- 无标题文档
查看论文信息

论文中文题名:

 110工法采空区遗煤氧化特性及 漏风规律研究    

姓名:

 周廷斌    

学号:

 21220226091    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Study on oxidation characteristics of residual coal and leakage law in goaf of 110 method    

论文中文关键词:

 切顶留巷 ; 活性基团 ; 气体产物 ; 热效应 ; 采空区漏风    

论文外文关键词:

 Roofcuttingretainingroadway ; Activegroup ; Gasproducts ; Thermaleffect ; Airleakageingoaf    

论文中文摘要:

切顶卸压无煤柱自成巷开采技术简称110工法,其通风模式为Y型通风,漏风隐患严重,增大了煤自燃危险性,对煤矿井下正常生产造成了一定威胁。因此,本论文基于实验研究、数值计算及现场测试相结合的方法,对龙凤煤矿遗煤氧化过程微观结构、气体生成、热效应和动力学机理变化规律进行了研究,并分析了1905工作面采空区漏风流场,划分其煤自燃三带分布范围,对切顶卸压条件下工作面采空区煤氧化特性研究和漏风治理提供了理论依据。

基于工业分析和元素分析实验,研究了龙凤煤矿9煤煤质和元素组成;采用原位傅里叶变换红外光谱实验,研究了9煤氧化过程微观结构演化特性,得到含氧官能团在煤中基团中含量占比最大,并随氧气浓度的增加而降低,羟基、甲基、亚甲基和C=O结构含量随温度和氧气浓度的升高先增大后降低,同时红外结构参数表明,9煤脂肪链长度随氧气浓度的升高先降低后增加,芳香度和芳碳率分别受芳环缩合作用和芳香体系的影响而增大;利用程序升温实验,研究了9煤氧化过程气体产物及各特征参数变化,得到其耗氧速率、CO生成速率和放热强度随温度和氧气浓度的升高而增大,最小浮煤厚度和下限氧气浓度随氧气浓度的降低而增大,随温度的升高而先增加后减小,而上限漏风强度的表现则相反;基于同步热分析实验,研究了9煤氧化过程热效应变化,得到了特征温度、放热峰值及放热量等参数在不同升温速率和氧气浓度下的变化规律,并采用Coats-Redfern方法对其受热分解/燃烧阶段进行动力学分析,得到该阶段的最概然机理函数符合n=4的A-E方程,其活化能随升温速率的增大而减小,随氧气浓度的增大而增加;基于Pearson相关系数法研究了9煤氧化过程特性参数与微观结构间的相关性,得到对耗氧速率和放热强度影响最大的活性基团分别为OH-N氢键和单取代芳烃,而随着温度的升高,对特征温度影响最大的活性基团逐渐从芳香烃过渡到羟基。

基于COMSOL数值模拟研究了不同通风量、留巷长度下工作面采空区漏风流场、氧气浓度场的分布规律,并结合束管监测,得到沿工作面倾向方向194~205 m范围漏风最为严重,其向采空区的漏风量占倾向方向漏风总量的70%以上;而当留巷长度达到300 m后,工作面走向方向向沿空留巷漏风最为严重的区域则稳定在41~160 m范围。当留巷长度达到200 m后,沿空留巷侧氧化升温带宽度约为44~46 m,运顺侧宽度约为120~123 m。

论文外文摘要:

The technology of roof cutting and pressure relief without coal pillar self-forming roadway mining is referred to as 110 method. Its ventilation mode is Y-type ventilation, and the hidden danger of air leakage is serious, which increases the risk of coal spontaneous combustion and poses a certain threat to the normal production of coal mine. Therefore, based on the combination of experimental research, numerical calculation and field test, this paper studies the microstructure, gas generation, thermal effect and dynamic mechanism of the residual coal oxidation process in Longfeng Coal Mine, and analyzes the goaf of 1905 working face. The air leakage flow field divides the distribution range of the three zones of coal spontaneous combustion, and provides a theoretical basis for the study of coal oxidation characteristics and air leakage control in the goaf of the working face under the condition of roof cutting and pressure relief.

