- 无标题文档
查看论文信息

论文中文题名:

 基于共掺杂调控钛酸锶陶瓷介电、非线性及储能特性的研究    

姓名:

 何春香    

学号:

 21206029002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0808    

学科名称:

 工学 - 电气工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电工材料与电介质    

第一导师姓名:

 赵永秀    

第一导师单位:

 西安科技大学    

第二导师姓名:

 杨龙海    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Research on regulating dielectric, nonlinear and energy storage properties of strontium titanate ceramics based on co-doping    

论文中文关键词:

 SrTiO3陶瓷 ; 电容-压敏陶瓷 ; 施-受主共掺杂 ; SBLC效应    

论文外文关键词:

 SrTiO3 Ceramics ; Capacitor-varistor Cersmics ; Donor-acceptor Co-doped ; SBLC Effect    

论文中文摘要:

电介质陶瓷作为电子元器件的核心材料,在电子信息、航天航空以及国防军事等领域有着广泛的应用。但是随着现代电力电子技术的快速发展,单一功能的电介质陶瓷材料难以满足人们对多功能性的需求,因此多功能陶瓷材料的研究和开发开始得到越来越多的关注。钛酸锶(SrTiO3)陶瓷材料由于具有优异的电容-压敏双功能特性,在防浪涌和储能领域展现出广阔的应用前景,因此逐渐成为多功能陶瓷材料研究的热点。本课题通过施-受主复合掺杂的方式对SrTiO3陶瓷的介电特性、非线性特性及储能特性进行调控,并详细讨论了物相结构、微观形貌以及缺陷结构对电学性能的影响,获得了综合电学性能优异的SrTiO3多功能陶瓷材料。

首先,采用固相烧结法制备了SrTiO3陶瓷,研究了不同烧结温度对SrTiO3陶瓷微观结构和电学性能的影响,结果表明SrTiO3陶瓷的最佳烧结温度为1200℃。其次,采用Ta、Mg掺杂制备了SrTa0.01Ti0.99O3、SrMg0.01Ti0.99O3和不同组分Sr(Ta2/3Mg1/3)xTi1-xO3(0≤x≤0.06)陶瓷,系统研究了不同掺杂方式及掺杂浓度对SrTiO3陶瓷在不同电极下的介电特性、非线性特性以及储能特性的影响。结果表明,在低频范围内的介电常数随频率的增大而降低,在高频范围内的介电常数具有良好的频率稳定性。通过涂覆不同电极发现,银电极陶瓷在低频下的高介电常数和介电损耗峰是由SBLC效应引起的,金电极陶瓷在高频范围内呈现出介电常数降低、介电损耗升高的现象可由IBLC效应解释。通过Arrhenius拟合发现,高温处的介电弛豫主要是与氧空位有关的缺陷偶极子导致的。与SrTiO3陶瓷相比,组分x=0.05的综合电学性能最佳,同时改善了介电特性及储能特性,在25℃、1MHz下拥有高介电常数(184)和低介电损耗(0.005),在75kV/cm下拥有较高的功率密度(2.77 MW/cm3)和储能密度(0.038 J/cm3),但非线性特性未得到提升。

最后,采用Ta、Tb元素对SrTiO3陶瓷的Ti位进行掺杂,制备出了SrTa0.01Ti0.99O3、SrTb0.01Ti0.99O3和不同组分Sr(Ta0.5Tb0.5)yTi1-yO3(0≤y≤0.06)陶瓷,系统研究了掺杂浓度对SrTiO3陶瓷微观结构及电学性能的影响,探讨了不同电学性能之间的关联性。结果表明,所有组分在低频下的高介电常数也是源于SBLC效应,高介电损耗是由SBLC和电导共同引起的。此外,高温处的介电弛豫主要是与氧空位和偏离中心Ti3+有关的缺陷偶极子导致的。与SrTiO3陶瓷相比,组分y=0.03的综合电学性能最佳,同时提升了介电特性、非线性特性及储能特性。在25℃、1MHz下组分y=0.03拥有高介电常数(193)、低介电损耗(0.005)以及良好的频率稳定性;在非线性特性方面,组分y=0.03提高了非线性系数(2.84),击穿场强为14.14 kV/cm;在储能特性方面,组分y=0.03在100 kV/cm下拥有最高的功率密度(6.01 MW/cm3)和储能密度(0.047J /cm3)。

