- 无标题文档
查看论文信息

题名:

 煤体油气渗流-采动应力耦合损伤机理研究    

作者:

 邵亚武    

学号:

 18103077007    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 081903    

学科:

 工学 - 矿业工程 - 安全技术及工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山安全与灾害防治    

导师姓名:

 索永录    

导师单位:

 西安科技大学    

提交日期:

 2023-06-27    

答辩日期:

 2023-06-02    

外文题名:

 Research on coupling damage mechanism of oil and gas seepage-mining stress in coal mass    

关键词:

 煤油气资源共储区 ; 裂隙表征 ; 渗流损伤 ; 渗流-应力耦合 ; 扩容    

外文关键词:

 Coal ; oil and gas resources co-storage area ; Fracture characterization ; Seepage damage ; Seepage-stress coupling ; Expansion    

摘要:

地下工程扰动诱发煤体内部损伤、破坏及渗流场的改变是造成煤体失稳和动力灾害的重要原因之一。在采矿工程中,煤油气资源共储区煤矿越来越多,多种资源开采相互制约现象频繁发生,其中石油、油层气(以下简称油气)渗流和采动应力耦合作用引发的煤矿油气涌出甚至喷出灾害是威胁矿井的安全生产重大问题之一。本文以煤油气共储区煤体油气渗流与采动应力耦合损伤致灾机理为研究目标,采用理论分析、现场探测、数值模拟、室内试验等研究手段,系统的研究油气渗流作用下煤体裂隙演化及力学响应行为,揭示油气渗流-采动应力耦合作用下煤体扩容损伤机理及渗透性能演化规律,取得了以下创新性成果:

(1)采用CT图像识别、分形维数及煤体内部介质CT特征值等手段,对煤体裂隙结构特征进行定性描述;通过裂隙迹长隙宽、数目、密度和体积分数等裂隙结构统计方法,对煤体裂隙结构特征进行定量描述,研究油气渗流对煤体裂隙结构特征的相关性,揭示石油和油层气渗流作用下裂隙演化规律。研究表明:裂隙结构的迹长隙宽符合负指数分布,裂隙发育程度与油气渗流损伤程度呈正相关关系,即取样位置越靠近油井,煤体裂隙越发育,损伤程度越高。

(2)油气渗流对煤体力学特性的劣化,导致受载强度、AE能量、撞击次数、幅值随着煤体远离油井而降低,煤体峰前应力路径与AE参数和破坏类型的动态演化规律呈现出明显的三阶段对应关系。高强度、高RA低AF特征往往伴随着剧烈的变形破坏,对应煤体渗流性能突变与应力急速释放,可以作为煤体失稳与油气灾害产生的定性预警条件。煤体失稳灾害与油气灾害存在动态转化关系,渗流作用促进裂隙扩展、聚结、贯通形成油气灾害通道,同时煤体力学特性劣化,将降低因采动产生煤体失稳的动力灾害。

(3)渗流-应力耦合煤体渗透性能测试发现,煤样渗透率同应力的关系符合抛物线函数K=αf2+βfp+ξf ,煤样渗透率随着载荷的增加扩容前呈指数下降,扩容后呈近似线性趋势增长。渗流-应力耦合条件下,煤体峰值强度三种介质的渗透率表现为油气混合物KM>油层气KG>石油KO,表明油气耦合灾害对煤矿威胁要比石油和油层气单独渗流危害更为严重。基于煤体损伤扩容渐进性破坏的力学响应机制,建立了受载煤体各阶段损伤扩容屈服准则。

(4)分析了油气渗流作用下废弃油井附近煤体的弹性应力分布规律,构建了油气富集区渗透率演化过程中的煤体非线性渗流微分方程。考虑渗流损伤煤体裂隙演化、力学性质劣化及渗透性能演化的影响,引入损伤变量,建立了煤体油气渗流-采动应力耦合损伤模型。基于煤样裂隙三维重构,建立COMSOL Multiphysics数值模型,验证油气渗流-采动应力耦合损伤模型的正确性。模拟结果显示煤样的应力路径、渗流特性和破坏形态与渗流-应力耦合煤体渗透性能测试结果基本一致。

