论文中文题名: |
煤矸石机制砂混凝土力学性能及抗冻性能研究
|
姓名: |
任哲庆
|
学号: |
18304209004
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085213
|
学科名称: |
工学 - 工程 - 建筑与土木工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
土木工程
|
研究方向: |
固废弃物的资源化利用
|
第一导师姓名: |
邱继生
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-12-15
|
论文答辩日期: |
2023-12-10
|
论文外文题名: |
Study on Mechanical Properties and Frost Resistance of Coal Gangue Mechanism Sand Concrete
|
论文中文关键词: |
煤矸石 ; 机制砂混凝土 ; 力学性能 ; 抗冻性能 ; 微观结构
|
论文外文关键词: |
Coal gangue ; Mechanized sand concrete ; Mechanical properties ; Frost resistance ; Microstructure
|
论文中文摘要: |
︿
我国机制砂占国内供应量的比例持续攀升,需求持续增加,拓宽机制砂的原料来源,保障产品供应以满足用砂需求,显得越来越迫切。采用煤矸石制作机制砂已成为煤矸石资源化利用的有效途径之一,煤矸石机制砂制备的混凝土越来越多地应用于基础设施建设。同时,由于我国大部分地区冬季温度较低,许多混凝土结构工程如路面、桥面、寒区隧道等经常承受冻融的作用。因此,研究其力学性能和抗冻性能具有重要意义。本文首先对煤矸石理化性能进行试验,然后探究在不同水灰比和不同煤矸石机制砂取代率下对煤矸石机制砂混凝土力学性能及抗冻性能的影响。本文主要研究内容和结论如下:
(1)通过理化性能试验,研究煤矸石的各项理化指标。试验结果表明:综合其物理与化学性能指标,该煤矸石理化性能与天然碎石接近,硫化物含量符合国家标准要求,具备作为生产C30-C60强度的混凝土粗骨料和细骨料的条件。
(2)通过煤矸石机制砂混凝土力学强度试验,分析不同水灰比及煤矸石机制砂取代率下煤矸石机制砂混凝土强度变化规律。煤矸石机制砂的强度相较于河砂低,通过改变其配合比来改变其力学性能。经试验可知,水灰比为0.35的煤矸石机制砂混凝土力学性能较好,且煤矸石机制砂的取代率为80%的混凝土力学强度较好。在实际工程中可以考虑水灰比为0.35、煤矸石机制砂取代率为80%的混凝土来改善其性能,能够合理利用采矿固体废弃物。
(3)通过冻融循环试验,研究煤矸石机制砂混凝土的冻融损伤规律。结果表明:随着冻融次数的增加,试件的相对动弹性模量与抗压强度逐渐下降,质量先增加后减小,内部孔结构逐渐劣化,混凝土抗冻性能与煤矸石机制砂混凝土的水灰比呈负相关,随着煤矸石机制砂混凝土水灰比的增加,煤矸石机制砂混凝土的抗冻性指标在冻融次数增加情况下迅速下降。
(4)通过SEM试验,探究不同条件下煤矸石机制砂混凝土微观结构与孔隙分布特征。结果表明:煤矸石机制砂混凝土水灰比0.35时试块整体结构性较好。水泥对取代率80%的煤矸石机制砂的试块包裹性更好。煤矸石机制砂混凝土冻融后裂缝加宽、加深,碎散的颗粒被裂隙划分为大的团聚体,高倍数下可明显观察到颗粒表面化学絮状物。
﹀
|
论文外文摘要: |
︿
China's mechanism sand accounted for the proportion of domestic supply continues to climb, the demand continues to increase, broaden the raw material sources of mechanism sand, to ensure the supply of products to meet the demand for sand, appears more and more urgent. The use of coal gangue making mechanism sand has become one of the effective ways of coal gangue resource utilization, and the concrete prepared by coal gangue mechanism sand is increasingly used in infrastructure construction. At the same time, due to the low winter temperature in most areas of China, many concrete structure projects such as pavements, bridge decks, cold tunnels, etc. are often subjected to the effect of freezing and thawing. Therefore, it is important to study its mechanical properties and anti-freezing performance. In this paper, the physical and chemical properties of coal gangue are firstly tested, and then the effect of mechanical properties and anti-freezing properties of coal gangue sand concrete is investigated under different water-cement ratio and different coal gangue mechanism sand replacement rate. The main research contents and conclusions of this paper are as follows:
(1) Through the physical and chemical performance test, the study of the physical and chemical indicators of coal gangue. The test results show that: comprehensive physical and chemical performance indicators, the physical and chemical properties of the gangue and natural aggregates close to the sulfide content in line with national standards. with as the production of C30-C60 strength concrete coarse aggregate and fine aggregate conditions.
