- 无标题文档
查看论文信息

论文中文题名:

 基于黑磷的高灵敏度光学传感器研究    

姓名:

 张俊傲    

学号:

 19207040015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081001    

学科名称:

 工学 - 信息与通信工程 - 通信与信息系统    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 信息与通信工程    

研究方向:

 光学传感器    

第一导师姓名:

 李国民    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-10    

论文外文题名:

 Research on High Sensitivity Optical Sensor based on Black Phosphorus    

论文中文关键词:

 光学传感器 ; 表面等离激元 ; 黑磷 ; 磁共振 ; 耦合模理论    

论文外文关键词:

 Optical Sensor ; Surface Plasmon ; Black Phosphorus ; Magnetic Resonance ; Coupled-mode Theory    

论文中文摘要:

光学传感技术己经成为光通信中一个非常具有研究意义的前沿科技领域。目前,大量的研究用于提高光学传感器的灵敏度和分辨率。近年主流的光学传感器结构设计思路是利用金属的等离激元效应实现高性能的传感检测。该方法不仅对精细加工的要求极高,而且光学传感器的灵敏度也会受到理论值约束,无法实现突破,且分辨率普遍较低。本文基于以上问题,结合具备增强光学传感性能属性的二维材料黑磷,设计了工作在红外波段的等离子体传感器结构和基于磁共振的新型光学传感器结构,主要内容如下:

利用纳米天线理论,结合数值模拟方法,设计了一种基于黑磷的红外波段等离子体传感器结构。通过等离激元完美吸收体中的狭缝增强模型,提高红外波段内光与黑磷的相互作用。由于黑磷的各向异性,该光学传感器可以在不同晶体方向上获得不同的灵敏度和品质因数(FOM),灵敏度可以达到6940 nm/RIU,FOM可以达到13。仿真结果表明,该传感器结构在不同的晶体方向上吸收率均可达100%。

针对传统等离子体光学传感器局限性的问题,本文结合磁共振效应增强对红外波的吸收,设计了一种基于黑磷的多共振非等离子体光学传感器结构。通过优化结构参数,在8 µm的波长附近,不同黑磷晶体方向上均得到了两个极窄的谐振峰,吸收率最高达到99.6%,极低的半高宽可提高传感器的分辨率,灵敏度最高可达180 nm/RIU,FOM可以达到261。从电磁场分布揭示其物理机制,并利用简化后的耦合模理论对仿真结果进行验证。

为了进一步提高传感器性能,设计了一种全介质光学折射率传感器结构。使用红外冷镜代替传统的金属衬底来抑制红外波的透射,从而避免金属损耗,降低成本和加工难度。利用磁共振增强红外波与黑磷的相互作用,耦合模理论解析结果与仿真结果具有高度一致性。通过优化结构参数,在不同的晶体方向上分别达到4950 nm/RIU和5000 nm/RIU的灵敏度,FOM分别达到1395和682。最后分析了几何参数和入射角对传感性能的影响。本章设计的传感器性能得到了极大的提升,在光学传感领域具有潜在价值。

论文外文摘要:

Optical sensing technology has emerged as a major new area in optical communication technology. Many experiments are now being conducted to improve the sensitivity and resolution of optical sensors. The basic idea behind optical sensing structure design in recent years has been to harness the metal plasmon effect to provide high performance sensing. This technology necessitates not only extremely precise processing, but also the sensor's sensitivity is limited by the theoretical value, which cannot reach a breakthrough, and the resolution is often low. This research created a plasma sensing structure that works in the infrared band and a novel optical sensing structure based on magnetic resonance based on the foregoing challenges and the property that the newly developing two-dimensional material black phosphorus can boost the optical sensing performance. The following are the important points:

A type of infrared plasma sensing structure based on black phosphorus is designed using nano-antenna theory and numerical simulation. Using a slit absorption enhancement model in a plasmon perfect absorber, the interaction between light and black phosphorus in the infrared band is considerably increased. The sensor can achieve varying sensitivity and figure of merit (FOM) in different crystal directions due to the anisotropy of black phosphorus. sensor sensitivity up to 6940 nm/RIU and FOM up to 13. The simulation findings reveal that the sensor's absorptivity can achieve 100% in various crystal directions.

