论文中文题名: |
磁化表面活性剂对煤体润湿及瓦斯解吸动力学特性影响研究
|
姓名: |
闫冬洁
|
学号: |
19120089026
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
0837
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井瓦斯防治
|
第一导师姓名: |
李树刚
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-12
|
论文答辩日期: |
2023-06-03
|
论文外文题名: |
Effect of magnetized surfactant on coal wetting and gas desorption kinetics
|
论文中文关键词: |
瓦斯解吸 ; 煤体润湿性 ; 磁化 ; 表面活性剂 ; 动力学特性
|
论文外文关键词: |
Methane desorption ; Coal wettability ; Magnetization ; Surfactants ; Dynamic characteristics
|
论文中文摘要: |
︿
煤炭作为我国主体能源,长期以来是经济社会稳定发展和国家能源安全供应的重要保障。煤层开采过程中,瓦斯易从煤层中快速解吸涌出,常采用煤层注水等措施预防瓦斯超限。然而,我国煤层大多透水性差,水分难以均匀润湿煤体,作用效果不理想。注入表面活性剂或对表面活性剂溶液进行磁化处理,可增强煤层润湿性,从而有效提高瓦斯缓释效果。本文通过理论分析、实验室实验及数值计算等研究方法,明确了不同磁化表面活性剂对煤体润湿性影响规律,构建了考虑煤体润湿性的瓦斯解吸动力学模型,通过微观角度分析,揭示了磁化表面活性剂、煤体、瓦斯三者间作用关系及磁化表面活性剂对瓦斯解吸影响机理。
选择新疆硫磺沟9-15(08)工作面煤样,测定了所选9种表面活性剂对煤体润湿影响规律,得出十二烷基苯磺酸钠表面活性剂(SDBS)对煤体润湿性影响最佳。分析了静态磁化参数(时间、强度)、动态磁化参数(流速、磁程、磁强)影响下不同质量分数SDBS表面活性剂润湿煤体规律。对比分析纯水、表面活性剂、静态磁化表面活性剂、动态磁化表面活性剂对煤体润湿性影响规律,得到动态磁化SDBS表面活性剂对煤体润湿性影响最为显著,接触角变化率77.17%。利用分子模拟得到了磁化参数对纯水体系、表面活性剂溶液体系中各分子结构特征影响规律;以不同体系水分子相对浓度分布规律、水分子扩散系数变化规律及表面活性剂分子与煤分子间相互作用能为特征参数,明晰了磁化表面活性剂对煤体表面润湿改性影响规律,提出磁场改善水润湿煤体性能的作用机理。
通过自主研发的磁化溶液影响瓦斯解吸动态实验系统,研究了表面活性剂参数、磁化因素对瓦斯解吸量、解吸速率等特征参数的影响,揭示了磁化表面活性剂多因素交互影响下的煤体瓦斯解吸规律,确定了瓦斯解吸缓释最优磁化条件为550 mT磁场强度,2 m磁程,0.75 m/s溶液流速下的0.40%质量分数SDBS表面活性剂。SDBS表面活性剂质量分数,磁场强度在各自变化范围内对甲烷最大解吸量影响最为显著。瓦斯最大解吸量与SDBS质量分数呈指数函数衰减型变化关系。磁场强度和瓦斯解吸量为二次函数关系,两者之间存在极值。当磁场强度为550 mT时,0.40% SDBS作用于煤体时,瓦斯解吸量较干燥煤样减少48.30%,解吸速率降低60%。
构建了磁化表面活性剂-含瓦斯煤分子模型,得到在磁化参数影响下,表面活性剂分子、水分子、煤分子及瓦斯分子间的微观相互作用关系。水分子相对浓度、水分子扩散系数及磁化表面活性剂与煤分子间相互作用能均随磁场强度先增大后减小,表面活性剂回转半径与瓦斯扩散系数呈负相关关系。
推导了磁化表面活性剂作用下瓦斯在煤体孔隙中的动扩散系数,建立了考虑润湿性的磁化表面活性剂影响瓦斯解吸动力学模型,分析了不同磁化表面活性剂对瓦斯解吸动力学效应的影响。SDBS表面活性剂主要通过物理吸附改变煤体亲水性,而磁化作用是在表面活性剂润湿基础上通过氢键作用,改变溶液在煤体上的吸附方式,使水层更加紧密,从而增强磁化表面活性剂对煤体润湿性,这使得更多的水分被吸附进入煤体,从而使煤中瓦斯解吸速率降低。研究结果可为磁化表面活性剂防治工作面瓦斯超限的可行性与实施途径提供一定的理论依据和指导。
﹀
|
论文外文摘要: |
︿
As the main energy source in China, coal has long been an important guarantee for the stable economic and social development and national energy security supply. During the coal mining process, gas is easily desorbed and erupted from the coal seam, which can lead to gas exceeding the limit. Therefore, measures such as injecting water into the coal seam are often used to prevent this from happening. However, in China, most coal seams have poor permeability, making it difficult to evenly wet the coal with water, resulting in ineffective outcomes. Injecting surfactants or magnetic surfactant solutions can enhance the wettability of the coal seam, thereby effectively improving the gas desorption effect. In this study, through theoretical analysis, laboratory experiments, and numerical calculations, we clarified the influence of different magnetic surfactants on coal wettability and established a gas desorption kinetics model considering coal wettability. Through a microscopic analysis, we revealed the interaction relationship between magnetic surfactants, coal, and gas, as well as the mechanism of the influence of magnetic surfactants on gas desorption.