论文外文摘要:

As the core material of electronic components, dielectric ceramics have wide applications in fields such as electronic information, aerospace, and national defense and military. However, with the rapid development of modern power electronics technology, single functional dielectric ceramic materials are unable to meet people's demand for multifunctionality. Therefore, the research and development of multifunctional ceramic materials are receiving increasing attention. Strontium titanate (SrTiO3) ceramic materials have shown broad application prospects in the fields of surge protection and energy storage due to their excellent capacitance-varistor dual-functional characteristics, so have gradually become a hot topic in the research of multifunctional ceramic materials. This study regulates the dielectric, nonlinear and energy storage properties of SrTiO3 ceramics through donor-acceptor composite doping, and discusses in detail the effects of phase structure, microstructure, and defect structure on electrical properties, and multifunctional SrTiO3 ceramic materials with excellent comprehensive electrical properties are obtained.

Firstly, SrTiO3 ceramics were prepared using solid-state sintering method, and the effects of different sintering temperatures on the microstructure and electrical properties of SrTiO3 ceramics were investigated. The results showed that the optimal sintering temperature for SrTiO3 ceramics was 1200℃. Secondly, SrTa0.01Ti0.99O3, SrMg0.01Ti0.99O3, and Sr(Ta2/3Mg1/3)xTi1-xO3 (0 ≤ x ≤ 0.06) ceramics were synthesized with Ta and Mg doping. Various doping methods and concentrations were systematically studied to evaluate their effects on the dielectric, nonlinear, and energy storage properties of SrTiO3 ceramics with different electrodes. The findings indicated that the dielectric constant at low frequencies decreased with increasing frequency, while it exhibited good frequency stability at high frequencies. Coating with different electrodes revealed that the high dielectric constant and dielectric loss peak at low frequencies in silver electrode ceramics were due to the SBLC effect, whereas the decrease in dielectric constant and increase in dielectric loss at high frequencies in gold electrode ceramics were attributed to the IBLC effect. Arrhenius fitting suggested that the high-temperature dielectric relaxation was primarily caused by defect dipoles related to oxygen vacancies. Compared to SrTiO3 ceramics, the composition with x = 0.05 exhibited the best comprehensive electrical properties, simultaneously improving dielectric and energy storage characteristics. At 25°C and 1 MHz, it showed a high dielectric constant (184) and low dielectric loss (0.005), while at 75 kV/cm, it demonstrated higher power density (2.77 MW/cm3) and energy density (0.038 J/cm3). However, its nonlinear characteristics did not show improvement.

Finally, doping of SrTiO3 ceramics with Ta and Tb elements at the Ti site resulted in the synthesis of SrTa0.01Ti0.99O3, SrTb0.01Ti0.99O3, and various compositions of Sr(Ta0.5Tb0.5)yTi1-yO3 (0 ≤ y ≤ 0.06). The effects of doping concentration on the microstructure and electrical properties of SrTiO3 ceramics were systematically studied, along with the correlations among different electrical properties. The results showed that the high dielectric constant at low frequencies for all compositions was also due to the SBLC effect, while the high dielectric loss was caused by both SBLC and conductivity effects. Additionally, the high-temperature dielectric relaxation was primarily related to defect dipoles associated with oxygen vacancies and off-center Ti3+ ions. Compared to SrTiO3 ceramics, the composition with y = 0.03 exhibited the best comprehensive electrical properties, enhancing dielectric, nonlinear, and energy storage characteristics. At 25°C and 1 MHz, the y = 0.03 composition showed a high dielectric constant (193), low dielectric loss (0.005), and good frequency stability. In terms of nonlinear characteristics, it increased the nonlinear coefficient (2.84) with a breakdown field strength of 14.14 kV/cm. Regarding energy storage properties, the y = 0.03 composition demonstrated the highest power density (6.01 MW/cm3) and energy density (0.047 J/cm3) at 100 kV/cm.