(2) Through the gangue mechanism sand concrete mechanical strength test, analysis of different water-cement ratio and coal gangue mechanism sand replacement rate under the coal gangue mechanism sand concrete strength change law. The strength of coal gangue mechanism sand is low compared with river sand, and its mechanical properties can be changed by changing its ratio. The test shows that the water-cement ratio of 0.35 coal gangue mechanism sand concrete mechanical properties, and the replacement rate of coal gangue mechanism sand for 80% of the concrete mechanical strength is better. In the actual project can consider the water-cement ratio of 0.35, coal gangue mechanism sand replacement rate of 80% of the concrete to improve its performance, can reasonably use mining solid waste.
(3) Through the freeze-thaw cycle test, the study of coal gangue mechanism sand concrete freeze-thaw damage law. The results show that: with the increase of the number of freeze-thaw, the relative dynamic elastic modulus and compressive strength of the specimen gradually decreases, the mass first increases and then decreases, the internal pore structure gradually deteriorates, the concrete freezing performance is negatively correlated with the water-cement ratio of coal gangue mechanism sand concrete, with the increase of the water-cement ratio of coal gangue mechanism sand concrete, the freezing resistance index of coal gangue mechanism sand concrete rapidly decreases under the increase of the number of freeze-thaw, and the evaluation.
(4) Through SEM test, the microstructure and pore distribution characteristics of coal gangue sand concrete under different conditions were investigated. The results show that the overall structural properties of coal gangue mechanism sand concrete with water-cement ratio of 0.35 are good. The cement has better wrapping property for the specimen of coal gangue mechanism sand with 80% replacement rate. After freezing and thawing, the cracks of gangue sand concrete widened and deepened, and the fragmented particles were divided into large agglomerates by the cracks, and the chemical flocs on the surface of the particles could be obviously observed under high magnification.
﹀
|
参考文献: |
︿
[1]贾鲁涛,吴倩云.煤矸石特性及其资源化综合利用现状[J].煤炭技术,2019,38(11):37-40. [2]姚逸,邓秋婷,李艺,卢海,邹荣灿.煤矸石的综合治理及其开发利用现状[J].中国资源综合利用, 2019,37(12):83-85. [3]位蓓蕾,胡振琪,王晓军,等.煤矸石山的自燃规律与综合治理工程措施研究[J].矿业安全与环保,2016,(1):92-95. [4]李贞,王俊章,申丽明,等.煤矸石物化成分对其资源化利用的影响[J],2020,26(6):34-44. [5]刘峰,刘超.煤矸石综合利用系统的研究与应用[J].煤炭技术,2019,38(12):144-146. [6]王晓丽,李秋义,陈帅超,等.工业固体废弃物在新型建材领域中的应用研究与展望[J].硅酸盐通报,2019,38(11):3456-3464. [7]国家发展改革委办公厅工业和信息化部办公厅. 关于推进大宗固体废弃物综合利用产业集聚发展的通知(发改办环资〔2019〕44号)[EB/OL]. 