(5)运用COMSOL Multiphysics软件对建立的油井周围煤体油气渗流模型进行了数值求解,系统地分析了煤体与油井空间关系对煤体内部油气渗流规律的影响,以及煤体油气渗流-采动应力耦合作用下石油与油层气的渗流规律,模拟结果表明油井周边煤体孔隙压力、渗流范围和渗流速度与时间、距离呈正相关,煤体渗透率随着孔隙压力的增大呈先减后增的趋势。

(6)研究了油气渗流特征、应力历史以及渗流应力耦合煤体的变形损伤特征和渗透性能演化规律,揭示了油气渗流-采动应力耦合煤体随着渗透压增大,裂隙密度增大,膨胀变形增大,渗透性能增强,抵抗破坏能力减弱,促进裂隙扩展贯通至破坏的损伤机理。确定废弃油井附近煤体油气扩散半径计算方法,以马探31油井为例,计算所得扩散半径348m与现场检测330m渗流范围基本一致。现场监测显示油气压力与浓度在100m范围显著增加,验证了数值模拟与渗流试验结果。

外文摘要:

The change of internal damage, failure and seepage field induced by underground engineering disturbance is one of the important reasons for coal instability and dynamic disaster. In mining engineering, there are more and more coal mines in the co-storage area of coal, oil and gas resources, and the phenomenon of mutual restriction of various resources mining occurs frequently. Among them, the coupling of oil and reservoir gas ( hereinafter referred to as oil and gas ) seepage and mining-induced stress caused by coal mine oil and gas emission and even ejection disaster is one of the major problems that threaten the safety of mine production. In this paper, the coupling damage mechanism of oil-gas seepage and mining-induced stress in coal-oil-gas co-storage area is taken as the research goal. The theoretical analysis, field detection, numerical simulation, laboratory test and other research methods are used to systematically study the fracture evolution and mechanical response behavior of coal under the action of oil-gas seepage, and reveal the expansion damage mechanism and permeability evolution law of coal under the coupling action of oil-gas seepage and mining-induced stress. The following innovative results have been achieved :

(1) The characteristics of coal fracture structure are qualitatively described by means of CT image recognition, fractal dimension and CT characteristic value of coal internal medium. Through the statistical methods of fracture structure such as length, width, number, density and volume fraction of fracture trace, the fracture structure characteristics of coal body are quantitatively described, the correlation between oil and gas seepage and fracture structure characteristics of coal body is studied, and the fracture evolution law under the action of oil and reservoir gas seepage is revealed. The research shows that the trace length and width of the fracture structure conform to the negative exponential distribution, and the degree of fracture development is positively correlated with the degree of oil and gas seepage damage. That is, the closer the sampling position is to the oil well, the more developed the coal fracture is, and the higher the degree of damage is.

(2) The deterioration of mechanical properties of coal caused by oil and gas seepage leads to the decrease of load strength, AE energy, impact times and amplitude as the coal body is away from the oil well. The dynamic evolution law of pre-peak stress path and AE parameters and failure types of coal body shows obvious three-stage correspondence. The characteristics of high strength, high RA and low AF are often accompanied by severe deformation and failure, corresponding to the sudden change of coal seepage performance and rapid release of stress, which can be used as a qualitative early warning condition for coal instability and oil and gas disasters. There is a dynamic transformation relationship between coal instability disaster and oil and gas disaster. Seepage promotes fracture expansion, coalescence and penetration to form oil and gas disaster channels. At the same time, the deterioration of coal mechanical properties will reduce the dynamic disaster of coal instability caused by mining.

