论文中文题名: |
井下噪声对矿工不安全行为决策的影响研究
|
姓名: |
徐浩冉
|
学号: |
21202098061
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
1202
|
学科名称: |
管理学 - 工商管理
|
学生类型: |
硕士
|
学位级别: |
管理学硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
管理学院
|
专业: |
工商管理
|
研究方向: |
安全与应急管理
|
第一导师姓名: |
李红霞
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-14
|
论文答辩日期: |
2024-06-07
|
论文外文题名: |
Study on the Influencing of Underground Noise on Miners' Unsafe Behavioral Decision-Making
|
论文中文关键词: |
不安全行为 ; 井下噪声 ; 预测模型 ; 协同特征重要性(SFI) ; 事件相关电位(ERPs)
|
论文外文关键词: |
Unsafe Behavior ; Underground Noise ; Prediction Model ; Synergistic Feature Importance (SFI) ; Event-Related Potentials (ERPs)
|
论文中文摘要: |
︿
在科技迅速发展的今天,我国煤矿事故的总量虽有所下降,但平均死亡人数却呈逐年上升趋势,煤矿安全形势依然严峻。现有研究表明,不安全行为是导致煤矿事故频发的核心因素,有效控制该行为是降低事故率的关键。在煤矿作业环境中,井下噪声是普遍存在的一大挑战,对工人的心理和生理具有重要影响。然而,现有研究对于噪声如何影响个体不安全行为决策仍存在争议,尤其缺乏在不同噪声环境下,通过脑电和行为特征来预测个体不安全行为的相关研究。鉴于此,本文聚焦于探究不同风险情境下,井下噪声对个体不安全行为决策的影响,旨在揭示噪声的影响机制,并构建用于预测个体不安全行为发生的监督机器学习模型,从而提升煤矿安全管理水平。
本论文以探索井下噪声对煤矿工人不安全行为的影响机制为核心,基于双系统理论和风险情感理论,建立了解释井下噪声诱发不安全行为的理论模型。其次,论文通过设计模拟风险情境的实验任务,采集了被试的行为数据和脑电数据。最后,利用构建的脑电-行为特征数据集,通过统计分析验证了理论模型与假设的有效性,并应用支持向量机和随机森林算法构建了预测模型,得到以下主要结果:(1)井下噪声显著影响个体行为决策的晚期阶段,导致决策冲突和情绪强度受到干扰,进而影响个体不安全行为决策;(2)在高水平噪声环境下,个体的P3和LPP波幅降低,表明个体的决策过程和情绪强度受到显著干扰,导致其对行为的收益与损失的评估变得模糊,引发非理性和犹豫的行为;(3)经由网格搜索优化的随机森林模型,在交叉验证和分类报告中展现出93.20%的高准确率和96.00%的综合得分,证明了模型的优秀泛化能力和分类性能;(4)针对线性判别分析降维后的随机森林模型,本文创新性地提出了协同特征重要性的概念和计算方法,旨在解开模型的“黑箱”,并将之应用于脑电活动特征的模式识别。
综上所述,本文深入分析了井下噪声对煤矿工人不安全行为的心理及神经机制,建立了一个有效的行为预测模型,并提出了模型解释的新方法,为煤矿安全管理领域提供了新的研究思路和见解。
﹀
|
论文外文摘要: |
︿
In the rapid development of technology today, although the total number of coal mine accidents in our country has decreased, the average number of deaths has shown an upward trend year by year, indicating that the safety situation in coal mines remains severe. Existing research indicates that unsafe behavior is the core factor leading to frequent coal mine accidents, and effectively controlling this behavior is key to reducing accident rates. In the coal mining work environment, underground noise is a common challenge with significant impacts on workers' psychological and physiological states. However, existing research on how noise affects individual unsafe behavior decisions remains controversial, particularly lacking studies predicting individual unsafe behavior through EEG and behavioral characteristics in different noise environments. In view of this, this paper focuses on exploring the impact of underground noise on individual unsafe behavior decisions in different risk situations, aiming to reveal the mechanisms of noise impact and to construct a supervised machine learning model for predicting individual unsafe behavior, thereby enhancing coal mine safety management.
