距较未采动区下工作面开采有所减小,3-1煤工作面顶板跨落后裂隙扩展导致煤柱剪切破坏;在进出大煤柱区域下开采,工作面顶板发生大面积切落,矿压显现强烈,上覆岩层应力瞬间被释放,在工作面煤壁前方形成较大的应力集中,应力峰值与其他次周期来压时相比明显加大;在充分采动区下工作面回采,3-1煤工作面顶板集中应力较未采动区下回采有明显降低;对房柱区进行耦合压裂处理后,煤柱区载荷集中程度降低,压力峰值由48MPa降低至35MPa,进出大煤柱顶板切落面积变小。 (6)根据韩家湾矿生产实际设计耦合压裂处理集中煤柱现场试验方案,应用课题组自行研制液压设备对韩家湾矿煤柱集中区进行耦合压裂,通过观察钻孔裂隙扩展可知裂隙密度提高了 2~5 倍,耦合压裂区钻孔裂隙呈环向和轴向交叉的形式分布,且裂隙宽度较大;工作面支架受到的最大压力为34 MPa,周期来压时工作面支架受到的压力在32.5 MPa~34 MPa之间,韩家湾设计选取的支架符合承载要求,验证了利用耦合压裂技术的适用性。 |
论文外文摘要: |
With the decrease of coal seam spacing, the interaction of coal seam mining will gradually increase. The integrity of the roof of the lower coal seam before mining has been affected by the mining of the upper coal seam. The concentrated stress formed by the coal pillar in the floor of the upper coal seam goaf or the residual section of the upper coal seam after mining will lead to significant changes in the roof movement structure and stress environment during the mining of the lower coal seam, resulting in many new dynamic pressure disasters. In this paper, theoretical analysis, experimental analysis, numerical simulation, similar simulation experiment and field industrial test are used to analyze the characteristics and influencing factors of strong mine pressure in close-distance coal seam mining, reveal the law of mine pressure in close-distance coal seam mining, and simulate the displacement and fracture development process of overlying strata in close-distance coal seam mining. On the basis of traditional hydraulic fracturing, the crack initiation and propagation criterion of gas-liquid coupling fracturing of coal and rock mass is established, and the calculation model of initiation pressure of coupling fracturing rock stratum is deduced. A dynamic load mine pressure prevention and control method for releasing the concentrated stress in the goaf of upper coal seam interval coal pillar by coupling fracturing technology is proposed. It provides a basis for the effective prevention and control of the roof cutting and support crushing disaster of the dynamic load mining under the interval coal pillar in the close distance coal seam. The results show that : (1)Through the observation of Hanjiawan mine pressure data, the pressure characteristics of the working face are analyzed : The strong mine pressure of the working face mainly occurs below the residual coal pillar area of the overlying strata, and when entering and leaving the large coal pillar area, the roof will be cut and the support column will be compressed;The first weighting and periodic weighting of the working face are greatly affected