参考文献:

[1] Palneedi H, Peddigari M, Hwang GT, et al. High‐performance dielectric ceramic films for energy storage capacitors: progress and outlook [J]. Advanced Functional Materials, 2018, 28(42): 1803665.

[2] Palani P, Fasquelle D, Tachafine A. A review on (Sr,Ca)TiO3-based dielectric materials: crystallography, recent progress and outlook in energy-storage aspects [J]. Journal of Materials Science, 2022, 57(26): 12279-12317.

[3] Wang G, Lu Z, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives [J]. Chemical Reviews, 2021, 121(10): 6124-6172.

[4] Subramanian MA, Li D, Duan N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases [J]. Journal of Solid State Chemistry, 2000, 151(2): 323-325.

[5] Rhouma S, Megriche A, El Amrani M, et al. Effect of Sr/Mg co-doping on the structural, dielectric, and electrical properties of CaCu3Ti4O12 ceramics [J]. Journal of Materials Science: Materials in Electronics, 2022, 33(7): 4535-4549.

[6] Hu W, Liu Y, Withers RL, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials [J]. Nature materials, 2013, 12(9): 821-826.

[7] Fan J, Leng S, Cao Z, et al. Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics [J]. Ceramics International, 2019, 45(1): 1001-1010.

[8] Fan J, Long Z, Zhou H, et al. Colossal dielectric behavior of (Ho, Ta) co‐doped rutile TiO2 ceramics [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14780-14790.

[9] Fan J, Chen Y, Long Z, et al. Giant dielectric response and relaxation behavior in (Tm+Ta) co-doped TiO2 ceramics [J]. Physical Chemistry Chemical Physics, 2022, 24(8): 4759-4768.

[10] Fan J, Yang T, Cao Y, et al. Ultralow dielectric loss in Tb+Ta‐modified TiO2 giant dielectric ceramics via designing defect chemistry [J]. Journal of the American Ceramic Society, 2023, 106(3): 1859-1869.

[11] 张云飞, 梁博, 万淇通等. 稀土元素Y、La、Sm掺杂对钛酸钡陶瓷介电性能的影响研究 [J]. 功能材料, 2023, 54(07): 7093-7100.

[12] 文章. 钛酸锶压敏复合功能材料的掺杂改性研究 [D]. 南宁: 广西大学, 2012.

[13] 施西. 高性能ZnO压敏电阻制备与性能优化研究 [D]. 武汉: 华中科技大学, 2021.

[14] 朱翠雪. TiO2基低压压敏陶瓷的制备及其性能研究 [D]. 烟台: 烟台大学, 2021.

[15] 王宇, 张可, 李文戈. TiO2压敏陶瓷电性能的研究现状 [J]. 机械工程材料, 2017, 41(01): 1-6.

[16] Kang K, Deng S, Chai X, et al. Preparation and characterization of high nonlinear TiO2-based varistor ceramics [J]. Journal of Materials Science: Materials in Electronics, 2021, 32: 9841-9857.

[17] 魏猛. 脉冲功率电容器储能陶瓷介质材料的高压特性研究 [D]. 成都: 电子科技大学, 2017.

[18] 杜金花, 李雍, 孙宁宁. 无机电介质材料储能行为研究现状 [J]. 硅酸盐学报, 2022, 50(03): 608-624.

[19] 杨敏铮, 江建勇, 沈洋. 高能量密度介电储能材料研究进展 [J]. 硅酸盐学报, 2021, 49(07): 1249-1262.

[20] 姜莹, 申心畅, 郭丽敏等. 陶瓷电介质储能材料研究进展 [J]. 材料工程, 2022, 50(04): 96-103.

[21] Zhang H, Wei T, Zhang Q, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors [J]. Journal of Materials Chemistry C, 2020, 8(47): 16648-16696.

[22] 钟秉洁. SrTiO3基陶瓷的介电及储能性能研究 [D]. 绵阳: 西南科技大学, 2021.

[23] 李俊. 用于脉冲电容的钛酸锶基陶瓷的介电性能研究 [D]. 绵阳: 西南科技大学, 2021.