Based on industrial analysis and elemental analysis experiments, the coal quality and elemental composition of 9 coal in Longfeng Coal Mine were studied. The in-situ Fourier transform infrared spectroscopy experiment was used to study the microstructure evolution characteristics of 9 coal oxidation process. It was found that the content of oxygen-containing functional groups in coal was the largest, and decreased with the increase of oxygen concentration. The content of hydroxyl, methyl, methylene and C = O structure increased first and then decreased with the increase of temperature and oxygen concentration. At the same time, the infrared structure parameters showed that the length of 9 coal aliphatic chain decreased first and then increased with the increase of oxygen concentration, and the aromaticity and aromatic carbon rate were affected by aromatic ring condensation and aromatic system, respectively. The changes of gas products and characteristic parameters in the oxidation process of 9 coal were studied by temperature programmed experiment. The oxygen consumption rate, CO formation rate and heat release intensity increased with the increase of temperature and oxygen concentration. The minimum floating coal thickness and the lower limit oxygen concentration increased with the decrease of oxygen concentration, and increased first and then decreased with the increase of temperature, while the upper limit air leakage intensity was opposite. Based on the simultaneous thermal analysis experiment, the change of thermal effect in the oxidation process of 9 coal was studied, and the variation rules of characteristic temperature, exothermic peak and heat release under different heating rates and oxygen concentrations were obtained. The Coats-Redfern method was used to analyze the kinetics of its thermal decomposition / combustion stage. The most probable mechanism function of this stage conforms to the A-E equation of n = 4, and its activation energy decreases with the increase of heating rate and increases with the increase of oxygen concentration. Based on the Pearson correlation coefficient method, the correlation between the characteristic parameters and the microstructure of the 9 coal oxidation process was studied. The active groups that had the greatest influence on the oxygen consumption rate and the heat release intensity were OH-N hydrogen bonds and monosubstituted aromatic hydrocarbons, respectively. With the increase of temperature, the active groups that had the greatest influence on the characteristic temperature gradually transitioned from aromatic hydrocarbons to hydroxyl groups.

Based on COMSOL numerical simulation, the distribution law of air leakage flow field and oxygen concentration field in goaf of working face under different ventilation volume and length of retaining roadway is studied. Combined with beam tube monitoring, it is found that the air leakage is the most serious in the range of 194 ~ 205 m along the tendency direction of working face, and the air leakage to goaf accounts for more than 70 % of the total air leakage in the tendency direction. When the length of the retaining roadway reaches 300 m, the area with the most serious air leakage in the direction of the working face is stable in the range of 41 ~ 160 m. When the length of the retaining roadway reaches 200 m, the width of the oxidation heating zone on the side of the gob-side retaining roadway is about 44 ~ 46 m, and the width of the transport side is about 120 ~ 123 m.

参考文献:

[1] 刘华军, 石印, 郭立祥, 等. 新时代的中国能源革命: 历程、成就与展望[J]. 管理世界, 2022, 38(07): 6-24.

[2] 唐云霓, 闫如雪, 周艳玲. 碳中和愿景下能源政策的结构表征与优化路径[J]. 清华大学学报(自然科学版), 2023, 63(01): 1-14.

[3] Wang T T, Wu F, Dickinson D, et al. Energy price bubbles and extreme price movements: Evidence from China's coal market[J]. Energy Economics, 2024, 129(1): 1053-1072.

[4] 王佟, 韩效忠, 邓军, 等. 论中国煤炭地质勘查工作在新条件下的定位与重大研究问题[J]. 煤田地质与勘探, 2023, 51(02): 27-44.

[5] Mao S J. Development of coal geological information technologies in China[J]. International Journal of Coal Science & Technology, 2020, 7(2): 1-9.

[6] Peng D, Liu H B. Measurement and driving factors of carbon emissions from coal consumption in China based on the Kaya-LMDI model[J]. Energies, 2022, 16(1): 439-449.

[7] Xu B Y, Su Z F, Cui X, et al. How does coal consumption constraint policy affect electrical energy efficiency? Evidence from 30 Chinese provinces[J]. Energy Efficiency, 2022, 15(4): 17-29.

[8] 王平. 露天煤矿开采工艺与设备现状及发展趋势[J]. 矿业装备, 2020, 10(03): 150-151.

[9] 张学伟, 李怀展, 郭广礼, 等. 煤炭地下气化与常规井工开采覆岩裂隙发育规律对比模拟研究[J]. 煤炭技术, 2022, 41(07): 11-14.