This paper centers on exploring the mechanism by which underground noise influences coal miners' unsafe behavior, based on dual-system theory and risk emotion theory, establishing a theoretical model explaining how underground noise induces unsafe behavior. Secondly, through designing experimental tasks that simulate risk situations, the study collected behavioral data and EEG data from the subjects. Finally, using the constructed EEG-behavioral feature dataset, statistical analysis was conducted to verify the validity of the theoretical model and hypotheses. Support Vector Machine (SVM) and Random Forest algorithms were applied to build the prediction model, yielding the following main results: (1) Underground noise significantly affects the late stages of individual behavioral decision-making, causing decision conflict and emotional intensity interference, thereby impacting individual unsafe behavior decisions; (2) In high-noise environments, individuals' P3 and LPP amplitudes decrease, indicating significant interference in decision-making processes and emotional intensity, leading to blurred evaluations of behavioral gains and losses, causing irrational and hesitant behaviors; (3) The Random Forest model optimized by grid search exhibited a high accuracy rate of 93.20% and a comprehensive score of 96.00% in cross-validation and classification reports, demonstrating excellent generalization ability and classification performance; (4) For the Random Forest model after linear discriminant analysis dimensionality reduction, this paper innovatively proposed the concept and calculation method of collaborative feature importance, aiming to uncover the model's "black box" and apply it to pattern recognition of EEG activity features.
In summary, this paper deeply analyzes the psychological and neural mechanisms of underground noise on coal miners' unsafe behavior, establishes an effective behavior prediction model, and proposes a new method for model interpretation, providing new research ideas and insights for the field of coal mine safety management.
﹀
|
参考文献: |
︿
[1] 翟礼淼, 曹赟, 王丽娜. 中国煤炭价格变化对PPI和CPI的影响效应研究 [J]. 价格理论与实践, 2020, (04): 80-83. [2] 中华人民共和国2023年国民经济和社会发展统计公报 [N]. 人民日报2024-03-01. [3] 谭章禄, 王美君. 智慧矿山数据治理概念内涵、发展目标与关键技术 [J]. 工矿自动化, 2022, 48(05): 6-14. [4] 程昱昊. 基于轻量型神经网络的矿工不安全行为识别算法研究 [D]. 中国矿业大学, 2022. [5] ALIABADI M M, AGHAEI H, KALATPOUR O, et al. Effects of human and organizational deficiencies on workers' safety behavior at a mining site in Iran [J]. Epidemiology and Health, 2018, 40. [6] 中华人民共和国国民经济和社会发展统计公报 [R]. 北京: 中国统计出版社, 2017~2021. [7] CHEN H, QI H, FENG Q. Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: Case study spanning the years 1980-2010 [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 38-44. [8] 张兴凯. 我国“十二五”期间生产安全死亡事故直接经济损失估算 [J]. 中国安全生产科学技术, 2016, 12(06): 5-8. [9] 李文琴, 崔博露, 张巍, 等. 基于SEM的矿工安全素养对不安全行为的影响研究 [J]. 煤矿安全, 2023, 54(01): 246-251. [10] 田水承, 丁洋, 匡秘姈. 疲劳中介效应下矿工心理因素对不安全行为的影响 [J]. 西安科技大学学报, 2023, 43(01): 47-54. [11] 禹敏, 栗继祖, 秦文静. 心理社会安全氛围对矿工不安全行为的影响 [J]. 中国安全科学学报, 2022, 32(07): 34-40. [12] 李乃文, 刘亚平, 牛莉霞. 不合规任务对新生代矿工不安全行为的影响 [J]. 中国安全科学学报, 2022, 32(10): 18-24. [13] 李琰, 岳雪娇, 陈侠君. 矿工不安全行为特征的关联规则分析 [J]. 煤矿安全, 2022, 53(12): 247-252. [14] 贾爱芳, 田水承, 郭昕玥, 等. 基于延迟折扣任务的矿工风险决策实验研究 [J]. 西安科技大学学报, 2022, 42(01): 64-69. [15] 李乃文, 张文文, 牛莉霞. 