[24] 杨航. 钛酸铋钠基弛豫铁电陶瓷的制备与储能性能研究 [D]. 徐州: 中国矿业大学, 2023.

[25] 苏乾. 稀土掺杂钛酸铋钠基弛豫铁电陶瓷制备与储能行为 [D]. 包头: 内蒙古科技大学, 2022.

[26] 李凯. 铌镁酸铅-钛酸铅基弛豫铁电材料畴结构与电学特性的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.

[27] 唐华, 龙勇, 李金等. 铌镁酸铅系弛豫铁电单晶材料的发展与应用 [J]. 压电与声光, 2021, 43(03): 406-412.

[28] Jayakrishnan AR, Silva JPB, Kamakshi K, et al. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors? [J]. Progress in Materials Science, 2023, 132(2): 101046.

[29] Chen Z, Bu X, Ruan B, et al. Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics [J]. Journal of the European Ceramic Society, 2020, 40(15): 5450-5457.

[30] 张博文. PbZrO3基反铁电薄膜的结构调控及储能性能研究 [D]. 哈尔滨: 哈尔滨理工大学, 2023.

[31] 杜明超, 蔡苇, 陈大凯等. AgNbO3基反铁电陶瓷制备及其储能性能改善研究进展 [J]. 电子元件与材料, 2023, 42(07): 796-804.

[32] Zhao M, Shen X, Wang J, et al. Superior comprehensive energy storage performances in Eu-doped AgNbO3 antiferroelectric ceramics [J]. Chemical Engineering Journal, 2023, 478: 147527.

[33] 王震涛, 李达, 赵维琛等. NaNbO3基无铅储能介质陶瓷研究进展 [J]. 硅酸盐学报, 2024, 52(04): 1460-1476.

[34] Zhang YB, Lu J, Bai W, et al. Stepwise-design activated high capacitive energy storage in lead-free NaNbO3-based relaxor antiferroelectric ceramics [J]. Chemical Engineering Journal, 2024, 480: 14974.

[35] Pu Y, Wang W, Guo X, et al. Enhancing the energy storage properties of Ca0.5Sr0.5TiO3-based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects [J]. Journal of Materials Chemistry, 2019, 7(45): 14384-14393.

[36] 裴亚芳, 杨传仁, 陈宏伟等. PbxSr1-xTiO3陶瓷及薄膜的制备和性能研究[J]. 压电与声光, 2007, 29(6): 710-712.

[37] Zhao J, Sun L, Cao E, et al. Enhanced dielectric and nonohmic properties of SrTiO3-modified CaCu3Ti4O12 ceramics [J]. Current Applied Physics, 2022, 36: 105-111.

[38] 刘康. 钛酸锶基巨介电陶瓷的制备和性能分析 [D]. 桂林: 桂林理工大学, 2021.

[39] Liu J, Liu Q, Nie Z, et al. Dielectric relaxations in fine-grained SrTiO3 ceramics with Cu and Nb co-doping [J]. Ceramics International. 2019, 45(8): 10334-10341.

[40] Tkach A, Okhay O, Almeida A, et al. Giant dielectric permittivity and high tunability in Y-doped SrTiO3 ceramics tailored by sintering atmosphere [J]. Acta Materialia, 2017, 130: 249-260.

[41] 王博. SrTiO3基巨介电低损耗陶瓷缺陷化学与电导机制研究 [D]. 西安: 陕西科技大学, 2024.

[42] Huang X, Liu H, Zhang S, et al. Mechanism of the giant permittivity in Sm modified SrTiO3 sintered at different atmospheres [J]. Journal of Materials Science: Materials in Electronics, 2018, 29(13): 11546-11552.

[43] 宁吉. SrTiO3电容—压敏复合功能陶瓷变阻器介电特性的研究 [D]. 广西: 广西大学, 2013.

[44] 王静. 钛酸锶双功能压敏陶瓷的制备及性能研究 [D]. 昆明: 昆明理工大学, 2007.

[45] 徐庆, 陈文, 袁润章. 一次烧成SrTiO3复合功能陶瓷中掺杂Ag+离子的行为及其机制 [J]. 功能材料, 2001, (03): 312-314.

