论文中文题名: | 冷却方式对微波照射后花岗岩力学特性的影响研究 |
姓名: | |
学号: | 19204209107 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩石破碎技术 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-05-31 |
论文外文题名: | Effect of Cooling Mode on Mechanical Properties of Granite after Microwave Irradiation |
论文中文关键词: | |
论文外文关键词: | Microwave irradiation ; Cold quenching ; Damage factor ; Dynamic performance |
论文中文摘要: |
随着我国经济快速迅猛的发展,大量基础工程设施修建的同时也推动着硬质岩石破碎技术的发展更新。其中,微波辅助机械破岩技术被认为是潜在可行的破岩方法。微波照射使得岩石产生一定的预损伤,从而达到削弱岩石强度的目的,提高大型掘进设备刀头的寿命,减少刀头频繁卡机的次数进而保证工程顺利的开展。然而,微波加热使得岩石产生损伤的程度受诸多因素的影响,其中冷却方式是微波照射后岩石强度劣化的重要影响因素之一。基于此,为探究不同冷却方式对微波照射后岩石强度损伤规律,选取河北平山花岗岩为研究对象,试件纵波波速、表面温度等为基本物理力学参量,以动态抗压强度和静态抗压强度为力学强度指标,进而来研究冷却方式对微波照射后岩石力学特性和强度损伤的影响规律。主要研究结论如下: (1)当微波照射时间恒定时,微波功率的增大显著提高了试件的表面温度,且升温速率随着微波加热功率的提高呈现出先慢后快的趋势。而在两种冷却方式的条件下,花岗岩表面温度都经历了快速降温、缓慢下降及温度恒定三个阶段,且浸水冷却下花岗岩的降温速率明显大于自然冷却,即花岗岩试件表面温度趋于稳定先于自然冷却。 (2)不同冷却方式下基于各个静载力学参数下的损伤因子都随着微波功率的提升而呈现出递增趋势,然而以峰值应力为基础的损伤因子能够较为完好的表述冷却方式对微波照射后岩石的强度折减程度的影响,以纵波波速为基础的损伤因子在某种程度上所表述的冷却方式对微波辐射后岩石强度折减的影响程度与实际相差很大。 (3)花岗岩经历微波照射后,两种冷却方式下岩石的静态峰值应力和弹性模量均随着微波功率的升高而降低。且在浸水冷却过程中,由于水冷却在较高微波功率加热下能够表现出较强的冷淬作用,因此使得浸水冷却后花岗岩的峰值应变明显小于自然冷却,致使浸水冷却后峰值应变表现出与自然冷却截然不同的规律。 (4)两种冷却方式下花岗岩试件的动态抗压强度和弹性模量均随着微波功率的增大而减小,而冷却后的花岗岩试件动态峰值应变随着微波功率的增大而显著降低。与自然冷却后岩石动态力学参数相比,浸水冷却条件下岩石的动态冲击压缩强度和应变均低于室温冷却,而动态弹性模量却表现出大于室温冷却下动态弹性模量的趋势。 (5)同等功率水平下,花岗岩动态峰值应力和峰值应变均随着应变率的增大而增大,表现出明显的应变率效应;而随着微波功率的增大,微波照射后花岗岩动态峰值应力对应变率的敏感性越不明显。当微波功率一定时,应变率随着冲击气压的增大而增大,但微波照射后花岗岩的动态弹性模量与应变率之间并无明显的相关性。 (6)结合微波能量利用率分析结果,可以发现4.0kW微波功率加热时能效最好。同时,4.0kW微波功率加热下经由浸水冷却后的花岗岩强度值几近对等于5.3kW微波功率加热下经由自然冷却后的花岗岩强度值,即在实际工程实践中,在确保施工进度以及人员安全的大前提下,较低微波功率下的“微波加热+急剧浸水冷却”这种组合方式不仅可以达到高微波功率加热下经由自然冷却后岩石强度劣化的效果,还能减少能源的消耗,缩短微波照后岩石冷却的时间,同时在破碎过程中能够减少岩石小块的出现。 本文主要研究了冷却方式对微波照射后岩石力学特性的作用机制,对比分析了不同冷却方式对微波照射后岩石强度劣化的影响程度,明晰了不同冷却方式下岩石动态力学特性与微波功率、应变率之间的变化关系。基于此,为微波辅助机械破岩技术运用于实际开挖所产生高温环境的处理提供了借鉴意义。 |
论文外文摘要: |
With the rapid development of China's economy, the construction of a large number of infrastructure also promotes the development and renewal of hard rock crushing technology. Among them, microwave assisted mechanical rock fragmentation technology is considered as a potential and feasible rock fragmentation method. Microwave irradiation makes the rock produce certain pre-damage, so as to achieve the purpose of weakening the rock strength, improve the life of the tool head of large tunneling equipment, reduce the number of tool head frequent stuck machine and ensure the smooth development of the project. However, the degree of rock damage caused by microwave heating is affected by many factors, among which the cooling mode is one of the important factors affecting the strength