领导非权变惩罚对矿工不安全行为的影响研究 [J]. 中国安全科学学报, 2019, 29(12): 1-6. [16] 陈晓宽, 栗继祖. 行为传播视角下群体压力对矿工不安全行为意向的影响 [J]. 中国安全生产科学技术, 2023, 19(01): 79-84. [17] 李红霞, 徐浩冉, 田水承. 基于随机森林的矿工不安全行为预测预警模型 [J]. 中国安全科学学报, 2022, 32(12): 10-18. [18] 陈俐莹. 基于ERP实验的噪声对建筑工人冒险行为影响研究 [D]. 重庆大学, 2021. [19] 李国为, 杨鹏飞, 黄伟, 等. 噪声对矿工反应能力影响的实验研究 [J]. 西安科技大学学报, 2022, 42(03): 423-429. [20] 程根银, 陈绍杰, 魏志勇, 等. 井下噪声对人心理生理影响分析 [J]. 西安科技大学学报, 2011, 31(06): 850-853. [21] 贺飞, 王继仁, 程根银, 等. 井下有限空间内作业人员噪声危害调查 [J]. 安全与环境学报, 2017, 17(03): 849-854. [22] 王浩, 蒋承林, 史莉莉. 煤矿井下噪声危害分析及对策 [J]. 中国安全生产科学技术, 2011, 7(12): 183-187. [23] 杨华运, 颜文学, 王欢, 等. 对旋轴流通风机噪声的产生机理及特性分析 [J]. 矿业安全与环保, 2011, 38(02): 76-79. [24] 张所容. 矿井主动噪声控制技术的应用研究 [J]. 矿业安全与环保, 2016, 43(06): 50-53. [25] 王娟, 黄磊, 孙敏. 油气钻采业噪声作业人群听力损害风险模型探索 [J]. 现代预防医学, 2022, 49(14): 2546-2552. [26] 周晓凤, 尘兴邦, 刘兰亭, 等. 煤矿井下噪声诱发职业健康损害评估方法及应用 [J]. 中国安全科学学报, 2022, 32(08): 208-214. [27] RAJA R V, RAJASEKARAN V, SRIRAMAN G. Non-auditory Effects of Noise Pollution on Health: A Perspective [J]. Indian Journal of Otolaryngology and Head & Neck Surgery, 2019, 71(SUPPL 2): 1500-1501. [28] SYNDICUS M, WIESE B S, VAN TREECK C. In the Heat and Noise of the Moment: Effects on Risky Decision Making [J]. Environment and Behavior, 2018, 50(1): 3-27. [29] MORGAN J I, JONES F A, HARRIS P R. Direct and indirect effects of mood on risk decision making in safety-critical workers [J]. Accident Analysis and Prevention, 2013, 50: 472-482. [30] 胡晓斐, 汪嘉维, 刘涵宇, 等. 听觉刺激对虚拟环境中空间压缩的影响 [J]. 心理学报, 2023, 55(01): 1-8. [31] 张锋, 高旭. 听觉丧失对听障学生时间知觉的影响 [J]. 心理科学, 2022, 45(06): 1375-1382. [32] MITCHELL T V, QUITTNER A L. Multimethod study of attention and behavior problems in hearing-impaired children [J]. Journal of Clinical Child Psychology, 1996, 25(1): 83-96. [33] CONWAY C M, PISONI D B, KRONENBERGER W G. The Importance of Sound for Cognitive Sequencing Abilities: The Auditory Scaffolding Hypothesis [J]. Current Directions in Psychological Science, 2009, 18(5): 275-279. [34] BALLESTEROS M J, FERNANDEZ M D, QUINTANA S, et al. Noise emission evolution on construction sites. Measurement for controlling and assessing its impact on the people and on the environment [J]. Building and Environment, 2010, 45(3): 711-717. [35] CAN A, L'HOSTIS A, AUMOND P, et al. The future of urban sound environments: Impacting mobility trends and insights for noise assessment and mitigation [J]. Applied Acoustics, 2020, 170. [36] LIU F, JIANG S, KANG J, et al. On the definition of noise [J]. Humanities & Social Sciences Communications, 2022, 9(1). [37] 戚作秋, 王宏, 常文文, 等. 生产性噪声对工作人员脑认知影响的ERP分析 [J]. 东北大学学报(自然科学版), 2017, 38(11): 1590-1594+1600. [38] 蔡阳生, 张承云, 王杰, 等. 一个新的声压级测试实验方案 [J]. 实验室研究与探索, 2010, 29(08): 29-32. [39] LEE S C, HONG J Y, JEON J Y. Effects of acoustic characteristics of combined construction noise on annoyance [J]. Building and Environment, 2015, 92: 657-667. [40] ZWICKER E, H F. Psychoacoustics: Facts and Models [J]. Physics Today, 1999, 54(6). [41] 马大猷. 噪声与振动控制工程手册 [M]. 