[10] 何满潮, 宋振骐, 王安, 等. 长壁开采切顶短壁梁理论及其110工法——第三次矿业科学技术变革[J]. 煤炭科技, 2017, (01): 1-9+13.

[11] 胡超文, 王俊虎, 何满潮, 等. 中厚煤层切顶卸压无煤柱自成巷技术关键参数研究[J]. 煤炭科学技术, 2022, 50(04): 117-123.

[12] 刘继平. 切顶卸压沿空成巷变形机理及其支护技术研究[J]. 内蒙古煤炭经济, 2020, 40(15): 10-12.

[13] 马小宁, 霍军鹏, 白铭波, 等. 陕北矿区韩家湾煤矿中厚煤层110工法技术创新及应用[J]. 煤炭技术, 2022, 41(02): 1-4.

[14] 李光宇, 李守军, 缪燕子. 基于机器视觉和灰色模型的矿井外因火灾辨识与定位方法[J]. 矿业安全与环保, 2023, 50(02): 82-87.

[15] 李贺, 田丽, 曾钢, 等. 基于FDS的风速对矿井火灾蔓延规律的影响研究[J]. 中国安全生产科学技术, 2022, 18(05): 143-149.

[16] 王海燕, 徐祚卉, 徐良伟, 等. 矿井火灾时期火源分支巷道风阻变化趋势试验研究[J]. 安全与环境学报, 2023, 23(08): 2661-2668.

[17] Nilufer K, Huseyin A. Application of statistical process control to monitor underground coal mine fires based on CO emissions[J]. Combustion Science and Technology, 2024, 196(1): 142-159.

[18] Zhang Y X, Li R J, Wang Y F, et al. Experimental study on feasibility of EG Gel optimizing mine fire control technology[J]. Combustion Science and Technology, 2023, 195(9): 2110-2132.

[19] 何威杰, 孙祺钰. 正压通风综放工作面采空区自然发火预测技术实践[J]. 煤炭科学技术, 2022, 50(S2): 204-209.

[20] 林柏泉, 李庆钊, 周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报, 2021, 46(06): 1715-1726.

[21] Zhang C H, Jiao D M, Zhang M, et al. Study on multipoint and zoning coordinated prevention of gas and coal spontaneous combustion in highly gassy and spontaneous combustion-prone coal seam[J]. ACS Omega, 2022, 7(20): 17305-17329.

[22] Zhao S, Chen X J, Kang N N, et al. Temperature evolution in abandoned mines and the effect on gas adsorption properties of residual coal[J]. Molecular Simulation, 2023, 49(16): 1531-1541.

[23] Yang A B, Liu Y J, Gao K, et al. numerical simulation of gas explosion with non-uniform concentration distribution by using OpenFOAM[J]. ACS Omega, 2023, 8(51): 798-812.

[24] Yan M, Bai Y, Li S G, et al. Factors influencing the gas adsorption thermodynamic characteristics of low-rank coal[J]. Fuel, 2019, 248(3): 117-126.

[25] Yang S Q, Zhou B Z, Wang C J. Investigation on coal spontaneous combustion in the gob of Y type ventialtion caving face: A case study[J]. Process Safety and Environmental Protection, 2021, 148(2): 590-603.

[26] Liu B, He L X, Zhao X L, et al. Design and characteristic analysis of vibration feeding system for coal-gas dust-removal medium[J]. Clean Energy, 2020, 4(4): 372-378.

[27] 李林. 采空区煤自燃环境瓦斯运移积聚规律研究[D]. 徐州: 中国矿业大学, 2020.

[28] 梁冰, 尚旭, 孙维吉. 分层充填开采煤层瓦斯运移方式及涌出规律研究[J]. 中国安全生产科学技术, 2022, 18(08): 66-71.

[29] 田虎楠, 唐巨鹏, 潘一山, 等. 平均有效应力对煤系页岩瓦斯微观吸附-解吸特性影响试验研究[J]. 岩土力学, 2022, 43(07): 1803-1815.

[30] 田富超, 贾东旭, 陈明义, 等. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展[J]. 煤炭学报, 2024, 60(1): 1-17.