by the overlying residual coal pillar area ;strong rock pressure will cause seismic effect, and the energy is mainly concentrated in the overlying residual coal pillar and the roof above the coal pillar. (2)By studying the geological and technical conditions of Hanjiawan Mine and the physical and mechanical properties of coal rock mass, there are two main factors inducing the emergence of strong ore pressure in close-range coal seam mining:When the thickness of coal seam mining is large, the broken rock block has a large rotation amount and cannot form a stable balanced "masonry beam" structure and is easy to become unstable, and when the structure is unstable, it will affect the pressure of the working face; Due to the excessive load transmitted by the relative rotational movement of the key block above the coal column, the slippage and instability of the "masonry beam" structure of block E caused, resulting in the roof of the working face directly cutting down along the fracture line. (3)Taking 2-2 coal and 3-1 coal in Hanjiawan Mine as the research object,FLAC3D and UDEC are used to study the stress distribution law of overburden rock, the movement law of overburden rock, the development of overburden rock fracture, the load and compression of hydraulic support. When the 3-1 coal working face advances under the fully mining area of 2-2 coal, the advance stress of the working face is the smallest ;when the working face is advancing under the 2-2 coal pillar area, the stress of the overlying strata is released due to the shear failure of the coal pillar group, and the advance stress of the working face is lower than that of the 2-2 coal unmined area;When the working face is advancing under the large coal pillar area of 2-2 coal seam, due to the stress concentration in the coal pillar floor, the advance stress of the working face increases obviously.The caving step distance of the 3-1 coal working face in the 2-2 coal room and pillar area, especially the large coal pillar area, is slightly larger than that in the non-mining area and the fully mining area, and the fracture development is more fully and connected with the fracture formed after the 2-2 coal mining. The load and compression of the hydraulic support through different regions are different, and the load and compression under the large coal pillar are the largest. (4)The experimental method is used to analyze the damage of coal and rock mass by different solution coupling fracturing. The uniaxial strength of coal and rock mass decreases by 4.32 %, 45.26 % and 62.92 % respectively after the coupling of water, CO2 solution and ClO2 solution. Nuclear magnetic resonance ( NMR ) experiments were carried out on coal rock mass. After the coupling of water, CO2 solution and ClO2 solution, the porosity increased by 0.93 %, 19.13 % and 19.40 %, and the permeability increased by 25.56 %, 70.92 % and 81.15 %. Under the observation of scanning electron microscopy ( SEM ), it was found that the internal cracks of coal samples were initiated and expanded under the coupling of solution, especially after coupling with ClO2 solution, the cracks were distributed in a grid shape. Combined with the fracture extension model of hydraulic fracturing and Mohr-Coulomb criterion, the mechanism of fracture propagation in coupled fracturing can be analyzed, and the failure effect of solution coupled fracturing on coal and rock mass can be verified. (5)The similar simulation model of close distance coal seam mining in Hanjiawan Coal Mine is built, and the model is simulated and analyzed. There is no difference between the movement law of overburden rock and the law of mine pressure during the mining period of the working face under the unmined area and the single coal seam mining. The working face is mined under the small room and pillar area, and the weighting step is smaller than that of the working face under the unmined area. The roof of the 3-1 coal face spans the backward fracture expansion, which leads to the shear failure of the coal pillar. In the mining under the large coal pillar area, the roof of the working face is cut off in a large area, and the mine pressure is strong. The stress of the overlying strata is released instantaneously, and a large stress concentration is formed in front of the coal wall of the working face, and the peak value is obviously larger than that of other sub-periods. In the fully mining area under the working face mining, 3-1 coal working face roof concentration stress is not mining area under the mining has significantly reduced ; after the coupling fracturing treatment of the room and pillar area, the load concentration in the coal pillar area is reduced, the peak pressure is reduced from 48 MPa to 35 MPa, the roof cutting area of the large coal pillar is smaller, and the roof integrity is more complete than before pressure relief. (6)According to the actual production of Hanjiawan Coal Mine, the field test scheme of coupling fracturing treatment of concentrated coal pillar is designed. The hydraulic equipment developed by the research group is used to carry out coupling fracturing