北京: 机械工业出版社, 2002. [42] GOPINATH B, THIAGALINGAM A, TEBER E, et al. Exposure to workplace noise and the risk of cardiovascular disease events and mortality among older adults [J]. Preventive Medicine, 2011, 53(6): 390-394. [43] BASNER M, BABISCH W, DAVIS A, et al. Auditory and non-auditory effects of noise on health [J]. The Lancet, 2014, 383(9925): 1325-1332. [44] EROL I. Investigation of Occupational Noise-Induced Hearing Loss of Underground Coal Mines [J]. Mining Metallurgy & Exploration, 2022, 39(3): 1045-1060. [45] HESSEL P A. Hearing loss among construction workers in Edmonton, Alberta, Canada [J]. Journal of Occupational and Environmental Medicine, 2000, 42(1): 57-63. [46] CHEN J D, TSAI J Y. Hearing loss among workers at an oil refinery in Taiwan [J]. Archives of Environmental Health, 2003, 58(1): 55-58. [47] CAYIR A, BARROW T M, WANG H, et al. Occupational noise exposure is associated with hypertension in China: Results from project ELEFANT [J]. Plos One, 2018, 13(12). [48] ALAGAPAN P, HASSAN M Z, IBRAHIM M H, et al. Measurement of hazardous personal noise exposure in spice manufacturing industry; proceedings of the 8th International Conference on Mechanical and Manufacturing Engineering (ICME), Johor Bharu, MALAYSIA, F Jul 16-17, 2018 [C]. 2019. [49] LI B, WANG E, SHANG Z, et al. Quantification study of working fatigue state affected by coal mine noise exposure based on fuzzy comprehensive evaluation [J]. Saf Sci, 2022, 146. [50] 李晓, 李树强, 关里. 职业性噪声对心血管系统影响的研究进展 [J]. 中国职业医学, 2020, 47(04): 487-490. [51] H D, V K I. Noise and car diovascular disease:a review of the literature 2008-2011 [J]. Noise Health, 2012, 14(61): 287-291. [52] TOMEI G, FIORAVANTI M, CERRATTI D, et al. Occupational exposure to noise and the cardiovascular system: A meta-analysis [J]. Science of the Total Environment, 2010, 408(4): 681-689. [53] ROTH G A, JOHNSON C, ABAJOBIR A, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015 [J]. Journal of the American College of Cardiology, 2017, 70(1): 1-25. [54] 徐紫菡, 戴冬梅, 高娇娇, 等. 职业噪声和高温对心血管系统的影响 [J]. 中华疾病控制杂志, 2020, 24(07): 773-778. [55] 韩冬柏, 刘晓宇, 李娜, 等. 职业性噪声暴露对石油工人甲襞微循环的影响 [J]. 环境与职业医学, 2020, 37(04): 348-353. [56] 李志辉, 张紫燕, 黄晓梅, 等. 环境物理因素对睡眠影响的研究进展 [J]. 环境与健康杂志, 2019, 36(03): 256-260. [57] 林杰, 张三明. 睡眠功能房间内噪声限值的研究与确定 [J]. 建筑科学, 2022, 38(02): 20-24. [58] TONG H, WARREN J L, KANG J, et al. Using multi-sourced big data to correlate sleep deprivation and road traffic noise: A US county-level ecological study [J]. Environmental Research, 2023, 220. [59] YAMAGAMI Y, OBAYASHI K, TAI Y, et al. Association between indoor noise level at night and objective/subjective sleep quality in the older population: a cross-sectional study of the HEIJO-KYO cohort [J]. Sleep, 2023. [60] CUI R, LIU Z, WANG X, et al. The impact of marine engine noise exposure on seafarer fatigue: A China case [J]. Ocean Engineering, 2022, 266. [61] YANG J, YE G, ZHANG Z, et al. Linking construction noise to worker safety behavior: The role of negative emotion and regulatory focus [J]. Saf Sci, 2023, 162: 106093. [62] AYOKO O B, ASHKANASY N M, LI Y, et al. An experience sampling study of employees’ reactions to noise in the open-plan office [J]. Journal of Business Research, 2023, 155: 113445. [63] MIR M, NASIRZADEH F, BEREZNICKI H, et al. Investigating the effects of different levels and types of construction noise on emotions using EEG data [J]. Building and Environment, 2022, 225: 109619. [64] 景国勋, 王敏. 基于生理指标的噪声对作业人员认知绩效的影响研究 [J]. 煤矿安全, 2021, 52(08): 243-247. [65] 戚作秋, 王宏, 赵小兵, 等. 工业噪声对脑认知影响的功率谱估计分析 [J]. 中国安全科学学报, 2021, 31(03): 178-183. [66] SWAIN A D, GUTTMANN H E. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report [R]. United States, 1983. [67] S.L.ROBINSON B A. Measuring safety climate identifying the common features [J]. Journal of applied psychology, 2000, 32(6): 349-360. [68] 曹庆仁. 浅析煤矿员工不安全行为的影响因素 [J]. 矿业安全与环保, 2006, (06): 80-82. [69] 刘轶松. 安全管理中人的不安全行为的探讨 [J]. 西部探矿工程, 2005, (06): 226-228. [70] CHI S, HAN S, KIM DAE Y. Relationship between Unsafe Working Conditions and Workers’ Behavior and Impact of Working Conditions on Injury Severity in U.S. Construction Industry [J]. Journal of Construction Engineering and Management, 2013, 139(7): 826-838. [71] 田水承. 人的因素、安全应急意识能力与安全 [J]. 技术与创新管理, 2015, 36(04): 413-414. [72] 李磊, 景兴鹏, 田水承. 基于SEM的矿工不安全行为形成机理研究 [J]. 煤矿安全, 2016, 47(07): 234-236. [73] 傅贵, 贾清淞, 许素睿. 对《企业职工伤亡事故调查分析规则》若干问题的建议 [J]. 中国安全科学学报, 2018, 28(04): 7-12. [74] 陈星霖, 郭勇, 阳富强. 基于HFACS-BN模型的危险化学品事故人因路径分析 [J]. 中国安全生产科学技术, 2022, 18(09): 27-34. [75] 李琰, 赵梓焱, 田水承, 等. 矿工不安全行为研究综述 [J]. 中国安全生产科学技术, 2016, 12(08): 47-54. [76] 王珏, 李昱, 李贤功. 基于关联规则的矿工不安全行为分析 [J]. 煤矿安全, 2020, 51(11): 290-294. [77] 张孟春, 方东平. 建筑工人不安全行为产生的认知原因和管理措施 [J]. 土木工程学报, 2012, 45(S2): 297-305. [78] EPSTEIN S. Integration of the cognitive and the psychodynamic unconscious [J]. The American psychologist, 1994, 49(8): 709-724. [79] STANOVICH K E, WEST R F. Individual differences in reasoning: Implications for the rationality debate? [J]. Behavioral and Brain Sciences, 2000, 23: 645-665. [80] STRACK F, DEUTSCH R. Reflective and impulsive determinants of social behavior [J]. Personality and Social Psychology Review, 2004, 8(3): 220-247. [81] STEINBERG L. A dual systems model of adolescent risk-taking [J]. Developmental psychobiology, 2010, 52(3): 216-224. [82] STEINBERG L. A Social Neuroscience Perspective on Adolescent Risk-Taking [J]. Developmental review : DR, 2008, 28(1): 78-106. [83] SLOVIC P, FINUCANE M L, PETERS E, et al. Risk as analysis and risk as feelings: Some thoughts about affect, reason, risk, and rationality [J]. Risk Anal, 2004, 24(2): 311-322. [84] MORRONGIELLO B A, RENNIE H. Why do boys engage in more risk taking than girls? The role of attributions, beliefs, and risk appraisals [J]. Journal of pediatric psychology, 1998, 23(1): 33-43. [85] 史玉芳, 卢吉发. 基于SEM的建筑工人疲劳对不安全行为影响机理 [J]. 西安科技大学学报, 2020, 40(04): 712-719. [86] 张舒, 王双, 史秀志. 不安全行为决策中情绪作用机制的脑电研究 [J]. 中国安全科学学报, 2023, 33(01): 32-40. [87] 田水承, 郭方艺, 杨鹏飞. 不良情绪对胶轮车驾驶员不安全行为的影响研究 [J]. 矿业安全与环保, 2018, 45(05): 115-119+125. [88] PORCELLI A J D M R. Acute Stress Modulates Risk Taking in Financial Decision Making [J]. Psychological Science, 2009, 20(3): 278-283. [89] 李敏, 贾惠侨, 李开伟, 等. 噪声水平对人不安全行为的影响研究 [J]. 中国安全科学学报, 2017, 27(03): 19-24. [90] 王建国, 傅文, 王延秋. 不同级别噪声对矿工生理指标及行为能力的影响研究 [J]. 矿业安全与环保, 2019, 46(01): 99-103. [91] 叶贵, 陈俐莹, 冯新怡, 等. 噪声对建筑工人冒险行为的诱发机制研究 [J]. 中国安全科学学报, 2020, 30(12): 16-23. [92] 王春雪, 吕淑然. 噪声对安全注意力影响实验研究 [J]. 中国安全生产科学技术, 2016, 12(03): 160-164. [93] NOVITSKI N, ANOUROVA I, MARTINKAUPPI S, et al. Effects of noise from functional magnetic resonance imaging on auditory event-related potentials in working memory task [J]. Neuroimage, 2003, 20(2): 1320-1328. [94] 田水承, 杨鹏飞, 高毅, 等. 噪声与矿工情绪的关系及干预对策研究 [J]. 煤炭技术, 2017, 36(08): 299-301. [95] ELVERS P, STEFFENS J. The Sound of Success: Investigating Cognitive and Behavioral Effects of Motivational Music in Sports [J]. Frontiers in Psychology, 2017, 8. [96] LU L, ZHUANG H-W, XU L. The Relationship Between Personality Traits and Aggressive Behavior in People with Long Term Noise [M]. 