deterioration of rock after microwave irradiation. Based on this, to explore different cooling methods on rock strength after microwave irradiation damage law, hebei hirayama granite as the research object, selected specimens of compressional wave velocity, surface temperature of the basic physical and mechanical parameters, such as to the dynamic compressive strength and the static compressive strength for mechanical strength index, and then to study the cooling way after the microwave irradiation rock mechanics characteristics and the influence law of strength damage. The main conclusions are as follows: (1) When the microwave irradiation time was constant, the increase of microwave power significantly increased the surface temperature of the specimen, and the heating rate showed a trend of first slow and then fast with the increase of microwave heating power. Under the conditions of two cooling methods, the surface temperature of granite underwent three stages of rapid cooling, slow decline and constant temperature, and the cooling rate of granite under soaking cooling was significantly higher than that of natural cooling, that is, the surface temperature of granite specimens tended to be stable before that of natural cooling. (2) Damage factors under different cooling methods based on various static load parameters show an increasing trend with the increase of microwave power, while damage factors based on peak stress can better describe the influence of cooling methods on the strength reduction degree of rock after microwave irradiation. The influence degree of the cooling mode expressed by the damage factor based on the velocity of p-wave on the strength reduction of rock after microwave radiation is quite different from the reality. (3) After microwave irradiation, the static peak stress and elastic modulus of granite under the two cooling modes decrease with the increase of microwave power. In the process of soaking cooling, the peak strain of granite after soaking cooling is obviously smaller than that of natural cooling, because water cooling can show strong cold quenching effect under high microwave power heating. As a result, the peak strain after soaking cooling shows a completely different law from natural cooling. (4) The dynamic compressive strength and elastic modulus of granite specimens under the two cooling methods decrease with the increase of microwave power, while the dynamic peak strain of granite specimens after cooling decreases significantly with the increase of microwave power. Compared with the dynamic mechanical parameters of rock after natural