2019-01-09. [8]国家发展改革委办公厅工业和信息化部办公厅. 关于发布资源综合利用基地名单的通知(发改办环资〔2019〕1009号)[EB/OL]. 2019-04-29. [9]国家发展改革委、科技部、工业和信息化部等. 关于“十四五”大宗固体废弃物综合利用的指导意见(发改环资〔2021〕381号)[EB/OL]. 2021-03-18. [10]生态环境部、国家发展和改革委员会、国家能源局. 关于进一步加强煤炭资源开发环境影响评价管理的通知(环环评〔2020〕63号)[EB/OL]. 2020-10-20. [11]http://www.jl.gov.cn/zw/yw/jlyw/202103/t20210313_7966172.html. (2021年政府工作报告) [12]李灿华,向晓东,刘思,等. 煤矸石环境危害性及其资源化利用[J]. 武钢技术. 2016, 54 (02):58-62. [13]王辰, 梁惠祺, 别泉泉,等. 煤矸石制备机制砂的研究进展[J]. 中国煤炭. 2021, 47 (07): 68-76. [14]王爱国,朱愿愿,徐海燕,等.混凝土用煤矸石骨料的研究进展[J].硅酸盐通报,2019,38(07):2076-2086. [15]杨依民,孔德顺. 煤矸石及其资源化利用研究进展[J]. 云南化工, 2020,47(4):45-46. [16]孙钢柱,关罡,许荣盛. 煤矸石作细骨料的混凝土性能试验研究[J]. 混凝土,2016(8):87-89. [17]李兴华,王红红,王帅,等. 煤矸石循环经济发展探索[J]. 内蒙古科技与经济, 2015(16):33-34. [18]王世林,牛文静,张 攀,等. 煤矸石的研究现状与应用[J]. 江西化工, 2019(5):69-71. [19]张凯峰,吴雄,杨文,等.煤石建材资源化的研究进展[J]. 材料导报, 2013,27(s1): 290-293. [20]周梅,李高年,张倩,等. 自燃煤矸石骨料在预拌混凝土中的应用研究[J]. 建筑材料学报,2015,18( 5) : 830-835. [21]Guo Y X,Zhao Q,Yan K Z,etal.Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud[J]. Industrial & Engineering Chemistry Research, 2014,53(11):4518-4521. [22]Zhou M,Dou YW,Zhang YZ,et al.Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J].Construction and Building Materials,2019,220:386-395. [23]Yang Q B,Lü M X,Luo Y B. Effects of surface-activated coal gangue aggregates on properties of cement-based materials[J]. Journal of Wuhan University of Technology (Materials Science Edition),2013,28( 6) :1118-1121. [24]Wang Z S,Zhao N.Influence of coal gangue aggregate grading on strength properties of concrete[J].Wuhan University Journal of Natural Sciences,2015,20( 1):66-72. [25]周梅,沈梦阳,吴景昊,等. 煤矸石掺合料的制备及对混凝土碱-骨料反应影响[J]. 硅酸盐通报,2017,36(05):1713-1717. [26]方前程.页岩煤矸石混凝土制备及性能研究[J].四川建筑科学研究,2017,43( 2): 107-111. [27]Mohamad Jamali Moghadam.Preparation and application of alkali-activated materials based on waste glass and coal gangue[J].A review Construction and Building Materials, 2019,10:10-16. [28]刘辉,陈菲.煤矸石用作混凝土骨料的可行性分析[J].陕西煤炭,2020,(2):60-63+91. [29]Youssef Hamze. Concrete durability in harsh environment conditions exposed to freeze thaw cycles [J]. Physics Procedia,2014,55:265-270. [30]曹银,王玲,王振地,等.弯拉荷载-冻融循环-氯盐侵蚀作用下混凝土的劣化[J].建筑材料学报,2016,19(05):821-825. [31]黄朝广,胡伟华,黄仕超.循环荷载作用下冻融劣化混凝土能量耗散规律及破坏形态分析[J].水电能源科学,2017,35(09):87-89. [32]段晓牧.煤矸石集料混凝土的微观结构与物理力学性能研究[D]. 徐州:中国矿业大学,2014. [33]关虓,龙行,丁莎,等. 冻融作用下活化煤矸石粉混凝土损伤劣化规律[J]. 硅酸盐通报, 2023,42(01):144-150. [34]严冰,宋战平,王艳,等.煤矸石混凝土抗冻性能试验研究[J].混凝土,2017,(03):109-111+128. [35]邱继生,潘杜,关虓,等.冻融后煤矸石混凝土受压损伤声发射特性[J].建筑材料学报,2018,21(2):196-201. [36]罗大明,牛荻涛,苏丽.荷载与环境共同作用下混凝土耐久性研究进展[J].工程力学, 2019, 36(01):1-14+43. [37]姚燕,王玲,王振地,等.荷载与服役环境作用下混凝土耐久性的研究和进展[J].中国材料进展,2018,37(11):855-865+879. [38]龙广成,杨振雄,白朝能,等.