[31] Chen J, Lu Y, Tang G X, et al. Research and prevention of upper remaining coal spontaneous combustion induced by air leakage in multi-inclination regenerated roof: A case study in the Luwa coal mine, China[J]. Energy, 2023, 275(1): 1274-1284.

[32] Deng J, Yang N N, Wang C P, et al. Study on staged heat transfer law of coal spontaneous combustion in deep mines[J]. Energy, 2023, 285(1): 129-145.

[33] 梁椿豪, 姜小强, 刘毅. 近距离自燃煤层110工法开采防灭火技术研究[J]. 煤炭技术, 2022, 41(03): 144-147.

[34] 马东. 采空区煤自燃环境瓦斯爆炸特性及复合灾害危险区域研究[D]. 徐州: 中国矿业大学, 2021.

[35] 王怡, 谢军, 任广意. 采空区遗煤自然发火的指标气体研究[J]. 矿业研究与开发, 2020, 40(10): 118-122.

[36] 张欣. 综放工作面采空区遗煤自燃防控研究[J]. 煤炭技术, 2021, 40(04): 104-148.

[37] Chen D W, Xie J, Wang Y, et al. CFD modeling of optimal airflow rates for safe production in isolated mining faces with high methane concentration and coal spontaneous combustion[J]. Journal of Cleaner Production, 2023, 423(1): 1388-1395.

[38] Hu D J, Li Z X. Dynamic distribution and prevention of spontaneous combustion of coal in gob-side entry retaining goaf[J]. PloS One, 2022, 17(5): 631-743.

[39] Li T T, Wu B, Lei B W, et al. Study on air leakage and gas distribution in goaf of Y-type ventilation system[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2020(1): 1-14.

[40] He M C, Zhu G L, Guo Z B. Longwall mining “cutting cantilever beam theory” and 110 mining method in China—The third mining science innovation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(5): 483-492.

[41] 何满潮, 王亚军, 杨军, 等. 切顶卸压无煤柱自成巷开采与常规开采应力场分布特征对比分析[J]. 煤炭学报, 2018, 43(03): 626-637.

[42] Liu J N, He M C, Guo S, et al. Study on characteristics of pressure relief by roof cutting under nonpillar-mining approach[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(10): 441-452.

[43] Wang Y J, Wang Q, Tian X C, et al. Stress and deformation evolution characteristics of gob-side entry retained by roof cutting and pressure relief[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2022, 123(1): 1044-1059.

[44] Chen X J, Jia Q, Li X J, et al. Characteristics of airflow migration in goafs under the roof-cutting and pressure-releasing mode and the traditional longwall mining mode[J]. ACS Omega, 2021, 6(35): 229-346.

[45] Yu G Y, Wang J, Hu J Z, et al. Innovative control technique for the floor heave in goaf-side entry retaining based on pressure relief by roof cutting[J]. Mathematical Problems in Engineering, 2021, 2021(1): 716-728.

[46] Huang X H, Zhang C, Ren Z P. Parameter determination and effect evaluation of gob-side entry retaining by directional roof cutting and pressure releasing[J]. Engineering Failure Analysis, 2024, 156(2): 107-121.

[47] Gao Y B, Gai Q K, Zhang X X, et al. Evaluation of roof cutting by directionally single cracking technique in automatic roadway formation for thick coal seam mining[J]. International Journal of Coal Science & Technology, 2023, 10(1): 76-85.

[48] Shen F X, Song Y Q, Zhao W C, et al. Research on novel method of gob-side entry retaining under the synergistic effect of roof cutting and roadside filling in thick coal seams[J]. Rock Mechanics and Rock Engineering, 2023, 56(10): 7217-7236.

[49] 张国锋, 何满潮, 俞学平, 等. 白皎矿保护层沿空切顶成巷无煤柱开采技术研究[J]. 采矿与安全工程学报, 2011, 28(04): 511-516.

[50] 孙晓明, 刘鑫, 梁广峰, 等. 薄煤层切顶卸压沿空留巷关键参数研究[J]. 岩石力学与工程学报, 2014, 33(07): 1449-1456.

[51] 陈上元, 赵菲, 王洪建, 等. 深部切顶沿空成巷关键参数研究及工程应用[J]. 岩土力学, 2019, 40(01): 332-342+350.