A multi-resonance non-plasma optical sensor structure based on black phosphorus is designed to overcome the limitations of existing plasma optical sensors by using the magnetic resonance concept to increase the absorption of infrared wavelengths. Two very thin resonant peaks in separate orientations of the black phosphorus crystal near the wavelength of 8 µm were obtained by improving the sensor's construction, and the absorption rate was up to 99.6%. The sensor's resolution was improved by the sensor's low full width at half maximum, which increased sensitivity to 180 nm/RIU and FOM to 261. The physical mechanism is deduced from the distribution of electromagnetic fields, and the simulation results are confirmed using the simplified coupled-mode theory.

A high sensitivity all-medium optical refractive index sensor based on black phosphorus is being designed to increase sensor performance. To restrict the transmission of infrared waves, an infrared cold mirror is utilized instead of a typical metal substrate, reducing metal loss, cost and manufacturing complexity. The interaction between infrared waves and black phosphorus, amplified by magnetic resonance and coupled-mode theory, is used to verify the numerical simulation results. Sensitivity up to 4950 nm/RIU and 5000 nm/RIU, and FOM up to 1395 and 682 in different directions of crystal, were achieved by improving the sensing structure. Finally, the influence of geometric factors and incidence angle on sensor performance is investigated. The sensor built in this chapter has considerably enhanced performance and has potential in the realm of optical sensing.

参考文献:

[1]周天宏, 马卫东. 光通信器件的发展历史、现状与趋势[J]. 科技导报, 2016, 34(16): 13-19.

[2]Nikoukar A, Amiri I S, Ali J. Generation of nanometer optical tweezers used for optical communication networks [J]. International Journal of Innovative Research in Computer and Communication Engineering, 2013, 1(1): 77–85.

[3]郭团. 等离子体共振光纤光栅生物传感器综述[J]. 光学学报, 2018, 38(3): 82–102.

[4]孙占峰, 尹柏强, 何怡刚, 等. 无源无芯片RFID光传感标签设计[J]. 传感器与微系统, 2018, 37(10): 72–74.

[5]王琪, 曹丽琴, 黄堃, 等. 基于一维光子晶体的波长调制的光学传感系统研究[J]. 量子光学学报, 2020, 26(4): 365–372.

[6]Li P, Yan H, Xie Z, et al. An intensity-modulated and large bandwidth magnetic field sensor based on a tapered fiber Bragg grating[J]. Optics and Laser Technology, 2020, 125: 105996.

[7]Goldenstein C S, Spearrin R M, Jeffries J B, et al. Infrared laser-absorption sensing for combustion gases[J]. Progress in Energy and Combustion Science, 2017, 60: 132–176.

[8]Knoerzer M, Szydzik C, Ren G, et al. Optical frequency comb based system for photonic refractive index sensor interrogation[J]. Optics Express, 2019, 27(15): 21532–21545.

[9]Yin J, Yan P, Chen H, et al. All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles[J]. Applied Physics Letters, 2017, 110(23): 231104.

[10]Baghbadorani H K, Barvestani J, Entezar S R. Biosensors based on Bloch surface waves in one-dimensional photonic crystal with graphene nanolayers[J]. Applied Optics, 2017, 56(3): 462–469.

[11]应必仕, 朱君, 任益弘, 等. 纳米增强表面等离子体共振传感技术的研究进展[J]. 激光杂志, 2021, 42(9): 1–5.

[12]陈晨, 王彪. 红外气体传感技术综述[J]. 激光杂志, 2019, 40(2): 1–5.

[13]Long F, Zhu A, Shi H. Recent advances in optical biosensors for environmental monitoring and early warning [J]. Sensors, 2013, 13(10): 13928–13948.

[14]Geddes C D. Reviews in plasmonics 2016[J]. Reviews in Plasmonics, 2017.

[15]王丽, 逯丹凤, 高然, 等. 纳米多孔金膜表面等离子体共振效应的理论分析和传感应用[J]. 物理化学学报, 2017, 33(06): 1223–1229.

[16]Maurya J B, Prajapati Y K. A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene[J]. Optical and Quantum Electronics, 2016, 48(5): 280.