2018: 810-817. [97] BRODSKY W. The effects of music tempo on simulated driving performance and vehicular control [J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2001, 4(4): 219-241. [98] LU X Q, DAVIS S. How sounds influence user safety decisions in a virtual construction simulator [J]. Saf Sci, 2016, 86: 184-194. [99] MCDONALD J J, STORMER V S, MARTINEZ A, et al. Salient Sounds Activate Human Visual Cortex Automatically [J]. Journal of Neuroscience, 2013, 33(21): 9194-9201. [100] HAJCAK G, KLAWOHN J, MEYER A. The Utility of Event-Related Potentials in Clinical Psychology [M]. WIDIGER T, CANNON T D. Annual Review of Clinical Psychology, Vol 15. 2019: 71-95. [101] LUCK S J, KAPPENMAN E S. The Oxford handbook of event-related potential components [M]. New York, NY, US: Oxford University Press, 2012. [102] HAJCAK G, MACNAMARA A, OLVET D M. Event-related potentials, emotion, and emotion regulation: an integrative review [J]. Developmental neuropsychology, 2010, 35(2): 129-155. [103] 吴茜茜, 朱春燕, 余凤琼, 等. 强迫症认知灵活性的事件相关电位研究 [J]. 中国神经精神疾病杂志, 2019, 45(02): 86-90. [104] CITHERLET D, BOUCHER O, TREMBLAY J, et al. Spatiotemporal dynamics of auditory information processing in the insular cortex: an intracranial EEG study using an oddball paradigm [J]. Brain Structure and Function, 2020, 225(5): 1537-1559. [105] THOMA L, RENTZSCH J, GAUDLITZ K, et al. P50, N100, and P200 Sensory Gating in Panic Disorder [J]. Clinical EEG and neuroscience, 2020, 51(5): 317-324. [106] LUCK S J, WOODMAN G F, VOGEL E K. Event-related potential studies of attention [J]. Trends in Cognitive Sciences, 2000, 4(11): 432-440. [107] DI RUSSO F, MARTINEZ A, SERENO M, et al. Cortical sources of the early components of the visual evoked potential [J]. Human brain mapping, 2002, 15: 95-111. [108] BIGMAN Z, PRATT H. Time course and nature of stimulus evaluation in category induction as revealed by visual event-related potentials [J]. Biological Psychology, 2004, 66(2): 99-128. [109] MORRISON C, TALER V. ERP measures of the effects of age and bilingualism on working memory performance [J]. Neuropsychologia, 2020, 143: 107468. [110] BALABAN H, SENTüRK I A, YILDIZ Ö K, et al. The Role of Event-Related Potentials in Subclinical Cognitive Dysfunction in Essential Tremor [J]. Journal of Clinical Neurophysiology, 2012, 29(1). [111] POTTS G F, PATEL S H, AZZAM P N. Impact of instructed relevance on the visual ERP [J]. International Journal of Psychophysiology, 2004, 52(2): 197-209. [112] DI RUSSO F, TADDEI F, APNILE T, et al. Neural correlates of fast stimulus discrimination and response selection in top-level fencers [J]. Neuroscience letters, 2006, 408(2): 113-118. [113] PAULMANN S, KOTZ S A. Early emotional prosody perception based on different speaker voices [J]. Neuroreport, 2008, 19(2): 209-213. [114] SPRECKELMEYER K N, KUTAS M, URBACH T, et al. Neural processing of vocal emotion and identity [J]. Brain and cognition, 2009, 69(1): 121-126. [115] POLEZZI D, LOTTO L, DAUM I, et al. Predicting outcomes of decisions in the brain [J]. Behavioural Brain Research, 2008, 187: 116-122. [116] QIN J, HAN S. Neurocognitive mechanisms underlying identification of environmental risks [J]. Neuropsychologia, 2009, 47(2): 397-405. [117] YUAN J, ZHANG Q, CHEN A, et al. Are we sensitive to valence differences in emotionally negative stimuli? Electrophysiological evidence from an ERP study [J]. 