[52] 高玉兵, 郭志飚, 杨军, 等. 沿空切顶巷道围岩结构稳态分析及恒压让位协调控制[J]. 煤炭学报, 2017, 42(07): 1672-1681.

[53] 王炯, 朱道勇, 宫伟力, 等. 切顶卸压自动成巷岩层运动规律物理模拟实验[J]. 岩石力学与工程学报, 2018, 37(11): 2536-2547.

[54] Pan R K, Li C, Chao J K, et al. Thermal properties and microstructural evolution of coal spontaneous combustion[J]. Energy, 2023, 262(1): 125-146.

[55] Pang R K, Zhang T, Chao J K, et al. Study on thermal effects and gases derivation of spontaneous combustion of gas-containing coal[J]. Fuel, 2023, 354(1): 293-306.

[56] Zhang Y B, Zhang Y T, Li Y Q, et al. Determination and dynamic variations on correlation mechanism between key groups and thermal effect of coal spontaneous combustion[J]. Fuel, 2022, 310(1): 224-233.

[57] Zhang Y T, Zhang Y B, Li Y Q, et al. Heat effects and kinetics of coal spontaneous combustion at various oxygen contents[J]. Energy, 2021, 234(1): 212-229.

[58] Zou J X, Zhang R,Zhou F Y, et al. Hazardous area reconstruction and law analysis of coal spontaneous combustion and gas coupling disasters in goaf based on DEM-CFD[J]. ACS Omega, 2023, 8(2): 685-697.

[59] Gui X H, Xue H T, Zhan X R, et al. Measurement and numerical simulation of coal spontaneous combustion in goaf under Y-type ventilation mode[J]. ACS Omega, 2022, 7(11): 406-421.

[60] Lu Z F, Zhou B, Wang J F, et al. Study on the formation mechanism of a radon source during coal spontaneous combustion in a goaf[J]. Fuel, 2023, 336(1): 127-135.

[61] Chen J W, Ma Y Z, Lu W D, et al. Using inverting CO critical value to predict coal spontaneous combustion severity in mine gobs with considering air leakages – A case study[J]. Process Safety and Environmental Protection, 2022, 167(2): 45-55.

[62] Xu Y Q, Yang S Q, Zhang Z X, et al. Risk identification of coal spontaneous combustion in goaf based on variable weight grey target model[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(2): 440-454.

[63] Liu W, Zhou Y J, Chu X YU, et al. Effects of seepage behaviors on coal spontaneous combustion in longwall gobs: an investigation between Darcy and non-Darcy seepage[J]. Fuel, 2022, 322(1): 732-747.

[64] Qin C L, Huang Q M, Wang S B, et al. Prevention and control of spontaneous combustion of residual coals in acid-soaked goaf in gas drainage condition[J]. Advances in Civil Engineering, 2022, 2022(1): 668-782.

[65] Zhou B, Deng C B, Hao J W, et al. Experimental study on the mechanism of radon exhalation during coal spontaneous combustion in goaf[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2021, 113(1): 478-491.

[66] Zhang Y S, Niu K, Du W Z, et al. A method to identify coal spontaneous combustion-prone regions based on goaf flow field under dynamic porosity[J]. Fuel, 2021, 288(1): 119-134.

[67] 李增华, 苗国栋. 煤自燃大分子量气态产物生成规律研究[J]. 中国矿业大学学报, 2023, 52(06): 1119-1128.

[68] 许延辉, 程小蛟, 文虎, 等. 多分层错距开采特厚遗煤自燃规律及精准防控技术研究[J]. 煤炭科学技术, 2024, 51(1): 1-13.

[69] 田富超, 李振榕, 李帅魁, 等. 高温高压条件下含瓦斯煤解吸——自燃演化特性实验研究[J]. 煤炭科学技术, 2024, 51(2): 1-14.

[70] 王凯, 王喆, 韩涛, 等. 表面横向风流作用下煤体的内部燃烧蔓延规律[J]. 工程科学学报, 2024, 46(02): 187-198.

[71] 吴义泉, 舒森辉, 李晟立, 等. 基于不同含水率气煤的低温氧化实验研究[J]. 矿业安全与环保, 2023,50(06): 72-76+84.

[72] 邢婧. 不同变质程度煤样活性基团变化与传热特性研究[J]. 矿业安全与环保, 2023, 50(05): 82-87.