(3) The permeability test of seepage-stress coupling coal body shows that the relationship between permeability and stress of coal sample conforms to parabolic function K=αfp2fp+ξf. The permeability of coal sample decreases exponentially with the increase of load before expansion, and increases linearly after expansion. Under the condition of seepage-stress coupling, the permeability of the three media of coal peak strength is expressed as oil and gas mixture KM > reservoir gas KG > oil KO, indicating that the threat of oil and gas coupling disaster to coal mine is more serious than that of oil and reservoir gas alone. Based on the mechanical response mechanism of coal damage expansion failure, the damage expansion and yield criteria of loaded coal in each stage are established.

(4) Analyzed the elastic stress distribution law of coal near abandoned oil wells under the action of oil and gas seepage, and constructed a nonlinear seepage differential equation of coal during the permeability evolution process of oil and gas enriched areas. Considering the influence of seepage damage on the evolution of coal fractures, deterioration of mechanical properties, and evolution of permeability performance, a coupled damage model of coal oil and gas seepage mining stress was established by introducing damage variables. Based on the three-dimensional reconstruction of coal sample fractures, a COMSOL Multiphysics numerical model is established to verify the correctness of the oil and gas seepage mining stress coupled damage model. The simulation results show that the stress path, seepage characteristics, and failure morphology of the coal sample are basically consistent with the permeability performance test results of the seepage stress coupling coal body.

(5) The COMSOL Multiphysics software was used to numerically solve the established oil and gas seepage model of the coal around the oil well. The influence of the spatial relationship between the coal body and the oil well on the oil and gas seepage law inside the coal body was systematically analyzed, as well as the oil and gas seepage law under the coupling of oil and gas seepage-mining stress. The simulation results show that the pore pressure, seepage range and seepage velocity of the coal around the oil well are positively correlated with time and distance, and the coal permeability decreases first and then increases with the increase of pore pressure.

(6) The characteristics of oil and gas seepage, stress history, deformation damage characteristics and permeability evolution law of seepage-stress coupling coal body are studied. The damage mechanism of oil and gas seepage-mining stress coupling coal body is revealed. With the increase of osmotic pressure, the fracture density increases, the expansion deformation increases, the permeability increases, the resistance to failure decreases, and the fracture propagation is promoted. The calculation method of oil and gas diffusion radius of coal near abandoned oil wells is determined. Taking Matan 31 oil well as an example, the calculated diffusion radius of 348 m is basically consistent with the seepage range of 330 m detected on site. Field monitoring shows that the pressure and concentration of oil and gas increase significantly in the range of 100 m, which verifies the correctness of numerical simulation and seepage test results.

参考文献:

[1] 袁亮. 煤及共伴生资源精准开采科学问题与对策[J]. 煤炭学报, 2019,44(01): 1-9.

[2] 中国石油天然气股份有限公司. 永久性弃置井封井技术规范范: Q/SY TZ 0495-2020[S]. 北京: 石油工业出版社, 2021.

[3] 赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010: 2210.

[4] Bai M, Elsworth D. Coupled Processes in Subsurface Deformation, Flow, and Transport[M]. United States: American Society of Civil Engineers, 2000.

[5] 缪协兴, 刘卫群, 陈占清. 采动岩体渗流理论[M]. 北京: 科学出版社, 2004.

[6] 来兴平, 伍永平, 任奋华, 等. 复杂条件下采空区煤岩失稳辨识与灾害控制基础研究[M]. 西安: 陕西科学技术出版社, 2010: 312-316.

[7] Shao Y W, Suo Y L, Xiao J, et al. Dynamic Evolution Characteristics of Oil–Gas Coupling Fractures and Dynamic Disaster of Coal Mass in Coal and Oil Resources Co-Storage Areas[J]. Applied Sciences, 2022,12(9): 4499.

[8] 孔彪, 王恩元, 李增华, 等. 煤岩升温及损伤破坏过程的电磁辐射效应[M]: 南京东南大学出版社, 2020: 140.

