- 无标题文档
查看论文信息

论文中文题名:

 重污染行业碳生产率动态演进路径及驱动机制研究    

姓名:

 陈德桂    

学号:

 18202217017    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085236    

学科名称:

 工学 - 工程 - 工业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工业工程    

研究方向:

 能源经济    

第一导师姓名:

 尚梅    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-05-30    

论文外文题名:

 Research on the Dynamic Evolution Path and Driving Mechanism of Carbon Productivity in Heavy Pollution Industries    

论文中文关键词:

 重污染行业 ; 碳生产率 ; 环境规制 ; 技术创新    

论文外文关键词:

 Heavy pollution industry ; carbon productivity ; environmental regulation ; technological innovation    

论文中文摘要:

美国CO2信息分析中心(CDIAC)指出,中国的碳排放总量位于世界第一。据统计资料分析,2018年我国工业行业对GDP和碳排放量的贡献度分别为33.89%和70.23%,重污染行业在工业行业中GDP贡献度和碳排放量贡献度分别为59.6%和84.1%。如何使工业、特别是重污染工业行业在节能减排的约束下实现平稳发展是实践及理论界关注的焦点。
首先,本文用单位经济产出的三废污染综合强度筛选出18个重污染行业;其次,借鉴统计分析等方法,分析了重污染行业碳生产率随时间的演进路径;再次,借鉴面板数据分析技术,分析了影响碳生产率的驱动因素、以及环境规制通过技术创新影响碳生产率的作用路径。实证发现:环境规制、技术创新、企业规模、行业竞争力对18个重污染行业碳生产率均有显著正向作用;能源消费结构、行业利润率对18个重污染行业碳生产率有显著负向作用;且环境规制对重污染行业碳生产率的影响呈现出行业异质性;石油和天然气开采业、黑色金属矿采选业、非金属矿采选业等10个行业处于倒“U”型曲线的上升阶段;石油加工炼焦和核燃料加工业、有色金属冶炼及压延加工业处于倒“U”型曲线下降阶段;煤炭开采和洗选业、食品制造业、饮料酒精茶制造业等6个行业环境规制与碳生产率呈线性关系;技术创新中介效应检验发现,除了黑色金属冶炼及压延加工业和黑色金属矿采选业外,其他16个重污染行业中,技术创新在环境规制对碳生产率的影响中都起中介作用。研究结论一方面能为政府正确使用环境规制工具,有针对性的制定相关政策,在保护环境的基础上确保重污染行业健康发展提供理论支持;另一方面,能够激励企业通过技术创新应对环境规制的约束、提升市场竞争力。

论文外文摘要:

The US CO2 Information Analysis Center (CDIAC) pointed out that China's total carbon emissions rank first in the world. According to statistical data analysis, the contribution of my country's industrial industry to GDP and carbon emissions in 2018 was 33.89% and 70.23%, respectively. The contribution of heavy polluting industries to GDP and carbon emissions in the industrial sector were 59.6% and 84.1%, respectively. . How to make industries, especially heavy-polluting industries, achieve stable development under the constraints of energy conservation and emission reduction is the focus of practical and theoretical circles.
First, this article uses the comprehensive intensity of the three wastes per unit of economic output to screen out 18 heavily polluting industries; secondly, using statistical analysis and other methods to analyze the evolution path of the carbon productivity of the heavily polluting industries over time; thirdly, drawing on panel data analysis technology, It analyzes the driving factors that affect carbon productivity and the path of environmental regulation that affects carbon productivity through technological innovation. The empirical findings: environmental regulations, technological innovation, enterprise scale, and industry competitiveness all have a significant positive effect on the carbon productivity of 18 heavy polluting industries; energy consumption structure and industry profit margins have a significant negative effect on the carbon productivity of 18 heavy polluting industries ; And the impact of environmental regulations on the carbon productivity of heavily polluting industries shows industry heterogeneity; 10 industries including oil and gas extraction, ferrous metal mining and dressing, and non-metallic mining and dressing are in an inverted U-shaped curve. Rising stage; petroleum processing, coking and nuclear fuel processing, non-ferrous metal smelting and rolling processing industries are in the downward phase of the inverted "U" curve; 6 industries including coal mining and washing, food manufacturing, beverage, alcohol and tea manufacturing are environmental regulations It has a linear relationship with carbon productivity; the test of the intermediary effect of technological innovation found that, in addition to the ferrous metal smelting and rolling processing industry and the ferrous metal mining and processing industry, in the other 16 heavily polluting industries, technological innovation is in the impact of environmental regulations on carbon productivity Both play an intermediary role. On the one hand, the research conclusions can provide theoretical support for the government to correctly use environmental regulation tools, formulate relevant policies, and ensure the healthy development of heavy-polluting industries on the basis of protecting the environment; on the other hand, it can encourage enterprises to respond to environmental regulations through technological innovation Restraint and enhance market competitiveness.