2007, 45: 2764-2771. [118] DOU K, NIE Y, WANG Y, et al. Ego Depletion Promotes Impulsive Decision: Evidences from Behavioral and ERPs Studies [J]. Acta Psychologica Sinica, 2014, 46: 1564. [119] HUANG Y X, LUO Y J. Temporal course of emotional negativity bias: an ERP study [J]. Neuroscience letters, 2006, 398(1-2): 91-96. [120] 韩伟伟, 王晶. 产品设计与性能冲突对消费者决策过程的神经学影响 [J]. 南开管理评论, 2017, 20(02): 155-168. [121] 何媛媛, 袁加锦, 伍泽莲, 等. 正性情绪刺激效价强度的变化对外倾个体注意的调制作用 [J]. 心理学报, 2008, (11): 1158-1164. [122] NOGUCHI Y, MUROTA M. Temporal dynamics of neural activity in an integration of visual and contextual information in an esthetic preference task [J]. Neuropsychologia, 2013, 51(6): 1077-1084. [123] QIN J, XIAO F, LI F, et al. The characteristic of extrapolation in numerical inductive inference: an ERP study [J]. Brain research, 2009, 1295: 142-148. [124] GOLDSTEIN R Z, PARVAZ M A, MALONEY T, et al. Compromised sensitivity to monetary reward in current cocaine users: an ERP study [J]. Psychophysiology, 2008, 45(5): 705-713. [125] SCHUPP H T, CUTHBERT B N, BRADLEY M M, et al. Affective picture processing: The late positive potential is modulated by motivational relevance [J]. Psychophysiology, 2000, 37: 257-261. [126] CUTHBERT B N, SCHUPP H T, BRADLEY M M, et al. Brain potentials in affective picture processing: covariation with autonomic arousal and affective report [J]. Biol Psychol, 2000, 52(2): 95-111. [127] ZHANG Q, LI X, GOLD B T, et al. Neural correlates of cross-domain affective priming [J]. Brain research, 2010, 1329: 142-151. [128] 田录梅, 袁竞驰, 李永梅. 同伴在场和自尊水平对青少年冒险行为的影响:来自ERPs的证据 [J]. 心理学报, 2018, 50(01): 47-57. [129] 林玉莲. 环境心理学 [M]. 北京: 中国建筑工业出版社, 2000. [130] BROADBENT D E. The current state of noise research: Reply to Poulton [J]. Psychological Bulletin, 1978, 85(5): 1052-1067. [131] HANCOCK P A, WARM J S. A dynamic model of stress and sustained attention [J]. Hum Factors, 1989, 31(5): 519-537. [132] SZALMA J L, HANCOCK P A. Noise effects on human performance: a meta-analytic synthesis [J]. Psychol Bull, 2011, 137(4): 682-707. [133] HOMBURG A, STOLBERG A. Explaining pro-environmental behavior with a cognitive theory of stress [J]. Journal of Environmental Psychology, 2006, 26(1): 1-14. [134] FRIEND T H. Behavioral Aspects of Stress1 [J]. Journal of Dairy Science, 1991, 74(1): 292-303. [135] LOEWENSTEIN G F, WEBER E U, HSEE C K, et al. Risk as feelings [J]. Psychol Bull, 2001, 127(2): 267-286. [136] DAMASIO A R. Descartes' Error: Emotion, Reason, and the Human Brain [M]. Putnam, 1994. [137] LEDOUX J. The emotional brain, fear, and the amygdala [J]. Cellular and molecular neurobiology, 2003, 23(4-5): 727-738. [138] GOLDSTEIN D G, GIGERENZER G. Models of ecological rationality: the recognition heuristic [J]. Psychological review, 2002, 109(1): 75-90. [139] LU X, DAVIS S. How sounds influence user safety decisions in a virtual construction simulator [J]. Saf Sci, 2016, 86: 184-194. [140] ELVERS P, STEFFENS J. The Sound of Success: Investigating Cognitive and Behavioral Effects of Motivational Music in Sports [J]. Front Psychol, 2017, 8: 2026. [141] ROBERTS K R, DIMSDALE J, EAST P, et al. Adolescent emotional response to music and its relationship to risk-taking behaviors [J]. The Journal of adolescent health : official publication of the Society for Adolescent Medicine, 1998, 23(1): 49-54. [142] MOHEBBI R, GRAY R, TAN H Z. Driver reaction time to tactile and auditory rear-end collision warnings while talking on a cell phone [J]. Hum Factors, 2009, 51(1): 102-110. [143] ALIMOHAMMADI I, ZOKAEI M, SANDROCK S. The Effect of Road Traffic Noise on Reaction Time [J]. Health promotion perspectives, 2015, 5(3): 207-214. [144] 景国勋, 吕鹏飞, 赵攀飞, 等. 