Select coal samples from the 9-15 (08) working face in Liu Huanggou, Xinjiang, and measure the influence of the selected nine surfactants on coal wetting, and conclude that sodium dodecylbenzene sulfonate surfactant (SDBS) has Moisture affects best. The law of wetting coal with different mass fractions of SDBS surfactant under the influence of static magnetization parameters (time, intensity) and dynamic magnetization parameters (flow velocity, magnetic path, magnetic intensity) was analyzed. Comparative analysis of pure water, surfactants, static magnetized surfactants, and dynamic magnetized surfactants on coal wettability shows that dynamic magnetized SDBS surfactants have the most significant impact on coal wettability, and the contact angle change rate is 77.17%. Molecular simulation was used to obtain the influence of magnetization parameters on the molecular structure characteristics of pure water system and surfactant solution system; the relative concentration distribution of water molecules in different systems, the change of diffusion coefficient of water molecules and the relationship between surfactant molecules and coal molecules Interaction energy is used as a characteristic parameter, which clarifies the influence of magnetized surfactants on the wetting modification of coal surface, and proposes the mechanism of magnetic field to improve the performance of water-wet coal.
Through the self-developed magnetized solution affecting gas desorption dynamic experiment system, the influence of surfactant parameters and magnetization factors on gas desorption amount, desorption rate and other characteristic parameters was studied, and the coal gas under the interaction of multiple factors of magnetized surfactants was revealed. According to the desorption law, the optimal magnetization conditions for gas desorption and slow release are determined to be 550 mT magnetic field strength, 2 m magnetic path, and 0.40% mass fraction SDBS surfactant at a solution flow rate of 0.75 m/s. The mass fraction of SDBS surfactant and the magnetic field strength have the most significant influence on the maximum desorption amount of methane within their respective ranges. The relationship between the maximum desorption amount of gas and the mass fraction of SDBS is an exponential function decay type. The relationship between the magnetic field strength and the gas desorption amount is a quadratic function, and there is an extreme value between them. When the magnetic field strength is 550 mT, when 0.40% SDBS acts on the coal body, the gas desorption amount is reduced by 48.30% compared with the dry coal sample, and the desorption rate is reduced by 60%.
A magnetized surfactant-gas-containing coal molecule model was constructed, and the microscopic interaction relationship among surfactant molecules, water molecules, coal molecules and gas molecules under the influence of magnetization parameters was obtained. The relative concentration of water molecules, the diffusion coefficient of water molecules, and the interaction energy between magnetized surfactants and coal molecules all increase first and then decrease with the strength of the magnetic field. The radius of gyration of the active agent is negatively correlated with the gas diffusion coefficient.
The kinetic diffusion coefficient of gas in coal pores under the action of magnetized surfactants was deduced, a model of gas desorption kinetics affected by magnetized surfactants considering wettability was established, and the effects of different magnetized surfactants on gas desorption kinetics were analyzed Impact. The SDBS surfactant mainly changes the hydrophilicity of the coal body through physical adsorption, while the magnetization effect is based on the wetting of the surfactant through hydrogen bonding, changing the adsorption mode of the solution on the coal, making the water layer more compact, thereby enhancing the magnetization Surfactants have wettability to coal, which makes more water absorbed into coal body, thus reducing the rate of gas desorption in coal. This paper can provide a certain theoretical basis and guidance for the feasibility and implementation of magnetized surfactants to prevent and control gas overruns in working faces.
﹀
|
参考文献: |
︿