[17]Maurya J B, Prajapati Y K. Influence of dielectric coating on performance of surface plasmon resonance sensor[J]. Plasmonics, 2017, 12(4): 1121–1130.

[18]Pal S, Verma A, Raikwar S, et al. Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor[J]. Applied Physics A, 2018, 124(5): 1–11.

[19]Wu L, Jia Y, Jiang L, et al. Sensitivity improved SPR biosensor based on the MoS2/Graphene-Aluminum hybrid structure[J]. Journal of Lightwave Technology, 2017, 35(1): 82–85.

[20]Qian Y, Zeng X, Gao Y, et al. Intensity-modulated nanoplasmonic interferometric sensor for MMP-9 detection[J]. Lab on a Chip, 2019, 19(7): 1267–1276.

[21]Cai Y, Xu K D, Feng N, et al. Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers[J]. Optics Express, 2019, 27(3): 3101–3112.

[22]Mao N, Tang J, Xie L, et al. Optical anisotropy of black phosphorus in the visible regime[J]. Journal of the American Chemical Society, 2016, 138(1): 300–305.

[23]Wu L, Chu H S, Koh W S, et al. Highly sensitive graphene biosensors based on surface plasmon resonance[J]. Optics Express, 2010, 18(14): 395–400.

[24]Otto M A, Sepúlveda B, Ni W, et al. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing[J]. Acs Nano, 2010, 4(1): 349–357.

[25]Shen Y, Zhou J, Liu T, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nature Communications, 2013, 4(1): 2381.

[26]Gangwar R K, Singh V K. Highly sensitive surface plasmon resonance based D-Shaped photonic crystal fiber refractive index sensor[J]. Plasmonics, 2017, 12(5): 1367–1372.

[27]Wenger T, Viola G, Kinaret J, et al. High-sensitivity plasmonic refractive index sensing using graphene[J]. 2D Materials, 2017, 4(2): 025103.

[28]Li G, Shen Y, Xiao G, et al. Double-layered metal grating for high-performance refractive index sensing[J]. Optics Express, 2015, 23(7): 8995–9003.

[29]Zhang W, Serna S, Roux X L, et al. Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators[J]. Optics Letters, 2016, 41(3): 532–535.

[30]Yang Q, Qin L, Cao G, et al. Refractive index sensor based on graphene-coated photonic surface-wave resonance. Optics Letters. 2018, 43(4): 639–642.

[31]Illarionov Y Y, Waltl M, Rzepa G, et al. Long-Term stability and reliability of black phosphorus field-effect transistors[J]. Acs Nano, 2016, 10(10): 9543–9549.

[32]Bullock J, Amani M, Cho J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 2018, 12(10): 601–607.

[33]Zhang G, Huang S, Chaves A, et al. Infrared fingerprints of few-layer black phosphorus[J]. Nature Communications, 2017, 8(1): 1–9.

[34]Yang W, Wang L, Qiao X, et al. Temperature dependence of G and D phonons in monolayer to few-layer graphene with vacancies[J]. Nanoscale Research Letters, 2020, 5(1): 189–204.

[35]Cai Y, Xu K D, Feng N, et al. Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers[J]. Optics Express, 2019, 27(3): 3101–3112.

[36]Mao N, Zhang S, Wu J, et al. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy[J]. Nano Research, 2018, 11(6): 3154–3163.

[37]Wang J, Jiang Y. Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials[J]. Optics Express, 2017, 25(5): 5206–5216.

[38]Chen Q Y, Liu M, Cao C, et al. The effect of changing stacking patterns on electronic and optical properties of black phosphorus by strain: A computational study[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 116: 113791.

[39]Liu C, Li H, Xu H, et al. Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials[J]. Journal of the Optical Society of America B-Optical Physics, 2019, 36(11): 3060–3065.

[40]Cho S Y, Kim J, Lee Y, et al. Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene[J]. Advanced Materials, 2016, 28(32): 7020–7028.

[41]Pal S, Verma A, Prajapati Y K, et al. Influence of black phosphorous on performance of surface plasmon resonance biosensor[J]. Optical and Quantum Electronics, 2017, 49(12): 403.1–403.13.

[42]Wu L, Guo J, Wang Q, et al. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor[J]. Sensors and Actuators B Chemical, 2017, 249(17): 542–548.