in the coal pillar concentration area of Hanjiawan Coal Mine. By observing the expansion of borehole cracks, it can be seen that the crack density is increased by 2 ~ 5 times, and the borehole cracks in the coupling fracturing area are distributed in the form of ring and axial cross, and the crack width is large. The maximum support pressure of the working face is 34 MPa, and the support pressure is between 32.5 MPa and 34 MPa during each weighting period. The support selected by Hanjiawan design meets the bearing requirements, which verifies the applicability of the coupling fracturing technology. |
参考文献: |
[2]孔宪法,杨永康,康天合等.采空区下近距离煤层工作面支架支护强度确定[J].矿业研究与开发,2013,33(06):50-53. [3]张百胜.极近距离煤层开采围岩控制理论及技术研究[D].太原:太原理工大学,2008. [4]汪北方,刘春保,梁冰等. 极近距离厚煤层房式采空区下综放开采覆岩破断失稳规律研究[J]. 采矿与安全工程学报,2020,37(6):1180-1187. [5]周殿奇,贾宇,何尚森等.极近距离煤层边界煤柱下回采巷道合理位置的确定[J]煤炭科学技术,2016,11(44):66-70. [6]剑万禧.近距离煤层采区巷道地压显现特点[J].岩石力学与工程学报,1993,12(2):173-179. [7]张百胜,杨双锁,康立勋等.极近距离煤层回采巷道合理位置确定方法探讨[J].岩石力学与工程学报,2008,27(1):97-101. [8]吴爱民.钱家营近距离煤层煤岩体破坏与巷道优化支护研究[D].北京:中国矿业大学(北京),2010. [9]张辉,刘少伟,郑新旺.近距离煤层采空区下回采巷道位置优化与控制[J].河南理工大学学报 ( 自然科学版),2010,29(2):157-161. [10]张炜,张东升.极近距离煤层回采巷道合理位置确定[J].中国矿业大学学报,2012,41(2):182-188. [11]鲁岩,高杰,刘长友.近距煤层同采巷道优化布置研究[J].采矿与安全工程学报,2012,29(6):797-801. [12]索永录,商铁林.极近距离煤层群下层煤工作面巷道合理布置位置数值模拟[J].煤炭学报,2013,38(2):277-282. [13]任海峰,李树刚.极近距离煤层群下行开采下部煤层巷道支护方式研究[J].煤炭技术,2017,43(8):53-56. [14]胡少轩,许兴亮.近距离煤层协同机理对下层煤巷道位置的优化[J].采矿与安全工程学报 ,2016,33(6):1008-1013. [15]黄庆享,曹健,贺雁鹏,等. 浅埋近距离煤层群分类及其采场支护阻力确定[J]. 采矿与安全工程学报,2018,35(6):1177-1184. [16]黄庆享,赵萌烨等. 浅埋煤层群开采顶板双关键层结构及支护阻力研究[J]. 中国矿业大学学报,2019,48(1):71-86. [17]朱卫兵.浅埋近距离煤层重复采动关键层结构失稳机理研究[J].煤炭学报,2011,36(6):1065-1071. [18]侯多茂.近距离煤层开采时矿压显现规律[J].煤矿开采,2007, 12(6): 71-74. [19]周楠,张强,安百富. 近距离煤层采空区下工作面矿压显现规律研究[J]. 煤炭科技,2011,37(2):48-51. [20]许延春,刘世奇,柳昭星等.近距离厚煤层组工作面覆岩破坏规律实测研究[J].采矿与安全工程学报,2013, 30(4): 506-511. [21]何富连,康庆涛,殷帅峰等.近距离煤层顶板煤柱集中应力影响机制[J]. 采矿与安全工程学报,2020,37(6):1077-1083. [22]何尚森.近距离煤层开采覆岩运动规律及控制研究[D].北京:中国矿业大学(北京),2017. [23]胡金鉴,周广飞,武晓明等.近距离采空区下大采高综采面矿压演化规律研究[J].煤炭工程,2012, (8)75-78. [24]龚红鹏,李建伟,陈宝宝.近距离煤层群开采覆岩结构及围岩稳定性研究[[J].煤矿开采,2013,18(5):90-92. [25]郭文兵,刘明举,李化敏,史新林.多煤层开采采场围岩内部应力光弹力学模拟研究[J].煤炭学报,2001,26(01): 8-12. [26]康健,孙广义,董长吉.极近距离薄煤层同采工作面覆岩移动规律研究[J].采矿与安全工程学报,2010(01):51-56. [27]赵毅鑫,王涛,姜耀东,等.基于Hoek-Brown参数确定方法的多煤层开采工作面矿压显现规律模拟研究[J].煤炭学报,2013(06):970-976. [28]张向阳,常聚才.上下采空极近距离煤层开采围岩应力及破坏特征研究[J].采矿与安全工程学报,2014(04):506-511. [29]吴爱民,左建平.多次动压下近距离煤层群覆岩破坏规律研究[J].湖南科技大学学报(自然科学版),2009,24(4):1-6. [38]王孝义,宋选民.极近距煤层矿压显现强度的间距影响规律研究[J].采矿与安全工程学报,2016,33(1):116-121. [39]杨伟,刘长友,黄炳香,杨宇.近距离煤层联合开采条件下工作面合理错距确定[J].采矿与安全工程学报,2012,29(1):101-105. [40]谢和平,周宏伟.