[1] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. 北京: 国家统计局, 2023. [2] 秦勇, 申建, 史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报, 2022, 47(1): 371–387. [3] 王恩元, 张国锐, 张超林, 等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报, 2022, 47(1): 297–322. [4] 景国勋, 彭乐, 班涛, 等. 甲烷煤尘耦合爆炸传播特性及伤害研究[J]. 中国安全科学学报, 2022, 32(1): 72–78. [5] 许江, 程亮, 彭守建, 等. 煤与瓦斯突出冲击气流形成及传播规律[J]. 煤炭学报, 2022, 47(1): 333–347. [6] 陈向军, 程远平, 王林. 外加水分对煤中瓦斯解吸抑制作用试验研究[J]. 采矿与安全工程学报, 2013, 30(2): 296–301. [7] 肖知国, 孟雷庭. 压力水影响煤层瓦斯解吸的试验研究及机理分析[J]. 中国安全科学学报, 2015, 25(1): 122–127. [8] 董家昕, 肖知国, 戚灵灵. 煤层注水防治瓦斯的临界注水量确定方法[J]. 安全与环境学报, 2018, 18(6): 2183–2189. [9] Wang Z W, Liu S M, Qin Y. Coal wettability in coalbed methane production: A critical review[J]. Fuel, 2021, 303: 121277. [10] Wang H, Ni G H, Zhang X F, et al. Effect of imidazolium-based ionic liquids on the pore wetting characteristics and mechanical properties of coal[J]. Fuel, 2022, 315: 123274. [11] 蒋仲安, 王龙飞, 张晋京, 等. 煤层注水对原煤孔隙及甲烷吸脱附性能的影响[J]. 煤炭学报, 2018, 43(10): 2780–2788. [12] 陈绍杰, 金龙哲, 陈学习, 等. 添加表面活性剂注水对煤体解吸瓦斯的影响分析[J]. 矿业安全与环保, 2013, 40(6): 12–14. [13] 李沛, 马东民, 张辉, 等. 高、低阶煤润湿性对甲烷吸附/解吸的影响[J]. 煤田地质与勘探, 2016, 44(5): 80–85. [14] 陈学习, 龚珑, 金文广, 等. 不同注水条件煤样瓦斯解吸特性试验[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(10): 1310–1313. [15] 张国华, 梁冰, 毕业武. 水锁对含瓦斯煤体的瓦斯解吸的影响[J]. 煤炭学报, 2012, 37(2): 253–258. [16] Hou J Y, Hu X M, Zhao Y, et al. Improvement of wettability of coal seams in water injection via co-deposition of polydopamine and polyacrylamide[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2022, 636: 128112. [17] 安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律[J]. 煤炭学报, 2020, 45(12): 4074–4086. [18] 聂百胜, 何学秋, 冯志华, 等. 磁化水在煤层注水中的应用[J]. 辽宁工程技术大学学报, 2007, 26(1): 1–3. [19] Mehrdad J D S, Saeid N A, Schaffie M. The effect of magnetic field on stability of conventional and pickering water-in-crude oil emulsions stabilized with fumed silica and iron oxide nanoparticles[J]. Journal of Molecular Liquids, 2020, 314: 113629. [20] 安文博. 表面活性剂作用下煤体结构损伤特性研究[D]. 阜新: 辽宁工程技术大学, 2020. [21] Gan J, Wang D M, Xiao Z M, et al. Experimental and molecular dynamics investigations of the effects of ionic surfactants on the wettability of low-rank coal[J]. Energy, 2023, 271: 127012. [22] 郭晓华, 蔡卫, 马尚权, 等. 表面活性剂在煤矿防降尘中的应用实验[J]. 矿业安全与环保, 2010, 37(3): 27–30. [23] 王鹏飞, 刘荣华, 汤梦, 等. 煤矿井下高压喷雾雾化特性及其降尘效果实验研究[J]. 煤炭学报, 2015, 40(9): 2124–2130. [24] 张彦克. 添加表面活性剂注水驱替煤层瓦斯的实验研究[D]. 廊坊: 华北科技学院, 2016. [25] 孙成坤, 傅贵. 不同性质外液对煤与瓦斯突出防治效果影响[J]. 黑龙江科技学院学报, 2012, 22(5): 447–451. [26] Zhou G, Wang C, Liu R, et al. Synthesis and characterization of water injection fracturing fluid for wetting and softening coal seam[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 150: 105024. [27] Zhou G, Ding J, Ma Y, et al. Synthesis and performance characterization of a novel wetting cementing agent for dust control during conveyor transport in coal mines[J]. Powder Technology, 2020, 360: 165–176. [28] Chen Y, Xu G, Albijanic B. Evaluation of SDBS surfactant on coal wetting performance with static methods: Preliminary laboratory tests[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(23): 2140–2150. [29] Xu C H, Wang D M, Wang H T, et al. Experimental investigation of coal dust wetting ability of anionic surfactants with different structures[J]. Process Safety and Environmental Protection, 2019, 121: 69–76. [30] Wang X N, Yuan S J, Jiang B Y. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples[J]. Advanced Powder Technology, 2019, 30(8): 1696–1708. [31] 李娇阳, 李凯琦. 煤表面润湿性的影响因素[J]. 煤炭学报, 2016, 41(S2): 448–453. [32] 李皓伟, 王兆丰, 岳基伟, 等. 不同类型表面活性剂对煤体的润湿性研究[J]. 煤矿安全, 2019, 50(3): 22–25. [33] Wang H, Xie J N, Xie J, et al. Effect of critical micelle concentration of imidazole ionic liquids in aqueous solutions on the wettability of anthracite[J]. Energy, 2022, 239: 122088. [34] 仝瑞刚, 曹庆贵, 王世聪. 基于表面活性剂的煤尘润湿性研究[J]. 煤炭技术, 2019, 38(4): 118–120. [35] Awan F U R, AlYaseri A, Akhondzadeh H, et al. Influence of mineralogy and surfactant concentration on zeta potential in intact sandstone at high pressure[J]. Journal of Colloid and Interface Science, 2022, 607: 401–411. [36] Wei J P, Jiang W, Si L L, et al. Experimental study of wetting effect of surfactant based on dynamic wetting process and impedance response of coal[J]. Environmental Science and Pollution Research, 2023, 30(2): 4278–4292. [37] 黄维刚, 胡夫, 刘楠琴. 表面活性剂对煤尘湿润性能的影响研究[J]. 矿业安全与环保, 2010, 37(3): 4-6+10+3. [38] 姜丽, 袁树杰. 生物型表面活性剂在煤表面润湿吸附规律研究[J]. 中国安全生产科学技术, 2019, 15(8): 33–37. [39] 任朝华, 陈大钧, 罗跃, 等. 无机盐对辛基酚聚氧乙烯醚乙基磺酸钠临界胶束浓度的影响研究[J]. 