参考文献:

[1] Kaya Y,Yokobori K. Environment,Energy and Economy:Stra- tegies for Sustainability[M]. Tokyo:United Nations University Press,1997.

[2] Oikonomou V,Becchis F,Steg L,et al. Energy saving and energy efficiency concepts for policy making[J]. Energy Policy,2009,37(11):4787-4796.

[3] Zhengnan L, Yang Y,Jian W. Factor Decomposition of Carbon Productivity Chang in China's Main Industries: Based on the Laspeyres Decomposition Method[J]. Energy Procedia, 2014,61:1893-1896.

[4] Rocío Román-Collado a b, Any Viviana Morales-Carrión b. Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO 2 emissions changes[J]. Energy Policy, 2018, 115:273-280.

[5] Long R,Shao T, Chen H.Spatial econometric analysis of China's province-level industrial carbon productivity and its influencing factors[J]. Applied Energy, 2016:210-219.

[6] Guo L,Wang Y.How does government environmental regulation "unlock" carbon emission effect?——evidence from China[J].Chinese Journal of Population,Resources and Environment, 2018,16(03):56-65.

[7] Sudibyo, A Y.Carbon emission disclosure: does it matter[J]. IOP Conference Series: Earth and Environmental Science,2018,106:012036.

[8] Kim K H,Sul K H,Szulejko J E,et al. Progress in the reduction of carbon monoxide levels in major urban areas in Korea. [J]. Environmental Pollution,2015,207(7):420.

[9] Ambec S,Lanoie P.When and why does it pay to be green?[D].Working Papers Grenoble Applied Economics Laboratory (GAEL),2007,79(3):498-510.

[10] Berman E,Bui LT.Environmental Regulation and Productivity:Evidence from Oil Refineries[J].The Review of Economics and Statistic,2001,88(3):498-510.2013, (9):23-27.

[11] Jorgenson,D.W, Wilcoxen,P.JEnvironmental Regulation and U.S.Economic Growth[J]. The Rand Journal of Economics,1990,21(2):314-340.

[12] Olga,K,Grzegorz,P.Sectoral and Macroeconomic Impacts of the Large Combustion Plants in Poland:A General Equilibrium Analysis[J]. Energy Economics, 2006,28(3):288-307.

[13] Fan Y,Liu L C,Wu Gang et al. Analyzing impact factors of CO2 emissions using the STIRPAT model [J]. Environmental Impact Assessment Review,2006,26(4):377–395.

[14] Li H, Mu H, Zhang M, et al. Analysis on influence factors of China’s CO2 emissions based on Path–STIRPAT model[J]. Energy Policy, 2011, 39(11): 6906-6911.

[15] Grossman GM,Krueger A B. Environmental Impacts of a North American Free Trade Agreement[J]. Social Science Electronic Publishing, 1991, 8(2):223-250.

[16] Zhang,N.and B.Wang3etal.(2016)."Carbon emissions dynamics,efficiency gains,and technological innovation in China's industrial sectors ." Energy, 99:10-19.

[17] Greenstone,Syverson.Environmental Regulation and Innovation:A Panel Data Study [J].Review of Economics and Statistics,2012,79(4):610-619.

[18] 刘晨跃,徐盈之.中国碳生产率演绎的驱动因素研究——基于细分行业的视角[J].中国地质大学学报(社会科学版),2016,16(04):45-54.