cooling, the dynamic impact compression strength and strain of rock under soaking cooling are lower than those under room temperature cooling, while the dynamic elastic modulus of rock shows a trend of being larger than that under room temperature cooling. (5) At the same power level, the dynamic peak stress and peak strain of granite increase with the increase of strain rate, showing an obvious strain rate effect. With the increase of microwave power, the sensitivity of dynamic peak stress of granite to strain rate becomes less obvious. When the microwave power is constant, the strain rate increases with the increase of the impact pressure, but there is no obvious correlation between the dynamic elastic modulus of the granite and the strain rate after microwave irradiation. (6) Combined with the analysis results of microwave energy utilization rate, it can be found that the energy efficiency is the best when the microwave power is 4.0kW. At the same time, the strength value of granite cooled by immersion under 4.0kW microwave power heating is almost equal to that of granite cooled by natural cooling under 5.3kW microwave power heating. That is, in practical engineering practice, under the premise of ensuring construction progress and personnel safety, "Microwave heating under low microwave power + immersion cooling sharply" this combination can not only achieve high microwave power by natural cooling after heated by the effect of rock strength degradation, also can reduce energy consumption, shortening the time of microwave according to rock after cooling, at the same time in the crushing process can reduce the occurrence of rock bits. This paper mainly studied the effect mechanism of cooling methods on the mechanical properties of rock after microwave irradiation, compared and analyzed the influence degree of different cooling methods on the strength deterioration of rock after microwave irradiation, and clarified the relationship between the dynamic mechanical properties of rock under different cooling methods and microwave power and strain rate. Based on this, it provides a reference for the application of microwave assisted mechanical rock breaking technology to the treatment of high temperature environment caused by actual excavation. |
参考文献: |