化学学报, 2010, 68(17): 1771–1775. [40] Ni G H, Li Z, Sun Q, et al. Effects of [Bmim][Cl] ionic liquid with different concentrations on the functional groups and wettability of coal[J]. Advanced Powder Technology, 2019, 30(3): 610–624. [41] Ni G H, Wang H, Nie B S, et al. Research of wetting selectivity and wetting effect of imidazole ionic liquids on coal[J]. Fuel, 2021, 286: 119331. [42] 张雷, 郭建英, 栗褒, 等. 孔隙结构对低阶煤润湿性影响的分子模拟[J]. 中国矿业大学学报, 2022, 51(6): 1117-1127+1192. [43] 王成勇, 邢耀文, 夏阳超, 等. 离子型表面活性剂对低阶煤润湿性的调控机制[J]. 煤炭学报, 2022, 47(8): 3101–3107. [44] 赵晓亮, 岳阳霞, 宋子岭, 等. 无机盐对表面活性剂润湿煤尘的影响[J]. 露天采矿技术, 2020, 35(3): 35–38. [45] 李娇阳, 陆银平, 赵一星. 表面活性剂对煤润湿性的改性实验[J]. 煤炭技术, 2016, 35(8): 189–191. [46] 林海飞, 刘宝莉, 严敏, 等. 非阳离子表面活性剂对煤润湿性能影响的研究[J]. 中国安全科学学报, 2018, 28(5): 123–128. [47] 李树刚, 闫冬洁, 严敏, 等. 糖脂活性剂对煤体润湿及微观结构特性影响试验[J]. 安全与环境学报, 2022, 22(2): 680–687. [48] Khajeh K, Aminfar H, Mohammadpourfard M. Molecular dynamics simulation of the magnetic field influence on the oil-water interface[J]. Fluid Phase Equilibria, 2020, 522: 112761. [49] Behnam E J, Reisi M. Effect of magnetized water characteristics on fresh and hardened properties of self-compacting concrete[J]. Construction and Building Materials, 2020, 242: 118196. [50] 胡晖, 高红, 贾绍义. 磁场对物质理化性质的影响[J]. 磁性材料及器件, 2000, 31(3): 36–41. [51] 聂百胜, 郭建华, 袁少飞, 等. 外加磁场与表面活性剂对水表面张力影响程度对比[J]. 煤炭科学技术, 2015, 43(4): 48–52. [52] 聂百胜, 丁翠, 李祥春, 等. 磁场对矿井水表面张力影响规律的实验研究[J]. 中国矿业大学学报, 2013, 42(1): 19–23. [53] 陈梅岭, 宋文超, 蒋仲安, 等. 煤矿磁化水喷雾降尘机理及试验研究[J]. 煤炭科学技术, 2014, 42(7): 65-68+87. [54] 张园园, 张军, 尹杰, 等. 磁化水对细颗粒水汽凝结长大的影响[J]. 煤炭学报, 2020, 45(12): 4178–4183. [55] 赵振保. 磁化水的理化特性及其煤层注水增注机制[J]. 辽宁工程技术大学学报(自然科学版), 2008, 27(2): 192–194. [56] Wang H T, Xuan W, Zhang Z Z, et al. Experimental investigation of the properties of dust suppressants after magnetic-field treatment and mechanism exploration[J]. Powder Technology, 2019, 342: 149–155. [57] 夏伟. 新型磁化雾降尘技术及煤尘润湿剂研究[D]. 徐州: 中国矿业大学, 2015. [58] 王永珍. 磁化表面活性剂降尘技术在综放工作面应用研究[J]. 煤炭技术, 2016, 35(11): 93–95. [59] 谢丹, 姜福川, 王嘉瑞. 煤层脉冲注磁化水防尘应用研究[J]. 煤炭技术, 2015, 34(9): 231–233. [60] Zhou Q, Qin B T. Coal dust suppression based on water mediums: A review of technologies and influencing factors[J]. Fuel, 2021, 302: 121196. [61] Zhou Q, Qin B T, Wang F, et al. Experimental investigation on the performance of a novel magnetized apparatus used to improve the dust suppression ability of surfactant-magnetized water[J]. Powder Technology, 2019, 354: 149–157. [62] 荆德吉, 任帅帅, 葛少成. 不同磁化抑尘剂对煤粉润湿性影响规律的实验研究[J]. 中国安全生产科学技术, 2019, 15(7): 107–112. [63] 刘金璐, 谷明月. 磁化复配表面活性剂与压风细雾喷嘴耦合协同雾化降尘的性能研究[J]. 矿业安全与环保, 2020, 47(2): 52-55+60. [64] 秦波涛, 周群, 李修磊, 等. 煤矿井下磁化水与表面活性剂高效协同降尘技术[J]. 煤炭学报, 2017, 42(11): 2900–2907. [65] 秦波涛, 周刚, 周群, 等. 煤矿综采工作面活性磁化水喷雾降尘技术体系与应用[J]. 煤炭学报, 2021, 46(12): 3891–3901. [66] 缪学玉. 用表面活性剂水溶液处理突出煤层[J]. 煤矿开采, 1991, (2): 51–53. [67] 肖知国, 王兆丰, 陈立伟, 等. 煤层高压注水防治煤与瓦斯突出效果考察及机理分析[J]. 河南理工大学学报(自然科学版), 2010, 29(3): 287-292+311. [68] 李平. 水力挤出技术在突出煤层中的应用[J]. 煤炭科学技术, 2007, 35(8): 45-47+52. [69] 刘建新, 李志强, 李三好. 煤巷掘进工作面水力挤出措施防突机理[J]. 煤炭学报, 2006, 31(2): 183–186. [70] 金龙哲, 蒋仲安, 任宝宏, 等. 煤层注水中水分蒸发现象的研究[J]. 中国安全科学学报, 2000, 10(3): 61-65+82. [71] Wu J H, Yu J, Wang Z F, et al. Experimental investigation on spontaneous imbibition of water in coal: Implications for methane desorption and diffusion[J]. Fuel, 2018, 231: 427–437. [72] 朱锴. 表面活性剂降低瓦斯涌出的实验研究[D]. 北京: 中国地质大学(北京), 2010. [73] Yue J W, Wang Z F, Shi B M, et al. Interaction mechanism of water movement and gas desorption during spontaneous imbibition in gas-bearing coal[J]. Fuel, 2022, 318: 123669. [74] 杨永良, 李增华, 侯世松, 等. 甲烷在表面活性剂水溶液中溶解度的实验研究[J]. 采矿与安全工程学报, 2013, 30(2): 302–306. [75] Huang Z, Chen M L, Wang J J, et al. Experimental study on methane dissolved in surfactant-alkane system[J]. International Journal of Mining Science and Technology, 2020, 30(6): 865–873. [76] 高波, 康毅力, 史斌, 等. 压裂液对煤岩储层解吸–扩散性能的影响[J]. 煤田地质与勘探, 2016, 44(6): 79–84. [77] 杨春虎, 姚建, 田冬梅, 等. 表面活性剂影响煤体瓦斯吸附解吸性能的实验研究[J]. 煤矿安全, 2009, 40(5): 4–8. [78] 胡友林, 乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报, 2014, 39(6): 1107–1111. [79] Huang Q M, Liu S M, Wang G, et al. Gas sorption and diffusion damages by guar-based fracturing fluid for CBM reservoirs[J]. Fuel, 2019, 251: 30–44. [80] 张晓宇. 表面活性剂润湿煤体的实验研究[D]. 北京: 中国地质大学(北京), 2010. [81] Zhu K, Li B. Mechanism and Experiment Study on Surfactant Solution to Block Methane[J]. Procedia Engineering, 2012, 45: 298–304. [82] You Q, Wang C Y, Ding Q F, et al. Impact of surfactant in fracturing fluid on the adsorption–desorption processes of coalbed methane[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 35–41. [83] Li X C, Kang Y L. Effect of fracturing fluid immersion on methane adsorption/desorption of coal[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 449–457. [84] 张增志, 陈志纯, 曹蕾. 