[19] 杨文杰,许向阳.强制减排对造纸企业碳排放强度及竞争力的影响[J].物流工程与管理,2019,41(07):137-139+161. 

[20] Zhang Lin,Ma Li. The relationship between industrial structure and carbon intensity at different stages of economic development: an analysis based on a dynamic threshold panel model.[J]. Environmental science and pollution research international,2020.

[21] 佟新华,周红岩,陈武,段志远,徐梦鸿,段海燕.工业化不同发展阶段碳排放影响因素驱动效应测度[J/OL].中国人口·资源与环境, 2020(05): 26-35 .

[22] 田华征,马丽.中国工业碳排放强度变化的结构因素解析[J].自然资源学报,2020,35(03):639-653.

[23] 刘汉初,樊杰,曾瑜皙,郭锐.中国高耗能产业碳排放强度的时空差异及其影响因素[J].生态学报,2019,39(22):8357-8369.

[24] 李治国,王杰.黄河流域经济集聚的碳强度时空跃迁效应研究[J].华东经济管理,2020,34(09):61-71.

[25] 刘传江,胡威,吴晗晗.环境规制、经济增长与地区碳生产率——基于中国省级数据的实证考察[J].财经问题研究,2015(10):31-37.

[26] 沈杨,汪聪聪,高超,丁镭.基于城市化的浙江省湾区经济带碳排放时空分布特征及影响因素分析[J].自然资源学报,2020,35(02):329-342.

[27] Mei Song,Jin Wu,Mengran Song,Liyan Zhang,Yaxu Zhu. Spatiotemporal regularity and spillover effects of carbon emission intensity in China's Bohai Economic Rim[J]. Science of the Total Environment,2020,740.

[28] 王艳丽,王根济.环境规制、工业结构变动与碳生产率增长——基于1998—2013年省级工业行业动态面板数据的实证检验[J].经济与管理,2016,30(06):73-80.

[29] 王淑英,卫朝蓉.环境规制与工业碳生产率的空间溢出效应——基于中国省级面板数据的实证研究[J].地理与地理信息科学,2020,36(03):83-89.

[30] 李虹,刘凌云,王瑞珂.区域企业异质性特征、节能减排与碳排放强度——基于中国省市工业企业面板数据的研究[J].南京审计大学学报,2016,13(04):43-51.

[31] 鞠可一, 周得瑾, 吴君民. 环境规制可以“双赢”吗?——中国工业行业细分视角下的强“波特假说”研究[J]. 北京理工大学学报(社会科学版), 2020,22(01):21-28

[32] 许士春,习蓉,何正霞.中国能源消耗碳排放的影响因素分析及政策启示[J].资源科学,2012,34(01):2-12.

[33] 陈诗一.中国碳排放强度的波动下降模式及经济解释[J].世界经济,2011,34(04):124-143.

[34] 岳超,胡雪洋,贺灿飞,朱江玲,王少鹏,方精云.1995—2007年我国省区碳排放及碳强度的分析——碳排放与社会发展Ⅲ[J].北京大学学报(自然科学版),2010,46(04):510-516.

[35] 王兵,王丽.环境约束下中国区域工业技术效率与生产率及其影响因素实证研究[J].南方经济,2010(11):3-19.

[36] 徐国泉, 刘则渊, 姜照华. 中国碳排放的因素分解模型及实证分析:1995-2004[J]. 中国人口·资源与环境, 2006, 16(6):158-161.

[37] 赵欣, 龙如银. 江苏省碳排放现状及因素分解实证分析[J]. 中国人口·资源与环境, 2010, 20(7):25-30.

[38] 路正南,冯阳.技术进步视角下环境规制对碳排放绩效的影响[J].科技管理研究,2016,36(17):229-234.

[39] 刘祎,杨旭,黄茂兴.环境规制与碳生产率——基于不同技术进步路径的中介效应分析[J/OL].当代经济管理, 2020(06): 1-17[2020-07-16].

[40] 王丽,张岩,高国伦.环境规制、技术创新与碳生产率[J].干旱区资源与环境,2020,34(03):1-6.