荷载-冻融耦合作用下充填层自密实混凝土的耐久性及损伤模型[J].硅酸盐学报,2019,47(07):855-864. [39]逯静洲,张楠,国力,等.疲劳-冻融多次交互作用下混凝土损伤特性试验研究[J].混凝土,2018,(4):46-49. [40]马宏强,易成,朱红光,等.煤矸石集料混凝土抗压强度及耐久性能[J].材料导报,2018,32(14):2390-2395. [41]白朝能,李霖皓,沈远, 等.煤矸石对C30混凝土抗冻性能影响的试验研究[J].工程技术研究,2018(10):15-17. [42]Zhang Y,Ma G,Liu Y,et al. Mix design for thermal insulation concrete using waste coal gangue as aggregate[J].Materials Research Innovations,2015,19( S5) : 878-884. [43]詹鹏.煤矸石型CFG模型桩的竖向极限承载力试验研究{D]. 延边: 延边大学,2015. [44]王亮,王志伟. 煤矸石细骨料混凝土强度及耐久性能研究[J]. 混凝土, 2018(03): 153-155. [45]Bruna Juvêncio Frasson. Ramyar K. Freeze-thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate [J]. Materials and Design. 2014, 53:983-991. [46]张云飞.煤矸石替代部分粗骨料对保温混凝土力学性能的影响[J].建材技术与应用, 2019(04):15-17. [47]沈海昌.煤矸石混凝土力学性能试验研究[J]. 中国建材科技, 2016,25(02):55-58. [48]邱继生,王斌,关虓,等.冻融作用下煤矸石陶粒混凝土力学性能衰减规律研究[J].新型建筑材料,2020,(9):159-163. [49]Topçu İ B,Toprak M U, Uygunoğlu T.Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement[J].Journal of Cleaner Production,2014,81:211-217. [50]关虓,邱继生,潘杜,等. 冻融环境下煤矸石混凝土损伤度评估方法研究[J].材料导报,2018,32( 10) : 3546-3552. [51]张金喜,陈炜林,金珊珊,等.煤矸石集料混凝土耐久性研究[J].北京工业大学学报, 2011,37(01):116-125. [52]李永靖,邢洋,张旭,等.煤矸石骨料混凝土的耐久性试验研究[J].煤炭学报,2013,38 (07):1215-1219. [53]BENARCHID, TAHA Y, ARGANE R, et al.Concrete containing low-sulphide waste rocks as fine and coarse aggregates:preliminary assessment of materials[J].Journal of Cleaner Production, 2019,221:419-429. [54]Mauricio Arreola Sanchez. Use of metakaolin or coal gangue as a partial substitution of cement in mechanical performance of PC[J].mortars European Journal of Environmental and Civil Engineering,2019, 10:19-28. [55]周梅,赵华民,王然,等. 掺合料对自燃煤矸石砂轻混凝土抗渗和抗冻影响[J]. 硅酸盐通报, 2015, 34( 1) : 131-137. [56]Ercan O.Modelling the stability of asphalt concrete with fuzzy logic and statistical methods for various freezing and thawing cycles[J]. Mathematical and Computational Applications,2010,15(2):176-186. [57]Li JC,Qiao HX,Zhu FF. Reliability analysis of freeze-thaw damage of fiber concrete based on Miner theory [J]. Emerging Materials Research,2019, 8(3): 508-515 [58]Li B, Mao JZ,Shen,WG,et al. .Mesoscopic cracking model of cement-based materials subjected to freeze-thaw cycles[J]. Construction and Building Materials, 2019,211: 1050-1064. [59]张向东,李庆文.盐冻循环作用下煤矸石混凝土耐久性研究[J].非金属矿,2016,39 (06):45-47. [60]严冰.改性煤矸石骨料混凝土力学性能及抗冻性能试验研究[D].西安:西安建筑科技大学,2017. [61]郭金敏.利用煤矸石生产预制构件的研究[D]. 平顶山:河南城建学院, 2013. [62]白金婷,李国栋.煤矸石集料混凝土抗硫酸盐侵蚀性能研究[J].科技风,2021(03): 95-96. [63]https://www.doc88.com/p-5813965229544.html.(普通混凝土用砂、石质量及检验方法标准) [64]https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=26E33B40996B9CB1DED15E514B34E7F8.