十二烷基硫酸钠复合胶束液对甲烷的吸收作用及其吸收机理[J]. 煤炭学报, 2010, 35(6): 942–945. [85] 周雅萍, 于涛, 刘家林, 等. 复配型表面活性剂与碱/聚合物三元驱油体系的筛选实验研究[J]. 精细石油化工进展, 2010, 11(1): 24–26. [86] 王丽娟. 水锁效果与温度及外液浓度之间关系实验研究[D]. 哈尔滨: 黑龙江科技大学, 2020. [87] 李树刚, 闫冬洁, 严敏, 等. 烷基糖苷活性剂对煤体结构改性及甲烷解吸特性的影响[J]. 煤炭学报, 2022, 47(1): 286–296. [88] Li S G, Yan D J, Yan M, et al. Molecular simulation of alkyl glycoside surfactants with different concentrations inhibiting methane diffusion in coal[J]. Energy, 2023, 263: 125771. [89] 林海飞, 田佳敏, 刘丹, 等. SDBS与CaCl2复配液对煤体瓦斯解吸抑制效应研究[J]. 中国安全科学学报, 2019, 29(11): 149–155. [90] Absalan Y, Gholizadeh M, Choi H J. Magnetized solvents: Characteristics and various applications[J]. Journal of Molecular Liquids, 2021, 335: 116167. [91] Zhou K X, Lu G W, Zhou Q C, et al. Monte Carlo simulation of liquid water in a magnetic field[J]. Journal of Applied Physics, 2000, 88(4): 1802–1805. [92] Wang Y F, Zhang B, Gong Z B, et al. The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments[J]. Journal of Molecular Structure, 2013, 1052: 102–104. [93] Toledo E J L, Ramalho T C, Magriotis Z M. Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models[J]. Journal of Molecular Structure, 2008, 888(1): 409–415. [94] 丁振瑞, 赵亚军, 陈凤玲, 等. 磁化水的磁化机理研究[J]. 物理学报, 2011, 60(6): 432–439. [95] 邓波, 庞小峰. 静磁场作用下的水的性质改变[J]. 电子科技大学学报, 2008, 37(6): 959–962. [96] Pang X F, Deng B. Investigation of changes in properties of water under the action of a magnetic field[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(11): 1621–1632. [97] Pang X F, Deng B. The changes of macroscopic features and microscopic structures of water under influence of magnetic field[J]. Physica B: Condensed Matter, 2008, 403(19): 3571–3577. [98] Lee S H, Jeon S I, Kim Y S, et al. Changes in the electrical conductivity, infrared absorption, and surface tension of partially-degassed and magnetically-treated water[J]. Journal of Molecular Liquids, 2013, 187: 230–237. [99] Cai R, Yang H W, He J S, et al. The effects of magnetic fields on water molecular hydrogen bonds[J]. Journal of Molecular Structure, 2009, 938(1–3): 15–19. [100] Loening N M, Rosay M, Weis V, et al. Solution-State dynamic nuclear polarization at high magnetic field[J]. Journal of the American Chemical Society, 2002, 124(30): 8808–8809. [101] Aminfar H, Mohammadpourfard M. A molecular dynamics simulation of the toluene-water interface in the presence of an external magnetic field[J]. Journal of Applied Fluid Mechanics, 2020, 13(6): 1975–1983. [102] Moosavi F, Gholizadeh M. Magnetic effects on the solvent properties investigated by molecular dynamics simulation[J]. Journal of Magnetism and Magnetic Materials, 2014, 354: 239–247. [103] Panczyk T, Camp P J. Lorentz forces induced by a static magnetic field have negligible effects on results from classical molecular dynamics simulations of aqueous solutions[J]. Journal of Molecular Liquids, 2021, 330: 115701. [104] Mghaiouini R, Garmim T, Monkade M, et al. Investigate the effects of salinity and temperature on the surface tension of a electromagnetic water[J]. Physica Scripta, 2020, 96(2): 025805. [105] Sronsri C, Uyen K, Sittipol W. Analyses of vibrational spectroscopy, thermal property and salt solubility of magnetized water[J]. Journal of Molecular Liquids, 2021, 323: 114613. [106] 李建功. 综采工作面活性磁化水防尘技术研究[J]. 能源与环保, 2020, 42(10): 52-58+66. [107] Liu J S, Cao Y. Experimental study on the surface tension of magnetized water[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105091. [108] 李艳琴. 磁场强度对磁性液体磁表面张力系数的影响[J]. 物理实验, 2015, 35(5): 30–33. [109] Xi X, Jiang S G, Zhang W Q, et al. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal[J]. Fuel, 2019, 244: 176–183. [110] 杨静, 徐辉, 高建广, 等. 粒度对煤尘表面特性及润湿性的影响[J]. 煤矿安全, 2014, 45(10): 140–143. [111] 齐健, 闫奋飞, 王怀法. 不同煤种接触角及润湿性规律探究[J]. 矿产综合利用, 2018, 24(2): 112–117. [112] 文金浩, 薛娇, 张磊, 等. 基于XRD分析长焰煤润湿性与其灰分的关系[J]. 煤炭科学技术, 2015, 43(11): 83-86+121. [113] Wang H T, Zhang L, Wang D M, et al. Experimental investigation on the wettability of respirable coal dust based on infrared spectroscopy and contact angle analysis[J]. Advanced Powder Technology, 2017, 28(12): 3130–3139. [114] 程卫民, 徐翠翠, 周刚. 煤尘表面碳、氧基团随变质增加的演化规律及其对润湿性的影响[J]. 燃料化学学报, 2016, 44(3): 295–304. [115] 程卫民, 薛娇, 周刚, 等. 烟煤煤尘润湿性与无机矿物含量的关系研究[J]. 