煤矿噪声对人的注意力影响实验研究 [J]. 中国安全生产科学技术, 2017, 13(10): 164-168. [145] 韦晓娜, 漆昌柱. 情绪与运动专长对深度运动知觉影响的脑机制 [J]. 天津体育学院学报, 2019, 34(06): 521-526. [146] YUAN J, ZHANG Q, CHEN A, et al. Are we sensitive to valence differences in emotionally negative stimuli? Electrophysiological evidence from an ERP study [J]. Neuropsychologia, 2007, 45(12): 2764-2771. [147] CARRETIé L, MERCADO F, TAPIA M, et al. Emotion, attention, and the ‘negativity bias’, studied through event-related potentials [J]. International Journal of Psychophysiology, 2001, 41(1): 75-85. [148] LUCK S J, HILLYARD S A. Electrophysiological correlates of feature analysis during visual search [J]. Psychophysiology, 1994, 31(3): 291-308. [149] MENNES M, WOUTERS H, VAN DEN BERGH B, et al. ERP correlates of complex human decision making in a gambling paradigm: Detection and resolution of conflict [J]. Psychophysiology, 2008, 45(5): 714-720. [150] KEIL A, BRADLEY M M, HAUK O, et al. Large-scale neural correlates of affective picture processing [J]. 2002, 39(5): 641-649. [151] POLEZZI D, LOTTO L, DAUM I, et al. Predicting outcomes of decisions in the brain [J]. Behavioural Brain Research, 2008, 187(1): 116-122. [152] SCHUPP H T, CUTHBERT B N, BRADLEY M M, et al. Affective picture processing: The late positive potential is modulated by motivational relevance [J]. Psychophysiology, 2000, 37(2): 257-261. [153] 黄宇霞, 罗跃嘉. 负性情绪刺激是否总是优先得到加工:ERP研究 [J]. 心理学报, 2009, 41(09): 822-831. [154] HALKO M L, KAUSTIA M. Risk ON/Risk OFF: Risk-Taking Varies with Subjectively Preferred and Disliked Music [J]. PLoS One, 2015, 10(8): e0135436. [155] 李国为, 杨鹏飞, 黄伟., 等. 噪声对矿工反应能力影响的实验研究 [J]. 西安科技大学学报, 2022, 42(03): 423-429. [156] LIČEN S, PROSEN M. The development of cultural competences in nursing students and their significance in shaping the future work environment: a pilot study [J]. BMC Medical Education, 2023, 23(1): 819. [157] HäGERICH L M, DYRNA F G E, KATTHAGEN J C, et al. Cerclage performance analysis – a biomechanical comparison of different techniques and materials [J]. BMC Musculoskeletal Disorders, 2022, 23(1): 1037. [158] CHENG T, LU Q, KANG H, et al. Productivity Prediction and Analysis Method of Large Trailing Suction Hopper Dredger Based on Construction Big Data [J]. Buildings, 2022, 12(10): 1505. [159] ZHENG X, ZHANG Y, HONG S, et al. Evolving Fully Automated Machine Learning via Life-Long Knowledge Anchors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(9): 3091-3107. [160] SHEHAB N, BADAWY M, ALI H A. Toward feature selection in big data preprocessing based on hybrid cloud-based model [J]. The Journal of Supercomputing, 2022, 78(3): 3226-3265. [161] MOUNICA B, LAVANYA K. Feature selection with a deep learning based high-performance computing model for traffic flow analysis of Twitter data [J]. The Journal of Supercomputing, 2022, 78(13): 15107-15122.
﹀
|
中图分类号: |
TD79
|
开放日期: |
2024-06-14
|