[9] 王恩元, 冯俊军, 张奇明, 等. 冲击地压应力波作用机理[J]. 煤炭学报, 2020,45(01): 100-110.

[10] 李建林. 岩石力学[M]: 重庆大学出版社, 2014: 318.

[11] 谢凯楠. 基于声发射的岩石脆性破坏雪崩动力学统计特征及其应用研究[D]: 重庆大学, 2020.

[12] 王帅, 许莹, 张艳博, 等. 基于CT扫描的砂岩主次裂纹扩展特征及影响因素研究[J]. 岩土工程学报, 2022,44(04): 702-711.

[13] Song J F, Lu C P, Zhan Z W, et al. Numerical and Field Investigations of Acoustic Emission Laws of Coal Fracture under Hydro-Mechanical Coupling Loading[J]. Materials, 2022,15(19).

[14] Li Y Y, Cui Q H, Zhang P, et al. Three-dimensional visualization and quantitative characterization of coal fracture dynamic evolution under uniaxial and triaxial compression based on μCT scanning[J]. Fuel, 2020,262(C).

[15] 肖鹏, 高振, 双海清, 等. 不同加载速率下煤体裂隙演化特征分析[J]. 中国安全科学学报, 2022,32(11): 65-73.

[16] 刘永茜, 韩国锋, 王维华, 等. 不同卸载速率下受载煤体裂隙结构演化机制[J]. 煤炭学报, 2020,45(11): 3806-3816.

[17] Yu J, Ryan T A, Hamed L R, et al. Coal Cleat Reconstruction Using Micro-computed Tomography Imaging[J]. Fuel, 2016,181.

[18] 王登科, 张平, 浦海, 等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报, 2018,37(10): 2243-2252.

[19] 张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021,42(10): 2659-2671.

[20] Zhou X P, Zhao Z, Liu Y. Digital Spatial Cracking Behaviors of Fine‐grained Sandstone with Precracks Under Uniaxial Compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020,44(13): 1770-1787.

[21] 刘俊新, 杨春和, 冒海军, 等. 基于CT图像处理的泥页岩裂纹扩展与演化研究[J]. 浙江工业大学学报, 2015,43(01): 66-72.

[22] 邓远刚, 王述红, 孟嫣然, 等. 基于CT扫描的致密砂岩脆性破坏裂纹扩展规律研究[J]. 水利与建筑工程学报, 2017,15(04): 39-43.

[23] Feng X T, Chen S L, Zhou H. Real-time Computerized Tomography (CT) Experiments on Sandstone Damage Evolution During Triaxial Compression with Chemical Corrosion[J]. International Journal of Rock Mechanics and Mining Sciences, 2004,41(2): 181-192.

[24] Moradian Z, Einstein H H, Ballivy G. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals[J]. Rock Mechanics and Rock Engineering, 2016,49(3): 785-800.

[25] 杨更社, 谢定义, 张长庆. 岩石损伤CT数分布规律的定量分析[J]. 岩石力学与工程学报, 1998(03): 279-280.

[26] Yang G S, Sun J, Xie D Y, et al. CT Identification of The Mechanic Characteristick of Damage Propagation of Rock[J]. Journal of Coal Science & Engineering(China), 1997(01): 21-25.

[27] 杨更社, 刘慧. 基于CT图像处理技术的岩石损伤特性研究[J]. 煤炭学报, 2007(05): 463-468.

[28] 任建喜, 葛修润. 裂隙花岗岩卸载损伤破坏全过程CT实时试验[J]. 自然科学进展, 2003(03): 53-58.

[29] Ren J X. Real-time Computerized Tomography(CT) Test of Failure Process of Jointed Granite Under Unloading in Three Gorges Project(TGP)[J]. Journal of Coal Science & Engineering(China), 2004(02): 11-14.