中国矿业大学学报, 2016, 45(3): 462–468. [116] Xie H C, Ni G H, Xie J N, et al. The effect of SDS synergistic composite acidification on the chemical structure and wetting characteristics of coal[J]. Powder Technology, 2020, 367: 253–265. [117] Gutierre R J A, Purcell R J, Aplan F F. Estimating the hydrophobicity of coal[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 1984, 12: 1–25. [118] Huang Q M, Liu S M, Wang G, et al. Evaluating the changes of sorption and diffusion behaviors of Illinois coal with various water-based fracturing fluid treatments[J]. Fuel, 2021, 283: 118884. [119] Hu Y, Wang S, He Y R. Interaction of amino acid functional group with water molecule on methane hydrate growth[J]. Journal of Natural Gas Science and Engineering, 2021, 93: 104066. [120] Zhang Q, Chen X Y, Wang H T, et al. Exploration on molecular dynamics simulation methods of microscopic wetting process for coal dust[J]. International Journal of Coal Science & Technology, 2021, 8(2): 205–216. [121] Sun L Y, Ge S C, Jing D J, et al. Wetting mechanism and experimental study of synergistic wetting of bituminous coal with SDS and APG1214[J]. ACS Omega, 2022, 7(1): 780–785. [122] 李树刚, 郭豆豆, 白杨, 等. 不同质量分数SDBS对煤体润湿性影响的分子模拟[J]. 中国安全科学学报, 2020, 30(3): 21–27. [123] 姜丽. 生物型表面活性剂对煤瓦斯吸附解吸性能的影响研究[D]. 安徽理工大学, 2020. [124] 秦玉金, 苏伟伟, 田富超, 等. 煤层注水微观效应研究现状及发展方向[J]. 中国矿业大学学报, 2020, 49(3): 428–444. [125] Li J, Huang Q M, Wang G, et al. Influence of active water on gas sorption and pore structure of coal[J]. Fuel, 2022, 310: 122400. [126] 徐星华, 杨嘉怡, 杨韶昆. 活性水降低工作面瓦斯涌出强度试验研究[J]. 工矿自动化, 2016, 42(4): 41–46. [127] 张国华, 梁冰. 渗透剂溶液侵入对瓦斯解吸速度影响实验研究[J]. 中国矿业大学学报, 2012, 41(2): 200-204+218. [128] 张国华, 梁冰, 毕业武, 等. 水的后置侵入对瓦斯解吸影响试验研究[J]. 安全与环境学报, 2011, 11(6): 204–208. [129] Pan Z J, Connell L D, Camilleri M, et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010, 89(11): 3207–3217. [130] Wang G, Wang E M, Huang Q M, et al. Effects of cationic and anionic surfactants on long flame coal seam water injection[J]. Fuel, 2022, 309: 122233. [131] Guo J Y, Zhang L, Liu S Y, et al. Effects of hydrophilic groups of nonionic surfactants on the wettability of lignite surface: Molecular dynamics simulation and experimental study[J]. Fuel, 2018, 231: 449–457. [132] Liu S Y, Liu X Y, Guo Z Y, et al. Wettability modification and restraint of moisture re-adsorption of lignite using cationic gemini surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508: 286–293. [133] Hao L S, Jia Y F, Liu Q, et al. Influences of molecular structure of the cationic surfactant, additives and medium on the micellization of cationic/anionic surfactant mixed systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511: 91–104. [134] Mohammed I, Afagwu C C, Adjei S, et al. A review on polymer, gas, surfactant and nanoparticle adsorption modeling in porous media[J]. Oil & Gas Science and Technology, 2020, 75: 77. [135] 方云, 夏咏梅. 表面活性剂的安全性和温和性[J]. 日用化学工业, 1998, 28(6): 24–29. [136] 方云, 夏咏梅. 两性表面活性剂(五)两性表面活性剂的生理活性[J]. 日用化学工业, 2001, 31(1): 51–56. [137] 黄强, 王梦欣, 张灿, 等. 葡萄糖酯表面活性剂的刺激性及界面性质[J]. 华南理工大学学报(自然科学版), 2021, 49(12): 8–15. [138] 林佩施, 何小维, 王志刚, 等. 辛烯基琥珀酸淀粉糖酯在沐浴露中的应用研究[J]. 日用化学品科学, 2015, 38(3): 25–28. [139] 贾亮, 李真, 贾绍义. 磁化技术在工业水处理中的应用[J]. 化学工业与工程, 2006, 23(1): 59–64. [140] 安燕, 程江, 杨卓如, 等. 微生物磁效应在废水处理中的应用[J]. 化工环保, 2006, 26(6): 467–470. [141] Iwasaka M, Ueno S. Structure of water molecules under 14 T magnetic field[J]. Journal of Applied Physics, 1998, 83(11): 6459–6461. [142] 胡彪. 煤中多尺度孔隙结构的甲烷吸附行为特征及其微观影响机制[D]. 徐州: 中国矿业大学, 2022. [143] Gelb L D, Gubbins K E. Pore size distributions in porous glasses: a computer simulation study[J]. Langmuir, 1999, 15(2): 305–308. [144] Li S G, Bai Y, Lin H F, et al. Molecular simulation of adsorption of gas in coal slit model under the action of liquid nitrogen[J]. Fuel, 2019, 255: 115775. [145] Liao X X, Wang B, Wang L, et al. Experimental study on the wettability of coal with different metamorphism treated by surfactants for coal dust control[J]. ACS Omega, 2021, 6(34): 21925–21938. [146] Niu W J, Nie W, Yuan M Y, et al. Study of the microscopic mechanism of lauryl glucoside wetting coal dust: Environmental pollution prevention and control[J]. Journal of Hazardous Materials, 2021, 412: 125223. [147] Belhaj A F, Juhairi A B M S, Elraies K A, et al. Partitioning behaviour of novel surfactant mixture for high reservoir temperature and high salinity conditions[J]. Energy, 2020, 198: 117319. [148] Spreiter Q, Walter M. Classical molecular dynamics simulation