论文中文题名: | 煤火重力热管提热性能优化及预测研究 |
姓名: | |
学号: | 18220214052 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2021-06-16 |
论文答辩日期: | 2021-06-01 |
论文外文题名: | Optimization and prediction of coal fire gravity heat pipe extracting heat performance |
论文中文关键词: | |
论文外文关键词: | Coal spontaneous combustion ; gravity heat pipe ; cooling range ; effective radius ; extracting heat performance |
论文中文摘要: |
煤自燃的发生严重威胁着自然环境、人类生存安全以及经济发展,被称为全球性的灾难。重力热管内部工质的两相流动可提取煤自燃产生的热量,降低煤堆温度,从而实现煤自燃的“绿色”治理。本文借助标准正交表设计关于工质种类(Al2O3-H2O纳米流体,CuO-H2O纳米流体及TiO2-H2O纳米流体),充液率(15%,25%,35%),长径比(16,11,8.5)的9根重力热管,探究重力热管应用于不同煤堆温度(70, 140, 210 °C)时煤堆温度场的变化规律及冷凝段温度分布情况;计算不同工况下重力热管的提热性能指标参数(降温幅度,降温率,有效影响半径,提热量)。结合层次分析法(AHP法)、熵权法以及逼近理想排序法(TOPSIS法)综合评价9根重力热管作用于不同工作温度时的提热性能,并使用极差法对实验结果进行分析,优选煤自燃不同温度阶段时重力热管最佳参数组合。最后基于VOF(volume of fluid)模型建立重力热管内部多相流过程,预测9根重力热管在高温下(350 °C)的提热性能,借助极差分析对重力热管进行优化,为重力热管应用于煤自燃热能提取方面的研究以及现场应用提供理论基础。主要研究结果如下:重力热管可有效降低煤堆温度,控制煤堆高温区域扩散,煤堆温度越高,降温效果越明显;其降温过程可分为大幅下降阶段以及平缓下降阶段,工作温度越高大幅下降阶段所占时间越长。此外,重力热管冷凝段测点温度随着工作时间的增加呈现出先急剧上升后缓慢下降并趋于平缓的变化趋势,冷凝段趋近于蒸发段的区域提热性高、稳定性好。另外,煤堆内测点的降温幅度和降温率与测点和重力热管之间的距离呈负相关。重力热管的提热量与工作温度呈正相关,而重力热管的有效影响半径随煤堆温度的增加并无规律性的变化。使用AHP法与熵权法确定表征重力热管提热性能的指标参数权重,结合TOPSIS法对正交实验结果进行综合评价,借助极差法对综合评价进行分析获得:在煤堆温度为70 °C时,实验最佳与综合优化所得重力热管皆为1#重力热管;煤堆温度为140°C时,实验最佳与综合优化所得重力热管都为5#重力热管;当煤堆温度升至210 °C时,实验最佳重力热管为3#,而综合优化所得最佳参数组合:工质种类为Al2O3-H2O纳米流体,充液率为15%,长径比为8.5。使用FLUENT数值模拟软件建立VOF模型,对工作温度为210 °C时综合优化所得重力热管最佳参数组合进行数值模拟,对比发现综合优化所得重力热管等效对流换热系数较实验最佳提升了12.94%。另外,预测及优化工作温度为350 °C的重力热管,获得各因素对重力热管提热性能的影响重要程度依次为:长径比>工质种类>充液率,最佳参数组合:工质种类为Al2O3-H2O纳米流体,充液率为25%,长径比为8.5。 |
论文外文摘要: |
Coal spontaneous combustion (CSC) is called as a global disaster, which seriously threatens the natural, human healthy and economic growth. In order to realize the "green" control of CSC, there are lots of researchers have been applied Gravity Heat Pipe (GHP) on extracting the heat energy generated by CSC. In this study, 9 GHPs have been designed based on working fluid (Al2O3-H2O nanofluids, CuO-H2O nanofluids, and TiO2-H2O nanofluids), working fluid filling rates (15%, 25%, 35%), and length-diameter ratio (16, 11, 8.5) helped with orthogonal experiment. 