[30] 徐超, 王凯, 郭琳, 等. 采动覆岩裂隙与渗流分形演化规律及工程应用[J]. 岩石力学与工程学报, 2022,41(12): 2389-2403.

[31] 赵明凯, 孔德森. 考虑裂隙面粗糙度和开度分形维数的岩石裂隙渗流特性研究[J]. 岩石力学与工程学报, 2022,41(10): 1993-2002.

[32] 赵毅鑫, 令春伟, 刘斌, 等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报, 2021,38(01): 9-18.

[33] 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996: 10-18.

[34] Xie H P. Fractal Kinematics of Crack Propagation in Geomaterials[J]. Journal of China University of Mining & Technology, 1995(01): 1-8.

[35] 谢和平. 分形力学的数学基础[J]. 力学进展, 1995(02): 174-185.

[36] 高峰, 谢和平, 赵鹏. 岩石块度分布的分形性质及细观结构效应[J]. 岩石力学与工程学报, 1994(03): 240-246.

[37] 高峰, 赵鹏. 岩石破碎程度的分形度量[J]. 力学与实践, 1994(02): 16-17.

[38] 李成杰, 徐颖, 张宇婷, 等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报, 2019,38(11): 2231-2241.

[39] 丁鑫, 肖晓春, 吕祥锋, 等. 煤体破裂分形特征与声发射规律研究[J]. 煤炭学报, 2018,43(11): 3080-3087.

[40] 王国艳, 于广明, 高丽燕, 等. 初始裂隙倾角对岩石损伤断裂特征的影响研究[J]. 煤炭科学技术, 2017,45(06): 100-104.

[41] 路卫凯. 煤岩加卸载下应变-声发射响应特征及失稳前兆信息研究[D]: 中国矿业大学, 2021.

[42] 刘洋, 余贤斌, 谢强, 等. 岩石Kaiser效应方向独立性的研究现状及进展[J]. 地下空间与工程学报, 2012,8(06): 1185-1191.

[43] 汪敏. 煤矿地下水库煤柱坝体损伤机理及时效稳定性研究[D]: 北京科技大学, 2022.

[44] 侯晓琳. 岩石破裂三维裂纹空间表征及扩展规律研究[D]: 中国矿业大学(北京), 2021.

[45] 赵云阁, 黄麟淇, 李夕兵. 岩石损伤强度及峰值强度前后阶段的声发射识别[J]. 岩土工程学报, 2022,44(10): 1908-1916.

[46] 来兴平, 张帅, 代晶晶, 等. 水力耦合作用下煤岩多尺度损伤演化特征[J]. 岩石力学与工程学报, 2020,39(S2): 3217-3228.

[47] 张东明, 白鑫, 尹光志, 等. 含层理岩石单轴损伤破坏声发射参数及能量耗散规律[J]. 煤炭学报, 2018,43(03): 646-656.

[48] 程爱平, 董福松, 张玉山, 等. 单轴压缩胶结充填体裂纹扩展及汇集模式[J]. 中国矿业大学学报, 2021,50(01): 50-59.

[49] 谭云亮, 张明, 徐强, 等. 坚硬顶板型冲击地压发生机理及监测预警研究[J]. 煤炭科学技术, 2019,47(01): 166-172.

[50] 李俊平, 寇坤, 汪潮, 等. 深部开采的岩石(体)声发射/微震特征研究[J]. 安全与环境学报, 2013,13(06): 195-200.

[51] Wang C L, Cao C, LI C F, et al. Experimental Investigation on Synergetic Prediction of Granite Rockburst Using Rock Failure Time and Acoustic Emission Energy[J]. Journal of Central South University, 2022,29(04): 1262-1273.

[52] 王创业, 常新科, 刘沂琳, 等. 单轴压缩条件下大理岩破裂过程声发射频谱演化特征实验研究[J]. 岩土力学, 2020,41(S1): 51-62.