with the velocity verlet algorithm at strong external magnetic fields[J]. Journal of Computational Physics, 1999, 152(1): 102–119. [149] Sun H, Mumby S J, Maple J R, et al. An ab Initio CFF93 all-atom force field for polycarbonates[J]. Journal of the American Chemical Society, 1994, 116(7): 2978–2987. [150] Song Y, Wei M J, Xu F, et al. Molecular simulations of water transport resistance in polyamide RO membranes: interfacial and interior contributions[J]. Engineering, 2020, 6(5): 577–584. [151] Meng X L, Gao M Q, Chu R, et al. Construction of a macromolecular structural model of Chinese lignite and analysis of its low-temperature oxidation behavior[J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1314–1321. [152] Meshram P, Purohit B K, Sinha M K, et al. Demineralization of low grade coal – A review[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 745–761. [153] Hu H X, Li X C, Fang Z M, et al. Small-molecule gas sorption and diffusion in coal: Molecular simulation[J]. Energy, 2010, 35(7): 2939–2944. [154] Mathews J P, Chaffee A L. The molecular representations of coal – A review[J]. Fuel, 2012, 96: 1–14. [155] Carlson G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy & Fuels, 1992, 6(6): 771–778. [156] Wang Q L, Wen Q Y, Zhang F Y, et al. Molecular dynamics simulation of mass transfer characteristics of DMSO at the hexane/water interface in the presence of amphiphilic Janus nanoparticles[J]. Chemical Engineering Science, 2022, 248: 117231. [157] Zhou Q, Qin B T, Huang H X. Research on the formation mechanism of magnetized water used to wet coal dust based on experiment and simulation investigation on its molecular structures[J]. Powder Technology, 2021, 391: 69–76. [158] Hao M, Wei C M, Qiao Z. Effect of internal moisture on CH4 adsorption and diffusion of coal: A molecular simulation study[J]. Chemical Physics Letters, 2021, 783: 139086. [159] Chibowski E, Szcześ A. Magnetic water treatment–A review of the latest approaches[J]. Chemosphere, 2018, 203: 54–67. [160] Xia Y C, Yang Z L, Zhang R, et al. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study[J]. Fuel, 2019, 239: 145–152. [161] Xia Y C, Zhang R, Xing Y W, et al. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study[J]. Fuel, 2019, 235: 687–695. [162] Jin H, Zhang Y S, Dong H Tao, et al. Molecular dynamics simulations and experimental study of the effects of an ionic surfactant on the wettability of low-rank coal[J]. Fuel, 2022, 320: 123951. [163] Coey J M D, Cass S. Magnetic water treatment[J]. Journal of Magnetism and Magnetic Materials, 2000, 209(1–3): 71–74. [164] Colic M, Morse D. Effects of amplitude of the radiofrequency electromagnetic radiation on aqueous suspensions and solutions[J]. Journal of Colloid and Interface Science, 1998, 200(2): 265–272. [165] 赵科. 安阳矿区突出煤体瓦斯解吸扩散动力学特性实验研究[D]. 徐州: 中国矿业大学, 2020. [166] Wang Q, Zhang J P, Li H N, et al. Exploring molecular structure characteristics and chemical index of Qinghua bituminous coal: A comprehensive insight from single molecule of macerals to particles with various sizes[J]. Powder Technology, 2022, 396: 36–49. [167] Bai Y, Lin H F, Li S G, et al. Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures[J]. Energy, 2021, 219: 119686. [168] 孟筠青, 夏捃凯, 牛家兴, 等. SDBS溶液对赵庄煤表面润湿作用机理的研究[J]. 中国矿业大学学报, 2021, 50(2): 381–388. [169] Li P, Ma D M, Zhang J C, et al. Effect of wettability on adsorption and desorption of coalbed methane: A case study from low-rank coals in the southwestern ordos basin, China[J]. Industrial & Engineering Chemistry Research, 2018, 57(35): 12003–12015. [170] Wang H J, Xu H Y, Jia W, et al. Revealing the intermolecular interactions of asphaltene dimers by quantum chemical calculations[J]. Energy & Fuels, 2017, 31(3): 2488–2495. [171] Zhang Z Q, Wang C L, Yan K F. Adsorption of collectors on model surface of Wiser bituminous coal: A molecular dynamics simulation study[J]. Minerals Engineering, 2015, 79: 31–39. [172] Ma F R, Wei B, Wang J J, et al. Influence mechanism of Na2O on the network structure depolymerization of ZD coal ash silicate under high temperature[J]. Journal of Non-Crystalline Solids, 2022, 584: 121507. [173] Zang Y, Yang Q R, Wang P, et al. Molecular dynamics simulation of calcium silicate hydrate/tannic acid interfacial interactions at different temperatures: configuration, structure and dynamic[J]. Construction and Building Materials, 2022, 326: 126820. [174] Taylor N W. Diffusion in and through Solids. By R. M. Barrer.