不同开采条件下采动力学行为研究[J].煤炭学报,2011,36(7):1067-1074. [41]解兴智.浅埋煤层房柱式采空区下长壁开采矿压显现特征[J].煤炭学报,2012, 37(6): 898-902. [42]王宏生.近距离煤层群采空区下综放开采矿压显现规律研究[D].阜新:辽宁工程技术大学,2016. [43]杨国枢,王建树.近距离煤层群二次采动覆岩结构演化与矿压规律[J].煤炭学报,2018,43(增2):353-358. [44]王建平,王炳文.近距离煤层采空区下回采巷道矿压显现规律研究[J].煤炭技术,2014(04):109-112. [45]周楠,张强.近距离煤层采空区下工作面矿压显现规律研究[[J] .中国煤炭,2011(02):48-51. [46]胡炳南.长壁重复开采岩层移动规律研究[J]. 煤炭科学技术,1999,27(11):43-45. [47]张向阳,常聚才.上下采空极近距离煤层开采围岩应力及破坏特征研究[[J] .采矿与安全工程学报,2014,31(4):506-511. [53]屠世浩,窦凤金,万志军.浅埋房柱式采空区下近距离煤层综采顶板控制技术[J].煤炭学报,2011,36(3):366-370. [54]鞠金峰,许家林.近距离煤层工作面出倾向煤柱动力灾害机理研究[J].煤炭学报,2010,35(1):15-20. [55]鞠金峰,许家林.倾向煤柱边界超前失稳对工作面出煤柱动力灾害的影响[J].煤炭学报,2012,37(7):1080-1087. [56]鞠金峰,许家林.关键层结构提前滑落失稳对浅埋近距离煤层出煤柱压架灾害的影响[J].煤炭学报,2015,40(9):2033-2039. [57]徐敬民,朱卫兵,鞠金峰.浅埋房采区下近距离煤层开采动力灾害机理[J].煤炭学报,2017,42(2):500-509. [58]王厚柱,鞠远江,秦坤坤等.深部近距离煤层开采底板破坏规律实测对比研究[J]. 采矿与安全工程学报,2020,37(3):553-561. [59]侯运炳,何尚森.近距离煤层层间基本顶损伤及破断规律研究[J].岩土力学,2017,38(10):2989-2999. [60]刘红元,唐春安.多煤层开采时岩层垮落过程的数值模拟[J].岩石力学与工程学报,2001,20(2):190-196. [61]杨胜利,刘颖颖,李杨.极近距离煤层合层综放技术[J].煤炭学报,2011,36(3):371-376. [70]张升,张吉雄,闫浩等.极近距离煤层固体充填充实率协同控制覆岩运移规律研究[J].采矿与安全工程学报,2019,36(4):712-718. [71]黄炳香,邓广哲,刘长友.煤岩体水力致裂弱化技术及其进展[J].中国工程科学,2007,9(4):83-88. [72]沈超,邓广哲.高压注水防治冲击地压的数值模拟[J].煤矿安全,2013,07:7-9+13. [73]邓广哲.煤体致裂软化理论与应用[M].西安:陕西科学技术出版社 ,2004. [74]张基伟. 王家山矿急倾斜煤层长壁开采覆岩破断机制及强矿压控制方法[J].岩石力学与工程学报.2018,37(7):203-207. [75]霍丙杰, 荆雪冬. 坚硬顶板厚煤层采场来压强度分级预测方法研究[J]. 岩石力学与工程学报,2019,38(9):1828-1835. [76]侯志成.浅埋近距离下层煤综采面过上覆采空区煤柱动压防治技术[J].煤炭工程,2016,48(4):54-57. [77]王兆会, 程占博. “两硬”条件下孤岛型短煤柱工作面顶板破断形态及灾害防治分析[J]. 岩石力学与工程学报,2016,35(2):4018-4028. [78]庞龙龙, 徐学锋. 开采上保护层对巨厚砾岩诱发冲击矿压的减冲机制分析[J].岩土力学,2016,37(2):120-128. [79]高士岗. 大柳塔煤矿综放工作面端头压架机理及防治技术[J]. 煤炭工程,2018,50(9):52-55. [80]孟建兵,山长昊. 上覆遗留煤柱区冲击矿压治理实践[J]. 煤炭工程,2017,49(11):62-64. [81]付兴玉, 李宏艳. 房式采空区集中煤柱诱发动力灾害机理及防治[J]. 煤炭学报,2016,41(6):1375-1383. [82]鞠金峰,许家林.浅埋近距离煤层出煤柱开采压架防治对策[J].采矿与安全工程学报,2013,30(3):323-330. [83]鞠金峰,许家林,朱卫兵.关键层结构提前滑落失稳对浅埋近距离煤层出煤柱压架灾害的影响[J]. 煤炭学报,2015,40(9):2033-2039. [84]程志恒,齐庆新等.近距离煤层群下位煤层沿空留巷合理布置研究[J].采矿与安全工程学报,2015,32(3):453-458. [85]邓广哲,朱维申.岩体非线性卸荷与熵变的基本特点[J].西安矿业学院学报,1997(04):35-38. [86]邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998(04):10- 17. [87]邓广哲.煤层裂隙应力场控制渗流特性的模拟实验研究[J].煤炭学报,2000(06):593-597. [88]邓广哲.封闭型煤层裂隙地应力场控制水压致裂特性[J].煤炭学报,2001(05):478-482. [89]邓广哲,黄炳香,王广地,廖红建.圆孔孔壁裂缝水压扩张的压力参数理论分析[J].西安科技学院学报,2003(04):361-364. [90]邓广哲,王世斌,黄炳香.煤岩水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004(20):3489-3493. [91]黄炳香,邓广哲,刘长友.煤岩体水力致裂弱化技术及其进展[J].中国工程科学,2007(04):83-88. [92]高朋杰. 节理岩石透水机理的试验研究[D].西安科技大学,2008. [93]一种煤岩软化活性压裂剂. 陕西省,西安科技大学,2010-02-01. [94]郝珠成,邓广哲,吴学松,祃连兴.