[53] 李振雷, 何学秋, 窦林名, 等. 煤冲击破坏过程规律及同源声电响应特征[J]. 岩石力学与工程学报, 2019,38(10): 2057-2068.

[54] 王笑然, 王恩元, 刘晓斐, 等. 裂隙砂岩裂纹扩展声发射响应及速率效应研究[J]. 岩石力学与工程学报, 2018,37(06): 1446-1458.

[55] Ohtsu M, Isoda T, Tomoda Y. Acoustic Emission Techniques Standardized for Concrete Structures[J]. Journal of Acoustic Emission, 2007,25: 21-32.

[56] 唐巨鹏, 郝娜, 潘一山, 等. 基于声发射能量分析的煤与瓦斯突出前兆特征试验研究[J]. 岩石力学与工程学报, 2021,40(01): 31-42.

[57] 马延崑. 基于煤体微结构和应力扰动特征的煤与瓦斯突出机理研究[D]: 中国矿业大学(北京), 2020.

[58] 荣腾龙. 深部煤体多场耦合作用下渗透率演化规律研究[D]: 中国矿业大学(北京), 2019.

[59] 荣腾龙, 刘克柳, 周宏伟, 等. 采动应力下深部煤体渗透率演化规律研究[J]. 岩土工程学报, 2022,44(06): 1106-1114.

[60] 祝捷, 唐俊, 王琪, 等. 含瓦斯煤渗透率演化模型和实验分析[J]. 煤炭学报, 2019,44(06): 1764-1770.

[61] 张春会, 赵莺菲, 王来贵, 等. 采动煤岩渗透率演化模型及数值模拟[J]. 岩土力学, 2015,36(08): 2409-2418.

[62] 张雷, 周宏伟, 王向宇, 等. 考虑蠕变影响的深部煤体分数阶渗透率模型研究[J]. 岩土工程学报, 2020,42(08): 1516-1524.

[63] 李波波, 李建华, 杨康, 等. 孔隙压力与水分综合作用的煤岩渗透率演化规律[J]. 中国矿业大学学报, 2020,49(01): 44-53.

[64] 刘永茜. 循环载荷作用下煤体渗透率演化的实验分析[J]. 煤炭学报, 2019,44(08): 2579-2588.

[65] Chen H D, Cheng Y P, Ren T X, et al. Permeability Distribution Characteristics of Protected Coal Seams During Unloading of The Coal Body[J]. International Journal of Rock Mechanics and Mining Sciences (Oxford, England : 1997), 2014,71: 105-116.

[66] Zhang Z T, Zhang R, Xie H P, et al. Mining-induced Coal Permeability Change Under Different Mining Layouts[J]. Rock Mechanics and Rock Engineering, 2016,49(9): 3753-3768.

[67] Yin G Z, Li M H, Wang J G, et al. Mechanical Behavior and Permeability Evolution of Gas infiltrated Coals During Protective Layer Mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2015,80: 292-301.

[68] Mao B, Elsworth D. Coupled Processes in Subsurface Deformation, Flow and Transport[J]. American Society of Civil Engineers, 2000,7: 88.

[69] Cui X, Bustin R M. Volumetric Strain Associated with Methane Desorption and Its Impact on Coalbed Gas Production from Deep Coal Seams[J]. AAPG Bulletin, 2005,89(9): 1181-1202.

[70] 李祥春, 郭勇义, 吴世跃. 煤吸附膨胀变形与孔隙率、渗透率关系的分析[J]. 太原理工大学学报, 2005(03): 264-266.

[71] Chen D, Pan Z J, Ye Z H. Dependence of Gas Shale Fracture Permeability on Effective Stress and Reservoir Pressure: Model Match and Insights[J]. Fuel, 2015,139: 383-392.

[72] Seidle J P, Jeansonne M W, Erickson D J. Application of Matchstick Geometry to Stress-dependent Permeability in Coals. Richardson, TX: Soc. Pet. Eng, 1992.