[43]Maier S A. Plasmonics: fundamentals and applications/Stefan A. Maier[J]. Journal of the Acoustical Society of America, 2012, 131(2): 139–144.

[44]Sadeghi H, Ranjgar A, Zolanvar A. Metamaterial composed of coated nano-spheres at infrared frequencies[J]. The European Physical Journal Plus, 2015, 130(3): 1-9.

[45]史鹏飞. 特定性能电磁超材料微结构及其功能器件优化设计[D]. 大连理工大学, 2017.

[46]Staude I, Schilling J. Metamaterial-inspired silicon nanophotonics[J]. Nature Photonics, 2017, 11(5): 274-284.

[47]Li X, Di X, Zhang Z. Landau damping of quantum plasmons in metal nanostructures[J]. New Journal of Physics, 2013, 15(2): 23011–23025.

[48]Albrecht G, Ubl M, Kaiser S, et al. Comprehensive study of plasmonic materials in the visible and near-infrared: Linear, refractory, and nonlinear optical properties[J]. Acs Photonics, 2018, 5(3): 1058–1067.

[49]Hwang Y S, Kim J, Kim K Y. An improved design formula for the plasmonic directional beaming of light[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2051–2054.

[50]Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2): 95–103.

[51]Godefroid B, Kozyreff G. Photonic enhancement of parallel homo-tandem solar cells through the central electrode[J]. Solar Energy Materials and Solar Cells, 2019, 193: 73–79.

[52]Park J W, Van Tuong P, Rhee J Y, et al. Multi-band metamaterial absorber based on the arrangement of donut-type resonators[J]. Optics Express, 2013, 21(8): 9691–9702.

[53]尤凯熹, 范涛健, 葛颜绮, 等. 二维纳米材料黑磷的光电特性研究进展[J]. 物理学进展, 2018, 38(4): 163–174.

[54]黄申洋, 张国伟, 汪凡洁, 等. 二维黑磷的光学性质[J]. 物理学报, 2021, 70(2): 168–179.

[55]He D, Wang Y, Huang Y, et al. High-performance black phosphorus field-effect transistors with long-term air stability[J]. Nano Letters, 2018, 19(1): 331–337.

[56]Çakir D, Sahin H, Peeters F M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain[J]. Physical Review B, 2014, 90(20): 205421–205428.

[57]Liu Z, Aydin K. Localized surface plasmons in nanostructured monolayer black phosphorus[J]. Nano letters, 2016, 16(6): 3457–3462

[58]Huang L, Dong B, Guo X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications[J]. ACS Nano, 2018, 13(1): 913–921.

[59]Kogelnik H. Coupled wave theory for thick hologram gratings[J]. Bell Labs Technical Journal, 2013, 48(9): 2909–2947.

[60]方奕忠, 王钢, 沈韩, 等. 环形薄板二维驻波的研究[J]. 力学学报, 2015, 47(04): 664–671.

[61]Jiao N, Kang S, Han K, et al. Graphene magnetoplasmons in circular rings, eccentric rings, and split rings[J]. Physical Review B, 2021, 103(8): 085405.

[62]Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced[J]. Acs Nano, 2012, 6(9):7798–8006.

[63]Aouani H, Rahmani M, Sipova H, et al. Plasmonic nano antennas for multispectral surface-enhanced spectroscopies[J]. Journal of Physical Chemistry C, 2013, 117(36): 18620–18626.

[64]Daniel R, Andreas T, Nadine A B, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nature Communications, 2018, 9(1): 2160.

[65]Li H, Ji C, Ren Y, et al. Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method[J]. Carbon, 2019, 141: 481–487.

[66]Xiao S, Liu T, Wang X, et al. Tailoring the absorption bandwidth of graphene at critical coupling[J]. Physical Review B, 2020, 102(8): 085410.

[67]Favreau P F, Cogswell C J, Brown T G, et al. Thin-film tunable filters for hyperspectral fluorescence microscopy[J]. Journal of Biomedical Optics, 2014, 19(1): 011017.

[68]Liu B, Lu Y, Yang X, et al. Tunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nanoshells[J]. Plasmonics, 2018, 13(3): 763–770.

中图分类号:

 TN29    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式