9 GHPs had been applied on coal pile with different temperature to explore the influence of GHP on the temperature and temperature distribution of condensation section. Four index parameters (cooling range, cooling rate, effective radius, and extracting heat performance), which characteristic the heat transfer performance of GHP had been calculated. The weight of each index parameter is determined by the combination of analytic hierarchy process (AHP) and entropy weight method. And the method of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used to evaluate the comprehensive extract heating performance of the 9 GHP under different temperature. And then, the range analysis was used to analyses the results of orthogonal experiment. Moreover, based on the VOF model, the multiphase flow process inside the GHP is established, and the total thermal resistance and equivalent convective heat transfer coefficient of 9 GHPs are calculated when the working temperature is 350 °C. The main research contents and results are as follows: GHP can effectively reduce the temperature of coal pile. The cooling process of measuring points can be divided into two stages: large decline stage and gentle decline stage, and the high temperature coal pile have longer large decline stage. With the increase of working time, the temperature of condensation section increases sharply at first, then decreases slowly and tends to decrease. Besides, the closer the measuring point of condensation section is to evaporation section, the higher and more stable the temperature is. The cooling range and cooling rate of coal pile measuring points are positive correlation with the distance between measuring points and GHP. Furthermore, the extracting heat performance of GHP is positive with working temperature. However, the effective radius of GHP does not changed regularly with the temperature increased. According to range analysis, when the temperature is 70 °C, the best extracting heat performance of GHP by experiment and comprehensive optimization is 1#. When the temperature rises to 140 °C, the best GHP by experiment and comprehensive optimization is 5#. When the temperature is 210 °C, the GHP obtained by experiment is 3#, and the optimal parameter combination obtained by comprehensive optimization:working fluid is Al2O3-H2O nanofluids, working fluid filling rates is 15%, and length-diameter ratio is 8.5. The VOF model is established to simulate the optimal parameters combination of the GHP under 210 °C. The results show that the effective convective heat transfer coefficient is 12.94% higher than the experimental optimum. Moreover, combined with