注水对顶煤强度及冒放性的影响机理研究[J].西安科技大学学报,2012,32(05):571-575. [95]王有熙,邓广哲.煤层注水破坏机理的能量耗散分析[J].西安科技大学学报,2013,33(02):143-148. [96]邓广哲,王有熙.煤层定向水压致裂机理研究[J].西安科技大学学报,2014,34(06):664-669. [97]张憧. 低渗透煤层孔隙结构的分形特征及力学性质研究[D].西安科技大学,2015. [98]邓广哲,张憧.煤体孔隙结构及分形特征的实验研究[J].煤炭技术,2015,34(02):294-296. [99]清洁块煤的压裂开采技术及进展[C]//.第十八届中国科协年会——分10煤炭清洁高效利用学术论坛论文集.,2016:126-130. [100]邓广哲,齐晓华,王雷.水压致裂提高块煤率的机理及应用[J].西安科技大学学报,2017,37(02):187-193. [101]邓广哲.煤炭开采粒级控制理论与应用[M].北京:科学出版社,2021. [126]康红普. 水对岩石的损伤[J].水文地质工程地质,1994(03): 39~40. [127]周群力,刘格非.脆性材料的压剪断裂[J].水利学报,1982 (07):63-69. [128]潘别桐,唐辉明.岩石压剪性断裂特性及Ⅰ—Ⅱ型复合断裂判据[J].地球科学,1988(04):413-421. [129]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000(01):64-67. [130]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000(05):573-576. [131]黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981(05):62-74. [132]黄荣樽,陈勉,邓金根,王康平,陈治喜.泥页岩井壁稳定力学与化学的耦合研究[J].钻井液与完井液,1995(03):18-24+28. [133]孙逊,张士诚,马新仿,邹雨时.基于高能 CT 扫描的煤岩水力压裂裂缝扩展研究[J].河南理工大学学报(自然科学版),2020,39(01):18-25. [134]魏元龙,杨春和,郭印同,刘伟,王磊,侯振坤,徐峰.须家河组致密砂岩水力压裂裂缝形态的试验研究[J].岩石力学与工程学报,2016,35(S1):2720-2731. [135]黄炳香. 煤岩体水力致裂弱化的理论与应用研究[D].中国矿业大学,2009. [136]康红普,冯彦军.定向水力压裂工作面煤体应力监测及其演化规律[J].煤炭学报,2012,37(12):1953-1959. [137]付世豪,侯冰,夏阳,陈勉,谭鹏,罗仁坤.多岩性组合层状储层一体化压裂裂缝扩展试验研究[J/OL].煤炭学报:1-8. [138]田勇, 俞然刚, 李彦龙, 陈源. 射孔水平井室内水力压裂物理模拟试验研究[J]. 实验力学,2021,36(04):563-570. [139]唐巨鹏,齐桐,代树红,潘一山,路江伟.基于声发射能量分析的周期注水应力改造下煤系页岩裂缝扩展规律试验研究[J].实验力学,2020,35(04):639-649. [140]侯振坤,杨春和,王磊,刘鹏君,郭印同,魏元龙,李芷.大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J].岩土力学,2016,37(02):407-414. [141]于辉. 近距离煤层开采覆岩结构运动及矿压显现规律研究[D].中国矿业大学(北京),2015. [142]朱卫兵. 浅埋近距离煤层重复采动关键层结构失稳机理研究[D].中国矿业大学,2010. [143]鞠金峰. 浅埋近距离煤层出煤柱开采压架机理及防治研究[D].中国矿业大学,2013. [144]秦忠诚, 王同旭. 深井孤岛综放而支承压力分布及其在底板中的传递规律[J].岩石力学与工程学报,2004,23(7):1127-1131. [145]何富连, 康庆涛. 近距离煤层顶板煤柱集中应力影响机制[J]. 岩石力学与工程学报,2020,37(6):1077-1083. [146]史久林. 近距离浅埋煤层房柱下开采动压机理研究[D].西安科技大学,2015. [147]S.铁摩辛柯,S.沃诺斯基. [M].板壳理论翻译组,译. 北京:科学出版社,1977 [148]黄克智,夏之熙,薛明德,等. 板壳理论[M]. 北京:清华大学出版社,1987:1-5. [149]曲庆璋,章权,季求知,等. 弹性板理论. 北京:人民交通出版社,2000. [150]吴连元. 板壳理论. 上海:上海交通大学出版社,1989. [151]吴连元. 板壳稳定性理论. 武汉:华中理工大学出版社,1996. [152]肖明心. 板的稳定理论. 成都:四川科学技术出版社,1993 [153]张念超. 多煤层煤柱底板应力分布规律及其应用[D].中国矿业大学,2016. [155]钱鸣高,石平五. 矿山压力与岩层控制[ M ] . 徐州:中国矿业大学出版社,2003 . [158]陈惠,冯春珍,赵建鹏,林忠霞,杨金花,梁梅.基于分形与核磁共振测井的储层孔隙结构表征与分类[J].测井技术,2021,45(01):50-55. [159]张娜,赵方方,王水兵,李家斌,孙冻炎.岩石孔隙结构与渗流特征核磁共振研究综述[J].水利水电技术,2018,49(07):28-36. [160]冯动军,肖开华.恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J].石油实验地质,2021,43(02):368-376. [163]Lamb H. Hydrodynamics [M] . New York: Dover Publications,1932: 581-587. |
中图分类号: | TD323 |
开放日期: | 2025-06-26 |