[41] 李小平,王树柏,郝路露.环境规制、创新驱动与中国省际碳生产率变动[J].中国地质大学学报,2016,(1):44-54.

[42] 张永军.技术进步,结构变动与碳生产率增长[J].中国科技论坛,2011,(5):114-119.

[43] 赵皋,费能云.外商直接投资、自主创新与碳生产率增长[J].资源开发与市场,2014, 30(2):187-190.

[44] 李珊珊,罗良文.地方政府竞争下环境规制对区域碳生产率的非线性影响——基于门槛特征与空间溢出视角[J].商业研究,2019(01):88-97.

[45] 植草益. 微观规制经济学. 北京:中国发展出版社. 1992: 27-28.

[46] 施蒂格勒. 产业组织与政府管制. 上海:上海人民出版社. 1996: 210-241.

[47] 丹尼尔.F.史普博. 管制与市场. 上海:上海人民出版社. 1999:45.

[48] 张红凤, 张细松, 等著. 环境规制理论研究. 北京:北京大学出版社, 2012.

[49] 李红利. 中国地方政府环境规制的难题及对策机制分析[D]. 上海: 华东师范大学, 2008.

[50] 肖璐. FDI与发展中东道国环境规制的关系研究[D]. 南昌: 江西财经大学, 2010.

[51] 董敏杰. 环境规制对中国产业国际竞争力的影响[D]. 北京: 中国社会科学院研究生院, 2011.

[52] Kaika D, Zervas E. The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case[J]. Energy Policy. 2013,62(5): 1392-1402.

[53] Dou X. Low carbon-economy development: China's pattern and policy selection[J]. Energy Policy. 2013,(63): 1013-1020.

[54] Zhang J, Zeng W, Wang J, et al. Regional low-carbon economy efficiency in China: analysis based on the Super-SBM model with CO2 emissions[J]. Journal of Cleaner Production. 2015,(12): 1-10.

[55] Porter M E.America’s green strategy. ScientificAmerican, 1991, 264(4): 168.

[56] Porter M E, Linde C V D. Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 1995,9(4): 97-118.

[57] Jaffe Adam B., Palmer Karen. Environmental Regulation and Innovation: A Panel Data Study[J]. Review of Economics & Statistics, 1997,79(4):610-619.

[58] 原毅军, 谢荣辉. FDI、环境规制与中国工业碳生产率增长——基于Luenberger指数的实证研究[J]. 国际贸易问题, 2015(08):84-93.

[59] 叶琴, 曾刚, 戴劭勍, 等. 不同环境规制工具对中国节能减排技术创新的影响——基于285个地级市面板数据[J]. 中国人口·资源与环境, 2018,28(2):115-122.

[60] Iraldo Fabio, Testa Francesco, Frey Marco. Is an environmental management system able to influence environmental and competitive performance? The case of the eco-management and audit scheme (EMAS) in the European union[J]. Journal of Cleaner Production, 2009,17(16):1444-1452.

[61] Brouhle Keith, Graham Brad, Harrington Donna Ramirez. Innovation under the Climate Wise program[J]. Resource & Energy Economics, 2013,35:91-112.

[62] Teng M J Wu S. Y. Chou. Environmental Commitment and Economic Performance - Short-Term Pain for Long-Term Gain[J]. Environmental Policy&Governance, 2014,24((1)):16-27.

[63] 康志勇, 汤学良, 刘馨. 环境规制、企业创新与中国企业出口研究——基于“波特假说”的再检验[J]. 国际贸易问题, 2020(02):125-141.

[64] Lanjouw Jean Olson, Mody Ashoka. Innovation and the international diffusion of environmentally responsive technology[J]. Research Policy, 1996,25:549-571.

[65] Hamamoto Mitsutsugu. Environmental regulation and the productivity of Japanese manufacturing industries[J]. Resource and Energy Economics, 2006,299-312(28).

[66] Yang Chih Hai, Tseng Yu Hsuan, Chen Chiang Ping. Environmental regulations, induced R&D, and productivity: Evidence from Taiwan's manufacturing industries[J]. Resource & Energy Economics, 2012,34(4):514-532.