[73] Chen Z W, Liu J, Pan Z P, et al. Influence of The Effective Stress Coefficient and Sorption-induced Strain on The Evolution of Coal Permeability: Model Development and Analysis[J]. International Journal of Greenhouse Gas Control, 2012,8(5): 101-110.

[74] 鲁俊. 深部煤岩真三轴力学响应特性及复合动力灾害研究[D]: 重庆大学, 2020.

[75] Shi J Q, Pan Z J, Durucan S. Analytical Models for Coal Permeability Changes During Coalbed Methane Recovery: Model Comparison and Performance Evaluation[J]. International Journal of Coal Geology, 2014,136: 17-24.

[76] 闫志铭. 煤渗透率各向异性及其对本煤层瓦斯预抽的影响规律研究[D]: 中国矿业大学(北京), 2018.

[77] Ate A, Levent Ekinci Y, Buyuksarac A, et al. Statistical Analysis of Geomagnetic Field Variations During the Partial Solar Eclipse on 2011 January 4 in Turkey[J]. Research in Astronomy and Astrophysics, 2015,15(5): 742-752.

[78] 梁冰, 章梦涛, 潘一山, 等. 瓦斯对煤的力学性质及力学响应影响的试验研究[J]. 岩土工程学报, 1995(05): 12-18.

[79] 陈占清, 刘树才, 赵玉成. 含瓦斯煤的破坏和流动法则[J]. 应用力学学报, 2010,27(02): 269-273.

[80] 孟磊. 含瓦斯煤体损伤破坏特征及瓦斯运移规律研究[D]: 中国矿业大学(北京), 2013.

[81] 陈孝君. 低渗砂岩储层孔隙结构模型构建与输运机理研究[D]: 中国地质大学, 2019.

[82] 张准. 含水合物沉积物孔隙结构特征与渗流规律研究[D]: 中国地质大学, 2021.

[83] 郑涵. 基于CT与NMR技术的煤岩孔裂隙表征及渗流机理研究[D]: 西京学院, 2021.

[84] 刘宇坤. 基于多孔介质弹性力学的碳酸盐岩地层超压预测理论模型及应用[D]: 中国地质大学, 2020.

[85] Xiao W J, Zhang D M, Wang X J. Experimental Study on Progressive Failure Process and Permeability Characteristics of Red Sandstone Under Seepage Pressure[J]. Engineering Geology, 2020,265(C).

[86] 吴大卫, 邸元, 李红凯, 等. 油藏渗流—应力耦合计算区域分析[J]. 东北石油大学学报, 2019,43(04): 107-115.

[87] 师文豪, 杨天鸿, 于庆磊, 等. 层状边坡各向异性岩体渗流-应力耦合模型及工程应用[J]. 岩土力学, 2015,36(08): 2352-2360.

[88] 张英, 李鹏, 郭奇峰, 等. 水力耦合裂隙岩体变形破坏机制研究进展[J]. 哈尔滨工业大学学报, 2020,52(06): 21-41.

[89] Vandamme L, Roegiers J C. Poroelasticity in Hydraulic Fracturing Simulators[J]. Poroelasticity in hydraulic fracturing simulators, 1990,42(9): 1199-1203.

[90] Bruno M, Nakagawa F. Pore Pressure Influence on Tensile Fracture Propagation in Sedimentary Rock[J], 1991,28(2): 261-273.

[91] Simpson G, Guéguen Y. Schneider, F. Permeability Enhancement Due to Microcrack Dilatancy in The Damage Regime[J]. Journal of Geophysical Research, 2001,106(B3): 3999-4016.

[92] 汤连生, 张鹏程, 王洋. 水作用下岩体断裂强度探讨[J]. 岩石力学与工程学报, 2004(19): 3337-3341.

[93] 谢兴华. 岩体水力劈裂机理试验及数值模拟研究[J]. 岩石力学与工程学报, 2005(02): 364.