[1] 李夕兵, 周子龙, 王卫华. 岩石破碎工程发展现状与展望[R]. 2009-2010岩石力学与岩石工程学科发展报告. 北京: 中国科学技术出版社, 2010. [2] 刘柏禄, 潘建忠, 谢世勇. 岩石破碎方法的研究现状及展望[J]. 中国钨业, 2011, 26(01): 15-19. [3] 鲍挺, 黄宁. 岩石破碎技术研究与发展前景[J]. 安徽建筑, 2010, 17(6): 110-116. [4] 黄中伟, 武晓光, 李冉, 等. 高压液氮射流提高深井钻速机理[J]. 石油勘探与开发, 2019, 46(04): 768-775. [5] 刘拓, 王智信, 崔子昂, 等. 花岗岩表面激光破岩预钻孔工艺影响研究[J]. 应用激光, 2017, 37(04): 580-585. [6] 田守嶒, 张启龙, 李根生, 等. 超临界CO2直旋混合射流破岩特性的实验研究[J]. 爆炸与冲击, 2016, 36(02): 189-197. [7] 周子龙, 李夕兵, 刘希灵. 深部岩石破碎方法[J]. 采矿与安全工程学报, 2005, 22(3):63-65. [8] 戴俊, 潘艳宾, 孟振. 微波照射下岩石强度弱化影响因素的试验研究[J]. 西安科技大学学报, 2016, 36(3): 364-368. [9] 吴涛. 微波照射引起岩石抗冲击性能变化的试验研究[D]. 西安科技大学, 2015. [10] 戴俊, 宋四达, 屠冰冰, 等. 不同微波照射参数对花岗岩强度的影响[J]. 科学技术与工程, 2017(18): 193-197. [11] 张敏超. 微波照射下影响花岗岩损伤因素敏感性研究[D]. 西安科技大学, 2017. [12] 李勇, 屈钧利, 闫鹏飞. 微波照射对玄武岩强度的影响分析[J].煤炭技术, 2016, 35(7): 33-34. [13] 戴俊, 杜文平, 屠冰冰, 等. 微波照射下玄武岩中产生裂纹原因的研究[J]. 煤炭技术, 2016, 35(9): 9-11. [14] 戴俊, 杜文平, 吴涛, 等. 微波照射和冲击荷载作用后岩石裂纹试验研究[J].河南理工大学学报(自然科学版), 2016, 35(3): 420-423. [15] 周科平, 薛轲, 刘涛影. 微波作用下砂岩孔隙结构演化及强度劣化的试验研究[J]. 矿冶工程, 2020, 40(02): 6-11. [16] 朱要亮, 俞缙, 蔡燕燕, 等. 不同环境与加热路径下的微波加热岩石的数值研究[J].微波学报, 2018(05): 84-89. [19] 袁媛, 邵珠山. 微波照射下脆性岩石裂纹扩展临界条件及断裂过程研究[J]. 应用力学学报, 2020, 37(05): 2112-2119+2327-2328. [20] 乔兰, 郝家旺, 李庆文, 等. 基于微波加热技术的硬岩破裂方法探究[J]. 煤炭学报: 2021, 46(S1): 241-252. [21] 胡国忠, 杨南, 朱健, 等. 微波辐射下含水分煤体孔渗特性及表面裂隙演化特征实验研究[J]. 煤炭学报: 2020, 45(S2): 813-822. [22] 戴俊, 王羽亮, 李涛.微波照射后花岗岩裂纹扩展规律试验研究[J]. 煤炭工程, 2020, 52(06): 130-133. [23] 戴俊, 贠菲菲, 徐水林, 等. 微波照射后玄武岩损伤机理试验研究[J]. 科学技术与工程, 2020, 20(07): 2614-2618. [24] 高峰, 邵焱, 熊信, 等. 不同微波照射方式下岩石试样的内外升温特征试验[J]. 岩土工程学报, 2020, 45(04): 650-657. [39] 卢高明, 周建军, 张兵, 等. 循环荷载下微波照射玄武岩的损伤变形与能量特征[J]. 隧道建设(中英文), 2020, 40(11): 1578-1585. [40] 戴俊, 王羽亮, 黄斌斌, 等. 水对微波辐射下硬岩劣化效果的影响试验研究[J]. 地下空间与工程学报, 2020, 16(03): 691-696+713. [41] 卢高明, 冯夏庭, 李元辉, 等.多模谐振腔对赤峰玄武岩微波致裂效果研究[J]. 岩土工程学报, 2020, 42(06): 1115-1124. [47] 刘志义, 甘德清, 甘泽. 微波照射后磁铁矿石动力学性能及破碎特征研究[J]. 岩石力学与工程学报: 2021,40(01):126-136. [48] 闻名, 许金余, 王浩宇, 等. 低温–动荷载耦合作用下砂岩破坏断口的形貌分析[J]. 岩石力学与工程学报, 2017, 36(S2): 3822-3830. [49] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13): 176-183+214. [50] 李地元, 胡楚维, 朱泉企. 预制裂隙花岗岩动静组合加载力学特性和破坏规律试验研究[J]. 岩石力学与工程学报, 2020, 39(06): 1081-1093. [51] 康健. 岩石热破裂的研究及应用[M]. 辽宁: 大连理工大学出版社, 2008. [52] 黄达, 黄润秋, 张永兴. 粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(02): 245-255. [53] 戴俊, 朱清耀, 冯昌超, 等.微波照射下花岗岩强度损伤规律研究[J]. 河南科技大学学报(自然科学版), 2021, 42(06): 54-60+67+7-8. [54] 王羽亮. 不同微波传递深度下的玄武岩劣化规律试验研究[D]. 西安科技大学, 2020. [55] 孟振. 微波照射下岩石损伤演化的数值模拟研究[D]. 西安科技大学, 2014. [58] 郤保平, 吴阳春, 王帅, 等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报, 2020, 39(01): 69-83. [59] 王朋, 陈有亮, 周雪莲, 等. 水中快速冷却对花岗岩高温残余力学性能的影响[J]. 水资源与水工程学报, 2013, 24(03): 54-57+63. [60] 康健岩石热破裂的研究及应用[M]. 大连: 大连理工大学出版社, 2008. [61] 朱要亮, 俞缙, 高海东, 等. 水冷却对高温花岗岩的细观损伤及动力学性能影响[J]. 爆炸与冲击, 2019, 39(08): 84-95. [62] 靳佩桦, 胡耀青, 邵继喜, 等. 急剧冷却后花岗岩物理力学及渗透性质试验研究[J]. 岩石力学与工程学报, 2018, 37(11): 2556-2564. [63] 卢志堂, 王志亮. 温度与冲击荷载耦合下花岗岩动力性质[J]. 哈尔滨工业大学学报, 2016, 48(06): 143-149. |
中图分类号: | TU458 |
开放日期: | 2022-06-22 |