[46] 李红耘, 熊西周. SnO2掺杂对SrTiO3环形压敏电阻性能的影响 [J]. 电瓷避雷器, 2004, (04): 39-42+46.

[47] D.kaino, J.Funayama, N.Yamaoka. Electrical properties of a (Sr,Ca)TiO3 Based Ceramic Varistor [J]. Japanese Journal of Applied Physics, 1985, (24): 120-124.

[48] T.takada, O.Kanda, S.Takno. The effect of additivies for a (Sr,Ca)/(Ti,Nb)O3 boundry layer capacitive-varistor on the microstructure and electronic properties [J]. Ceram.Soc. Jpn, 1995, 103(3): 251.

[49] Tkach A, Vilarinho P, Kholkin A. Effect of Mg doping on the structural and dielectric properties of strontium titanate ceramics [J]. Applied Physics A, 2004, 79(8): 2013-2020.

[50] 乔勇涛. Sr1-xCexTiO3基储能介质陶瓷的介电性能研究 [D]. 武汉: 武汉理工大学, 2013.

[51] 陈俊波. SrTiO3基储能介质陶瓷材料制备及改性研究 [D]. 武汉: 武汉理工大学, 2010.

[52] 石亚童. SrTiO3基储能介质陶瓷的制备及改性研究 [D]. 武汉: 武汉理工大学, 2017.

[53] Zhang L, Hao H, Liu H, et al. Effect of HfO2 addition as intergranular grains on the energy storage behavior of Ca0.6Sr0.4TiO3 ceramics [J]. Journal of the European Ceramic Society, 2016, 36(13): 3157-3163.

[54] 孙目珍. 电介质物理基础 [M]. 广州: 华南理工大学出版社, 2000.

[55] 徐玉姣. 陶瓷聚合物多层复合电介质材料的制备与储能性能研究 [D]. 湖北: 湖北师范大学, 2023.

[56] 刘曦畅. 钛酸锶钡基陶瓷材料制备与储能性能研究 [D]. 四川: 电子科技大学, 2023.

[57] 潘文高. 铌锌共掺杂钛酸锶陶瓷缺陷设计及介电行为研究 [D]. 武汉: 武汉理工大学, 2020.

[58] 罗婷婷. 共掺杂TiO2基和LaGaO3基巨介电陶瓷的制备、性能及极化机理研究 [D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2018.

[59] 钟力生, 李盛涛, 徐传骧, 等. 工程电介质物理与介电现象 [M]. 西安: 西安交通大学出版社, 2013.

[60] 祝飞. ZnO压敏电阻低温瓷极共烧及性能研究 [D]. 贵州: 贵州大学, 2023.

[61] He Z, Cao M, Zhou L, et al. Origin of low dielectric loss and giant dielectric response in (Nb+Al) co‐doped strontium titanate [J]. Journal of the American Ceramic Society, 2018, 101(11): 5089-5097.

[62] 张丹文. Sb2-xBixTe3薄膜的制备及电输运性能研究 [D]. 南昌: 南昌大学, 2023.

[63] Qi Junlei, Cao Minghe, Chen Yiying, et al. Cerium doped strontium titanate with stable high permittivity and low dielectric loss [J]. Journal of Alloys and Compounds, 2019, 772: 1105-1112.

[64] Tiwari PJ , Shahi K. Super-linear frequency dependence of ac conductivity of disordered Ag2S-Sb2S3 at cryogenic temperatures [J]. Philosophical Magazine, 2007, 87(29): 4475-4500.

[65] 刁春丽. SrTiO3/BiFeO3薄膜的结构设计与储能性能研究 [D]. 武汉: 武汉理工大学, 2020.

[66] Jiao L, Guo P, Kong D, et al. Dielectric properties of (Yb0.5Ta0.5)xTi1−xO2 ceramics with colossal permittivity and low dielectric loss [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(4): 3654-3661.

[67] Wang B, Pu Y, Shi Y, et al. Ultralow dielectric loss in Y-doped SrTiO3 colossal permittivity ceramics via designing defect chemistry [J]. Journal of the American Ceramic Society, 2020, 103(12): 6811-6821.

中图分类号:

 TM281    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式