(建设用卵石、碎石 GB/T 14685-2022) [65]https://openstd.samr.gov.cn/bzgk/gb/std_list_type?r=0.034789367551792516&p.p1=2&p.p2=GB%2FT14684-2022&p.p90=circulation_date&p.p91=desc.(建设用砂标准) [66]https://www.doc88.com/p-00299965650084.html.(混凝土物理力学性能试验方法标准) [67]李春景,孙振平,李奇,等.低场核磁共振技术在水泥基材料中的应用[J].材料导报, 2016, 30 (13):133-138. [68]刘倩,申向东,薛慧君,等.基于核磁共振技术对不同粗骨料混凝土孔隙特征试验研究[J].功能材料,2017,48(10):10066-10070+10076. [69]邱继生,杨占鲁,关虓,等.煤矸石陶粒混凝土微观孔结构特征及抗压强度[J].西安科技大学学报, 2020,40(01):110-117. [70]焦华喆,韩振宇,陈新明,等.基于NMR技术的玄武岩纤维喷射混凝土韧性演化规律[J].煤炭学报,2019,44(10):2990-2998. [71]魏毅萌,柴军瑞,覃源.冻融循环下再生混凝土孔隙分布变化及其对抗冻性能的影响[J].硅酸盐通报,2018,37(03):825-830. [72]李建.短切玄武岩纤维对矿渣粉煤灰混凝土力学性能和微观结构的影响[J].硅酸盐通报, 2017, 36(02):727-732+737. [73]Li GF,Shen X D.A Study of the Durability of Aeolian Sand Powder Concrete Under the Coupling Effects of Freeze-Thaw and Dry-Wet Conditions[J].Journal of Material,2019, 71(6) :1962-1974. [74]Yang XD, Hong Z. Effect of geometric form of concrete meso-structure on its mechanical behavior under compression[J].Power Technology,2019,360: 372-382. [75]秦力,丁婧楠,朱劲松.掺合料高强混凝土微观结构及其对强度的影响研究[J].混凝土, 2017, (07) :83-87. [76]牛荻涛,袁斌,王家滨.盐湖卤水侵蚀喷射混凝土宏观性能及微观结构[J].西安建筑科技大学学报(自然科学版),2017,49(05):617-623. [77]元成方,牛荻涛,陈娜,等.碳化对混凝土微观结构的影响[J].硅酸盐通报,2013, 32 (04): 687-691+707. [78]郭荣鑫,何科成,马倩敏,等.改性轻骨料混凝土高温抗压性能及微观结构[J].建筑材料学报,2017,20(03):333-338+344. [79]曹永丹,曹钊,张金山.煅烧煤矸石对硅酸盐水泥胶砂力学性能及微观结构的影响[J].硅酸盐通报,2019,38(02):356-362. [80]徐政,夏晓舟,章青.热-水-力作用下混凝土细观XFEM全耦合建模[J].武汉理工大学学报(交通科学与工程版),2019,43(06):1069-1073+1078. [81]陈惠苏,孙伟,Stroeven Piet.水泥基复合材料集料与浆体界面研究综述(一):实验技术[J].硅酸盐学报, 2004,(01):63-69. [82]陈惠苏,孙伟,Stroeven Piet.水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素[J].硅酸盐学报,2004,(01):70-79. [83]肖建庄,刘琼,李文贵,等.再生混凝土细微观结构和破坏机理研究[J].青岛理工大学学报, 2009,30(04):24-30. [84]房宁志,夏晓舟,章青.混凝土内部界面过渡区脱开过程的扩展有限元模拟[J].武汉理工大学学报(交通科学与工程版), 2018,42(06):981-985+991. [85]雷斌,邹俊,扶名福,熊进刚.混凝土ITZ性能及其对混凝土性能影响研究[J].混凝土, 2017, (05):24-28. [86]岳公冰,李秋义,张鹏,等.不同强度等级再生混凝土多重界面结构显微硬度分析[J].硅酸盐通报, 2017,36(12):4271-4276. [87]赵金侠,黄亮,谢建和.不同配比和养护条件对超高性能混凝土微观结构的影响[J].中国公路学报,2019,32(07):111-119. [88]李霖皓,龙广成,白朝能,沈远,马昆林,张升.干湿循环作用下煤矸石及其与水泥石之间界面的耐久性研究[J].煤炭工程,2019,51(06):153-159. [89]Pang B,Zhou ZH,Cheng X,et al. ITZ properties of concrete with carbonated steel slag aggregate in salty freeze-thaw environment[J].Construction and Building Materials. 2016, 114:162-171. [90]Baji H, Yang W, Li CQ, et al. Analytical models for effective hydraulic sorptivity, diffusivity and conductivity of concrete with interfacial transition zone[J]. Construction and Building Materials, 2019,225: 555-568. [91]Jafar S, Ali A.Using PC clinker as aggregate-enhancing concrete properties by improving ITZ microstructure[J].Magazine of Concrete Research,2020,72(4): 173-181. [92]Zhang YF,Xia XZ,Wu ZJ,et al.The Effect of Initial Defects on Overall Mechanical Properties of Concrete Material[J].CMC-ComputersMaterials& Continua,2020,62(1): 413-442. [93]Sicat E,Gong FY,Ueda T, et al. Experimental investigation of the deformational behavior of the interfacial transition zone (ITZ) in concrete during freeze and thaw cycles [J]. Construction and Building Materials. 