[73] 王福生, 孙玮, 张渝, 等. 过渡金属离子促进煤自燃机理的量子化学计算[J]. 煤炭学报, 2024, 60(2): 1-14.

[74] 李金虎, 徐天硕, 陆伟, 等. 煤中原生活性位点的水-气掩蔽效应及脱附后煤体的常温氧化[J]. 煤炭学报, 2024, 60(1): 31-49.

[75] 翟小伟, 张羽琛, 罗金雷. 不同应力对煤自然氧化的影响规律试验研究[J]. 煤矿安全, 2023, 54(05): 199-204.

[76] Ke G, Li S N, Rong H, et al. Study on the propagation law of gas explosion in the space based on the goaf characteristic of coal mine[J]. Safety Science, 2020, 127(1): 693-797.

[77] Su H, Lu W, Qi G S, et al. Synthesis of high-strength porous particles based on alkaline solid waste: A promising CO2-capturing material for mine goafs[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 567-585.

[78] Aditya J, Ciaire S, Jurgen F. B, et al. Discrete modeling of a longwall coal mine gob for CFD simulation[J]. International Journal of Mining Science and Technology, 2020, 30(4): 463-469.

[79] Li J WEI, Li X T, Liu C Y, et al. Study on the air leakage characteristics of a goaf in a shallow coal seam and spontaneous combustion prevention and control strategies for residual coal[J]. PloS One, 2022, 17(6): 822-839.

[80] Zhou H, Qin B T, Qin Q H. The impact of surface air leakage on coal spontaneous combustion hazardous zone in gob of shallow coal seams: A case study of Bulianta Mine, China[J]. Fuel, 2021, 295(1): 287-301.

[81] Yin L, Hu W, Jun G, et al. Coal spontaneous combustion and N 2 suppression in triple goafs: A numerical simulation and experimental study[J]. Fuel, 2020, 271(2): 625-741.

[82] Wang Y H, Si G Y, Xiang Z Z, et al. A theoretical goaf resistance model based on gas production analysis in goaf gas drainage[J]. International Journal of Coal Geology, 2022, 38(2): 264-287.

[83] Zhao X H, Yang Y L, Wang Y H, et al. Study on the Law and Risk of Spontaneous Combustion of Residual Coal during Water Drainage in Goaf[J]. Energies, 2022, 15(23): 896-913.

[84] Zhang J G, Wang W, Li Y H, et al. Fracture distribution characteristics in goaf and prevention and control of spontaneous combustion of remained coal under the influence of gob-side entry retaining roadway[J]. Energies, 2022, 15(13): 778-794.

[85] Miao D J, Chen X J, Ji J Q, et al. New technology for preventing and controlling air leakage in goaf based on the theory of wind flow boundary layer[J]. Processes, 2022, 10(5): 954-972.

[86] 张鹏宇, 陈晓坤, 赵亮, 等. 大面积采空区煤自燃环境下气体运移规律研究[J]. 煤矿安全, 2022, 53(09): 122-128+136.

[87] 郭艳飞, 郝殿, 李学臣, 等. 沿空留巷工作面“一进两回”通风方式下采空区漏风规律研究[J]. 矿业安全与环保, 2022, 49(06): 46-51.

[88] 侯家琛, 张兴华, 郭明超, 等. 寨崖底矿W型通风条件下采空区三带划分以及漏风规律研究[J]. 煤炭技术, 2023, 42(08): 162-166.

[89] 张志立, 孟凡林, 田勇, 等. 风蚀地貌区浅埋厚煤层采动漏风规律研究[J]. 矿业研究与开发, 2023, 43(09): 172-179.

[90] 朱兴攀, 王洋, 任晓伟, 等. 不同季节条件下浅埋煤层采空区地表垂直漏风规律研究[J]. 工矿自动化, 2023, 49(10): 104-109.

[91] 江莉娟, 张俊虎, 邓存宝, 等. 双切顶留巷采空区煤自然发火“三带”分布特征研究[J]. 煤矿安全, 2023, 54(12): 56-63.

[92] 魏引尚, 康思凡, 王凯凯, 等. 局部自然风压对倾斜通风巷道风流稳定性的影响[J]. 煤炭技术, 2024, 42(1): 1-7.

中图分类号:

 TD752.2    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式