[67] 陈玉龙, 石慧. 环境规制如何影响工业经济发展质量?——基于中国2004—2013年省际面板数据的强波特假说检验[J]. 公共行政评论, 2017,10(05):4-25.

[68] 刘传江. 强“波特假说”存在产业异质性吗?——基于产业碳密集程度细分的视角[J]. 中国人口·资源与环境, 2017,27((6)):1-9.

[69] 李先枝. 政府干预、环境规制与碳生产率[D]. 武汉: 华中科技大学, 2018.

[70] Sinn H W. Public policies against global warming: A supply side approach.International Tax Public Finance, 2008, 15(4): 360-394.

[71] Tobey J A.The effects of domestic environmental policies on patterns of world trade:an empirical test[J].Kyklos,1990(43):191-209.

[72] 赵细康.环境保护和产业国际竞争力:理论与实证分析[M].北京:中国社会科学出版社,2003.

[73] 冯卓.基于 SCP 框架的中国能源产业环境规制政策效应研究[D].辽宁:辽宁大学,2013.

[74] Randy B,Henderson V.Effects of air quality regulations on polluting industries[J].The Journal of Political Economy,2000,18(2):379-421.

[75] 赵莉,胡逸群.环境规制强度与行业绩效关系研究——基于两类创新的中介作用[J].科技管理研究,2020,40(05):243-251.

[76]

殷宝庆. 环境规制与我国制造业碳生产率——基于国际垂直专业化视角的实证[J]. 中国人口·资源与环境, 2012,22(12):60-66.

[77] 李昭华,蒋冰冰:《欧盟环境规制对我国家电出口的绿色壁垒效应》,《中国人口·资源与环境,2010 年,第20卷,第3期,第136 页-142页.

[78] 季良玉.技术创新影响中国制造业转型升级的路径研究[D].东南大学,2016.

[79] 王世进,周敏.我国碳排放影响因素的区域差异研究[J].统计与决策,2013(12):102-104.

[80] 宋德勇,卢忠宝.中国碳排放影响因素分解及其周期性波动研究[J].中国人口·资源与环境,2009,19(03):18-24.

[81] 范秋芳,孙旭杰.基于主成分回归的中国经济增长影响因素的实证研究[J].统计与决策,2012(17):144-146.

[82] 徐敏燕,左和平.集聚效应下环境规制与产业竞争力关系研究——基于“波特假说”的再检验[J].中国工业经济,2013(03):72-84.

[83] 孙学敏,王杰.环境规制对中国企业规模分布的影响[J].中国工业经济,2014(12):44-56.

[84] 龙小宁,万威.环境规制、企业利润率与合规成本规模异质性[J].中国工业经济,2017(06):155-174.

[85] 蔡乌赶, 周小亮. 中国环境规制对碳生产率的双重效应[J]. 经济学家, 2017(9):27-35.

[86] 张俊,林卿,王江泉.工业竞争力升级对碳生产率的影响研究[J].电子科技大学学报(社科版),2019,21(01):94-103.

[87] 兰梓睿,孙振清.考虑碳排放的中国轻工产业绿色生产率及影响因素研究——基于轻工业16个细分行业面板数据[J].中国人口·资源与环境,2020,30(05):58-68.

[88] 王晨璐. 环境规制对我国重污染行业绩效影响研究[D].西安科技大学,2015.

[89] 林伯强,蒋竺均.中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J].管理世界,2009(04):27-36.

[90] 韩庆兰,廖佩君.环境规制、市场需求与生态技术创新——基于34个工业行业的实证分析[J].科技管理研究,2018,38(24):246-254.

[91] 查建平,唐方方.中国工业碳排放绩效:静态水平及动态变化——基于中国省级面板数据的实证分析[J].山西财经大学学报,2012,34(03):71-80.

[92] 孙振清,刘保留,李欢欢.产业结构调整、技术创新与区域碳减排——基于地区面板数据的实证研究[J].经济体制改革,2020(03):101-108.

中图分类号:

 F124.5    

开放日期:

 2021-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式