2014, 65:122-131. [94]田立宗,逯静洲,朱孔峰,等.冻融循环与疲劳荷载作用下混凝土损伤研究[J].长江科学院院报, 2018,35(02):140-144+150. [95]李兵.混凝土冻融蠕变特性及损伤破裂机理研究[D].徐州:中国矿业大学,2016. [96]郑晓宁,刁波,孙洋,等.混合侵蚀与冻融循环作用下混凝土力学性能劣化机理研究[J].建筑结构学报, 2010,31(02):111-116. [97]杜鹏.多因素耦合作用下混凝土的冻融损伤模型与寿命预测[D].北京:中国建筑材料科学研究总院,2014. [98]万小梅.力学荷载及环境复合因素作用下混凝土结构劣化机理研究[D].西安:西安建筑科技大学,2011. [99]田俊,王文炜.盐冻融-荷载耦合作用下高性能混凝土试验及损伤模型研究[J].混凝土, 2015, (04) :60-64. [100]Li GF,Shen XD.A Study of the deterioration law and mechanism of aeolian-sand powder concrete in the coupling environments of freeze-thaw and carbonization [J]. Journal of the Ceramic society of Japan,2019,127(8): 551-563. [101]关虓,邱继生,潘杜,等.冻融环境下煤矸石混凝土损伤度评估方法研究[J].材料导报, 2018,32(20):3546-3552. [102]王威.双重劣化机制作用下高韧性混凝土的耐久性试验研究[D].武汉:武汉科技大学,2019. [103]王晴,黄成洋,刘锁, 等.煤矸石取代粗集料的混凝土抗冻性的研究[J].混凝土,2015, (9):77-79 [104]JerlinRegin J.,Vincent P.&Ganapathy]C.Effect of Mineral Admixtures on Mechanical Properties and Chemical Resistance of Lightweight Coconut Shell Concrete[J].Arabian Journal for Science and Engineering,2017, 42(03):957–971. [105]Bui NK,Satomi T,Takahashi H.Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature[J].Construction and Building Materials,2018,184. [106]Yun KK,Choi P,Yeon JH.Rheological Characteristics of Wet-Mix Shotcrete Mixtures with Crushed Aggregates and Mineral Admixtures[J].KSCE Journal of Civil Engineering,2018,22(7):2469-2479. [107]Zhao H,Wei S, Wu XM, Bo Gao.The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures[J].Journal of Cleaner Production,2015,95:66-74. [108]姚文杰,黄金坤,何壮志,等.粉煤灰与煤矸石混凝土压剪强度试验研究与分析[J].煤矿安全,2017,48(09):35-38. [109]郑大鹏,王栋民,李端乐,等.矿物掺合料对煤矸石水泥复合体系需水性的影响[J].硅酸盐通报,2015,34(09):2656-2661. [110]陈建兵,陶金聚,任晓丹,等.基于 Copula 理论的混凝土受压本构全曲线参数相关性研究[J].土木工程学报,2020,53(7):52-63 [111]龙广成,刘赫,马昆林,等.考虑冻融作用的混凝土单轴压缩损伤本构模型[J].中南大学学报(自然科学版),2018,49(08):1884-1892. [112]王磊,张湘黔.冻融损伤混凝土的应力应变关系[J].长沙理工大学学报(自然科学版), 2016, 13(02):49-54. [113]Deng ZH, Liu B, Ye,Xiang BL, et al.. Mechanical behavior and constitutive relationship of the three types of recycled coarse aggregate concrete based on standard classification[J].Journal of Material Cycles and Waste Management,2020,22(1): 30-45 [114]Qiu JS,Zhou YX,Vatin NI, et al.Damage constitutive model of coal gangue concrete under freeze-thaw cycles[J].Construction and Building Materials,2020,(264):88-98.
﹀
|
中图分类号: |
TU528
|
开放日期: |
2024-08-28
|