[J]. The Journal of Physical Chemistry, 1942, 46(4): 533–534. [175] Nazarova L A, Nazarov L A, Polevshchikov G Y, et al. Inverse problem solution for estimating gas content and gas diffusion coefficient of coal[J]. Journal of Mining Science, 2012, 48(5): 781–788. [176] 罗新荣, 杨欢, 李梦坤, 等. 钻孔煤屑-瓦斯-水耦合的解吸规律[J]. 黑龙江科技大学学报, 2017, 27(5): 462–467. [177] 许端平, 殷宏, 张腾龙, 等. 四溴双酚A在潮土中的吸附及迁移规律[J]. 安全与环境学报, 2020, 20(5): 2009–2017. [178] 王佑安, 杨思敬. 煤和瓦斯突出危险煤层的某些特征[J]. 煤炭学报, 1980, 5(1): 47–53. [179] Qin Y P, Xu H, Liu W, et al. Time- and pressure-independent gas transport behavior in a coal matrix: model development and improvement[J]. Energy & Fuels, 2020, 34(8): 9355–9370. [180] 安丰华, 程远平, 吴冬梅, 等. 基于瓦斯解吸特性推算煤层瓦斯压力的方法[J]. 采矿与安全工程学报, 2011, 28(1): 81-85+89. [181] 岳基伟, 王兆丰. 不同解吸公式对含瓦斯型煤的适用性研究[J]. 中国安全科学学报, 2017, 27(12): 91–96. [182] Airey E M. Gas emission from broken coal: An experimental and theoretical investigation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(6): 475–494. [183] AhmadFarid M A, Hassan M A, TaufiqYap Y H, et al. Kinetic and thermodynamic of heterogeneously K3PO4/AC-catalysed transesterification via pseudo-first order mechanism and Eyring-Polanyi equation[J]. Fuel, 2018, 232: 653–658. [184] 杨其銮, 王佑安. 煤屑瓦斯扩散理论及其应用[J]. 煤炭学报, 1986, 11(3): 87–94. [185] 李志强, 王登科, 宋党育. 新扩散模型下温度对煤粒瓦斯动态扩散系数的影响[J]. 煤炭学报, 2015, 40(5): 1055–1064. [186] 李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J]. 西安科技大学学报, 2018, 38(2): 181-186+272. [187] 尚政杰. 瓦斯含量直接测定方法漏损量推算的研究[J]. 煤矿安全, 2012, 43(1): 1–4. [188] 杨守国, 邱阳, 李树刚, 等. 瓦斯含量直接测定中瓦斯损失量计算方法的比较分析[J]. 煤炭技术, 2016, 35(11): 161–163. [189] Sutherland W. LXXV a dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin[J]. Magazine and Journal of Science, 1905, 9(54): 781–785. [190] Giesche H. Characterization of porous solids and powders: surface area, pore size, and density[J]. Choice Reviews Online, 2005, 42(9): 42–5288. [191] Sutherland W. LII the viscosity of gases and molecular force[J]. Magazine and Journal of Science, 1893, 36(223): 507–531. [192] Schmid P J, Henningson D S. Optimal energy density growth in Hagen–Poiseuille flow[J]. Journal of Fluid Mechanics, 1994, 277: 197–225. [193] Jin Z, Firoozabadi A. Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations[J]. The Journal of Chemical Physics, 2015, 143(10): 104315. [194] Zhang Y. A modified effective binary diffusion model[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 11901–11920. [195] Zhao W, Cheng Y P, Jiang H N, et al. Modeling and experiments for transient diffusion coefficients in the desorption of methane through coal powders[J]. International Journal of Heat and Mass Transfer, 2017, 110: 845–854. [196] 戎鑫, 李建军, 但宏兵, 等. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 65–71. [197] Chang K T, Weng C I. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation[J]. Journal of Applied Physics, 2006, 100(4): 043917. [198] Ma J, Yang Y L, Li X, et al. Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: Role of hydrogen bonding reconstructing[J]. Fuel, 2021, 297: 120763. [199] Toledo E J L, Ramalho T C. Controversies about hydrogen bonds in water molecules on the influence of high magnetic fields: implications on structural and electronic parameters[J]. Molecular Simulation, 2021, 47(14): 1159–1167. [200] Liu J X, Jiang X M, Shen J, et al. Influences of particle size, ultraviolet irradiation and pyrolysis temperature on stable free radicals in coal[J]. Powder Technology, 2015, 272: 64–74. [201] Qin Y P, Xu H, Yang D Y, et al. Modeling of gas desorption and diffusion kinetics in a coal seam combined with a free gas density gradient concept[J]. Energy & Fuels, 2022, 36(17): 10052–10063. [202] Hosseini H, Hosseini H, Jalili M, et al. Static adsorption and interfacial tension of Sodium dodecyl sulfate via magnetic field application[J]. Journal of Petroleum Science and Engineering, 2019, 178: 205–215. [203] Xie H C, Ni G H, Xie J N, et al. The effect of SDS synergistic composite acidification on the chemical structure and wetting characteristics of coal[J]. Powder Technology, 2020, 367: 253–265. [204] Liu Z, Zhu M Y, Yang H, et al. Study on the influence of new compound reagents on the functional groups and wettability of coal[J]. Fuel, 2021, 302: 121113. [205] 秦桐. 离子液体对煤尘的润湿作用及其对煤氧化性的影响[D]. 徐州: 中国矿业大学, 2018. [206] 陈跃, 马卓远, 马东民, 等. 不同宏观煤岩组分润湿性差异及对甲烷吸附解吸的影响[J]. 煤炭科学技术, 2021, 49(11): 47–55.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2025-06-15
|