numerical simulation and orthogonal experiment, the equivalent convective heat transfer coefficient of 9 GHPs was been calculated. And the influence degree of each factor and best parameter combination was obtained: aspect ratio > working medium type > liquid filling rate, working fluid is Al2O3-H2O nanofluids, working fluid filling rates is 25%, and length-diameter ratio is 8.5. |
参考文献: |
[1]张军义. 综合防灭火技术在易自然发火工作面中的研究与应用[J]. 能源与环保, 2020, 42(12):34-37. [2]李全生, 张凯. 3[J]. 中国工程科学, 2021, 23(01):101-111. [3]中矿(北京)煤炭产业景气指数研究课题组. 2020-2021年中国煤炭产业经济形势研究报告[J]. 中国煤炭,2021,47(3):53-61. [4]朱红青, 胡超, 张永斌, 等. 我国矿井内因火灾防治技术研究现状[J]. 煤矿安全, 2020, 51(03):88-92. [5]齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(09):1-40. [6]武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(06):1625-1636. [7]李小辉. 煤矿火灾防治技术的研究进展[J]. 煤炭加工与综合利用, 2019(04):63-67. [8]王俊波. 煤自燃防治技术现状及发展[J]. 内蒙古煤炭经济, 2018(19):103-104. [9]付亚荣, 李明磊, 王树义, 等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(04):526-540. [10]赵一伟. 浅析煤矿井下灾害及其防治[J]. 能源与节能, 2018(07):53-54. [11]杜克磊, 赵俊兰, 刘谏, 等. 我国地源热泵应用研究现状与展望[J]. 北方工业大学学报, 2018, 30(02):96-104. [12]王鑫. 煤炭行业供给侧改革政策对我国动力煤市场及价格影响研究[D]. 武汉大学, 2018. [13]仲晓星, 汤研, 田绪沛. 大面积煤田火区热能的提取与转换方法[J]. 煤矿安全, 2016, 47(10):161-164. [14]梁运涛, 侯贤军, 罗海珠, 等. 我国煤矿火灾防治现状及发展对策[J]. 煤炭科学技术, 2016, 44(06):1-6. [15]潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报, 2016, 41(01):105-112. [16]刘贞堂, 张松山, 喜润泽, 等. 受限空间煤尘爆炸残留气体特征分析[J]. 煤炭学报, 2015, 40(07):1574-1579. [17]张盛祥. 煤矿煤层自然发火原因分析及防治措施[J]. 科技创新与应用, 2015(07):79. [18]牛会永, 邓军, 周心权, 等. 矿井火灾事故调查综合分析技术[J]. 中南大学学报(自然科学版), 2012, 43(12):4812-4818. [19]郭志雄. 简析矿井水灾问题[J]. 中小企业管理与科技(上旬刊), 2012(08):156-157. [20]曾强, 王德明, 蔡忠勇. 煤火研究与治理进展[J]. 矿业安全与环保, 2011, 38(01):72-75. [21]徐礼华. 煤垛热管降温的实验研究[J]. 能源研究与利用, 1991(02):11-15. [22]李贝. 煤矸石山非控自燃热动力学特征及移热方法研究[D]. 西安科技大学, 2017. [23]韩东, 彭涛, 李强. 重力热管对粳稻堆的温度分布影响试验研究[J]. 中国粮油学报, 2009, 24(04):114-117. [24]陈良才, 李俊文. 用热管技术增大夜晚沙土降温幅度的实验研究[J]. 华中科技大学学报(自然科学版), 2007(07):82-84. [25]Plot R . Natural history of oxfordshire[M]. Oxford:University of Oxford, 1977. [27]张志明. 煤的自燃倾向性影响因素研究[D]. 华北理工大学, 2020. [28]朱连山. 煤炭的破碎及其对煤和瓦斯突出的影响[J], 矿业安全与环保. 1984, 4:17-24 [30]李增华. 煤炭自燃的自由基反应机理[J]. 中国矿业大学学报, 1996, 25(3):111-114. [35]Kuenzer C , Stracher G B . Geomorphology of coal seam fires[J]. Geomorphology 2012, 138:209-222. [38]鲁霞. 测震技术应用于地热开发研究的新进展[J]. 国际地震动态, 1988(10):22-23. [39]王新华, 李鹏辉. 地源热泵系统地热平衡耦合控制策略研究[J]. 洁净与空调技术, 2020(04):54-56. [40]仲晓星, 汤研, 田绪沛. 