论文中文题名: | 基于模糊控制的异步电机矢量控制系统研究 |
姓名: | |
学号: | 16206039052 |
保密级别: | 公开 |
学科代码: | 081103 |
学科名称: | 系统工程 |
学生类型: | 硕士 |
学位年度: | 2019 |
院系: | |
专业: | |
研究方向: | 电机控制 |
第一导师姓名: | |
第一导师单位: | |
论文外文题名: | Research on Vector Control System of Asynchronous Motor Based on Fuzzy Control |
论文中文关键词: | |
论文外文关键词: | Asynchronous Motor ; Vector control ; Model reference adaptive ; Fuzzy PID |
论文中文摘要: |
市场上通用的变频器最常用的控制方法主要是矢量控制和电压频率比控制,在矢量控制策略中包无传感器的矢量控制和带传感器的矢量控制。矢量控制技术广泛应用于工业现场对转速精度控制要求高的领域,但是对于现场负载存在多变的情况,电机的动态性能响应则表现较差。为解决负载多变问题,首先应从矢量控制基本原理出发,要得出异步电机在正交坐标系上的状态方程和数学模型,先将矢量控制三相静止转两相静止、两相静止转两相旋转、三相静止转两相旋转3类坐标变换矩阵推导出来。然后设计了三类矢量控制系统:其一,根据转速、磁链闭环矢量控制系统;其二,带转矩内环的转速、磁链矢量控制系统;其三,以模型参考为基础提出的一类自适应矢量控制系统。前两种控制系统主要是基于对转速环与磁链环作出相应的改进,增加了转速调节器、磁链调节器、以及转矩调节器,以实现系统的对于转矩变化、转速变化的抗干扰能力的提升。最后,分别对应这三种控制系来搭建系统模型,进行仿真实验分析三种系统的动态响应。
基于电机模型来建立以上的三种控制系统,在实际的工作情况中电机模型参数是有变化的,从而使转速的精度产生一定偏差。由负载转矩的变化引起的电机参数不能准确辨识的问题,降低了系统的动态和静态响应。针对这种情况设计参数自适应的模糊PID矢量控制系统,该控制系统在转速调节器和转矩调节器增加模糊PID控制器。其中开关式模糊PID控制系统需要手动调节PID参数,可提升系统的动态性能。另一种PID控制系统动态性能可以通过串级式模糊控制系统来提升,PID参数的自适应的特性也更适合现场的应用。
最终,通过搭建实物控制实验平台,并采用串级式模糊PID控制系统,提高转速矢量控制的静态和动态响应。结果表明:模糊PID控制系统的稳定性和鲁棒性更好,减小了系统的调节时间和超调量,在实际工程应用中有很高的指导意义。
﹀
|
论文外文摘要: |
The most commonly used control methods of frequency converter in the market are vector control and voltage-frequency ratio(V/F)control.Here are two kinds of vector control,one is sensorless vector control the other is sensor vector control.Vector control technology is widely used in the field of industrial field which requires high speed accuracy control,and the dynamic response of the motor is poor when the load is changeable.In order to solve the problem of the load is changeable, first of all we should departure from the basic principle of vector control, We need the state equation and the mathematical model of the asynchronous motor on the orthogonal coordinate system. we should get the transfer matrixes of the static three-phase coordinates turn to static two-phase coordinates(3S/2S), static two-phase coordinates turn to rotate two-phase coordinates(2S/2R).And then get the static three-phase coordinates turn to rotate two-phase coordinates transfer matrix.Secondly, three kinds of vector control systems are designed, one is the rotor speed and flux linkage closed-loop vector control system, and the other is the rotate speed and flux linkage vector control system with torque inner loop. The last one is a model reference adaptive vector control system. The first two kinds of control system is mainly based on the speed loop and flux linkage make corresponding improvement, increase the speed regulator (ASR), torque regulator (ATR) and flux linkage regulator (AᴪR), in order to realize the system for the anti-interference ability of the torque, rotate speed changes.Finally, according to the three kinds of control system to build the system model, and the simulation experiment analysis of the three kinds of system dynamic response.
Based on the motor model to build above three control systems, the motor model parameters are variable in the actual work, so that there errors with the measurement.The change of load torque will lead to the motor parameters can’t be accurate identification which reduce the static and dynamic response of the system.In view of this situation, an adaptive fuzzy PID vector control system is designed, which adds a fuzzy PID controller to the speed regulator and torque regulator. The kind of switched fuzzy PID control system needs to adjust PID parameters manually, which can improve the dynamic performance of the system. The dynamic performance also can be improved by cascade fuzzy control system, and the adaptive characteristics of PID parameters are more suitable for field applications.
Finally, by setting up the physical control experimental platform, and using cascade fuzzy PID control system, the static and dynamic response of speed vector control is improved. The results show that the fuzzy PID control system has better stability and robustness, reduces the regulation time and overshoot of the system, and has high guiding significance in practical engineering application.
﹀
|
中图分类号: | TM343 |
开放日期: | 2019-12-25 |