大面积煤田火区热能的提取与转换方法[J]. 煤矿安全, 2016, 47(10):161-164. [41]梁灵娇, 刘金平, 许雄文. 用于高热通量电子散热的平板环路重力热管[J]. 化工学报, 2018, 69(10):4231-4238. [42]黄忠礼, 姚远, 骆超, 等. 应用于通信基站的热管空调系统的试验研究[J]. 可再生能源, 2013, 31(06):100-103. [43]丁祥, 林文贤, 许玲, 等. 热管式真空集热管及其太阳集热器的研究与应用[J]. 云南师范大学学报(自然科学版), 2011, 31(04):41-49. [44]张玉丰, 吴晓东, 李伟超. 重力热管井筒伴热方式可行性分析[J]. 石油勘探与开发, 2007(04):483-487. [45]丁奕文, 陈舜嘉, 张程宾. 热管式温差发电研究综述[J]. 建筑热能通风空调, 2018, 37(12):47-51. [46]邓军, 李贝, 马砺. 用热棒技术强化煤堆降温幅度试验[J]. 中国安全科学学报, 2015, 25(06):62-67. [47]李贝, 高伟, 邓军, 等. 基于热棒防灭火技术的煤自燃区域热迁移特征[J]. 中南大学学报(自然科学版), 2020, 51(04):1135-1144. [48]张亚平, 王建国, 姬长发, 马砺. 热管抑制煤自燃的降温效应分析[J]. 煤炭工程, 2017, 49(02):100-102. [49]李文胜, 李建勋, 刘旭东, 等. 利用低温热管技术防止圆形封闭煤场煤堆自燃[J]. 制冷与空调(四川), 2018, 32(03):251-255. [50]孙美华. 基于重力热管降温的地面储煤堆温湿度场数值模拟分析[D]. 安徽理工大学, 2019. [52]战洪仁, 惠尧, 吴众. 闭式热虹吸管强化传热研究进展[J]. 化工进展, 2017, 36(08):2764-2775. [55]徐正基, 杨峻. 石墨烯纳米片-水纳米流体重力热管的传热性能实验研究[J]. 化工机械, 2020, 47(06):751-758. [56]胡浩. 纳米流体重力热管换热特性数值研究[D]. 江苏科技大学, 2016. [59]向军, 李菊香 . 纳米悬浮液热虹吸管的传热性能试验研究[J]. 热能动力工程, 2010, 25(02):190-195. [60]曹滨斌. 纳米流体扩容型脉动热管的传热研究[D]. 天津大学, 2010. [62]吴伟. 纳米流体对热管导热性能影响的研究[D]. 天津科技大学, 2015. [63]刘昂, 杨金钢, 杨威, 等. 以FLUENT软件微热管阵列传热性能的数值模拟[J]. 热处理技术与装备, 2019, 40(01):55-59. [64]杨文斌, 杨峻 . SiO2-乙醇纳米流体重力热管传热性能的试验研究[J]. 当代化工, 2019, 48(12):2962-2966. [68]李本文, 李赛英, 李斌, 等. 重力热管内部相变及传热传质过程的数值模拟[J]. 热科学与技术, 2018, 17(06):449-456. [69]姚丽君, 张伟. 小管径重力热管流动与传热特征的仿真研究[J]. 天津城建大学学报, 2019, 25(02):98-102. [70]张燕辉, 朱庆勇. 多壁碳纳米管水基纳米流体重力热管传热特性数值模拟[J]. 节能, 2019, 38(03):64-68. [71]周圆圆. 埋地重力热管传热性能的研究[D]. 中国石油大学, 2008. [74]惠尧. 两相闭式热虹吸管传热性能的实验研究与数值模拟[D]. 沈阳化工大学, 2018. [75]刘云. 环路热虹吸管传热特性及两相流不稳定性研究[D]. 中国科学院大学(中国科学院工程热物理研究所), 2020. [79]冯踏青. 液态金属高温热管的理论和试验研究[D].浙江大学,1998. [80]高玉龙, 李林, 陈军朝, 等. 基于活化能计算的煤低温氧化特征与临界点预测[J]. 重庆大学学报, 2017, 40(11):20-27. [81]张育恒. 基于大型煤堆实验台的煤自燃过程模拟研究[J]. 煤炭科学技术, 2011, 39(12):56-59. [82]尹岚. 煤火热能热棒提取与温差发电利用实验研究[D]. 西安科技大学, 2019. [83]邓军, 文虎, 张辛亥, 等. 煤田火灾防治理论与技术[M]. 徐州:中国矿业大学出版社,2014. 9. [85]李玉琳, 高志刚, 韩延玲. 模糊综合评价中权值确定和合成算子选择[J]. 计算机工程与应用, 2006(23):38-42. [86]李荣平, 李剑玲. 多指标统计综合评价方法研究[J]. 河北科技大学学报, 2004(01):85-88. [87]廖红强, 邱勇, 杨侠, 等. 对应用层次分析法确定权重系数的探讨[J]. 机械工程师, 2012(6): 22-25. [89]邱成虎. 基于FAHP的设计阶段隧道风险评价[J]. 西部探矿工程, 2021, 33(3):185-188. [90]胡春平. 浅谈环比法在建筑施工企业会计核算中的应用[J]. 财会学习, 2020(18):150-151. [92]冯磊磊, 李凯. 改进CRITIC赋权法在岩爆等级评判中的应用探究[J]. 天津化工, 2021, 35(1):63-64. [93]杨梦, 雷博, 史露娜, 等.基于标准离差法的模糊散度多阈值图像分割[J]. 计算机应用与软件, 2020, 37(5):219-225. |
中图分类号: | TD752.2 |
开放日期: | 2021-06-17 |