[94] 唐红侠. 水力劈裂条件下裂隙介质水力特性研究[D]: 河海大学, 2005.

[95] 连志龙, 张劲, 吴恒安, 等. 水力压裂扩展的流固耦合数值模拟研究[J]. 岩土力学, 2008(11): 3021-3026.

[96] 田森. 开采下保护层抽采瓦斯覆岩裂隙演化增透规律研究[D]: 辽宁工程技术大学, 2016.

[97] 张超, 杨楚卿, 白允. 岩石类脆性材料损伤演化分析及其模型方法研究[J]. 岩土力学, 2021,42(09): 2344-2354.

[98] 马秋峰, 刘志河, 秦跃平, 等. 基于能量耗散理论的岩石塑性-损伤本构模型[J]. 岩土力学, 2021,42(05): 1210-1220.

[99] 蒋邦友, 谭云亮, 王连国, 等. 基于Mogi-Coulomb准则的弹塑性损伤本构模型及其数值实现[J]. 中国矿业大学学报, 2019,48(04): 784-792.

[100] 郤保平, 吴阳春, 赵阳升. 热冲击作用下花岗岩宏观力学参量与热冲击速度相关规律试验研究[J]. 岩石力学与工程学报, 2019,38(11): 2194-2207.

[101] 张卫强. 岩石热损伤微观机制与宏观物理力学性质演变特征研究[D]: 中国矿业大学, 2017.

[102] 傅宇方, 梁正召, 唐春安. 岩石介质细观非均匀性对宏观破裂过程的影响[J]. 岩土工程学报, 2000(06): 705-710.

[103] Liu W, Zheng L G, Zhang Z H, et al. A Micromechanical Hydro-Mechanical-Damage Coupled Model for Layered Rocks Considering Multi-scale Structures[J]. International Journal of Rock Mechanics and Mining Sciences, 2021,142.

[104] Tao X, Meng F, Sheng-qi Y, et al. A Numerical Meso-Scale Elasto-Plastic Damage Model for Modeling the Deformation and Fracturing of Sandstone Under Cyclic Loading[J]. Rock Mechanics and Rock Engineering, 2021(prepublish).

[105] Yanlin Z, Liming T, Qiang L, et al. The Micro Damage Model of the Cracked Rock Considering Seepage Pressure[J]. Geotechnical and Geological Engineering, 2019,37(2).

[106] Shao J F, Zhou H, Chau K T. Coupling Between Anisotropic Damage and Permeability Variation in Brittle Rocks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005,29(12): 1231-1247.

[107] Shao J F, Lu Y F, Lydzba D. Damage Modeling of Saturated Rocks in Drained and Undrained Conditions[J]. Journal of Engineering Mechanics, 2004,130(6): 733-740.

[108] Oda M, Takemura T, Aoki T. Damage Growth and Permeability Change in Triaxial Compression Tests of Inada Granite[J]. Mechanics of Materials, 2002,34(6): 313-331.

[109] 杨延毅, 周维垣. 裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J]. 水利学报, 1991(05): 19-27.

[110] 郑少河, 姚海林, 葛修润. 裂隙性膨胀土饱和-非饱和渗流分析[J]. 岩土力学, 2007,28(S1): 281-285.

[111] 郑少河, 姚海林, 葛修润. 裂隙岩体渗流场与损伤场的耦合分析[J]. 岩石力学与工程学报, 2004(09): 1413-1418.

[112] 朱珍德, 李志敬, 朱明礼, 等. 岩体结构面剪切流变试验及模型参数反演分析[J]. 岩土力学, 2009,30(01): 99-104.

[113] 朱珍德, 徐卫亚. 裂隙岩体渗流场与损伤场耦合模型研究[J]. 河海大学学报(自然科学版), 2003(02): 156-160.

[114] 卢应发, 刘德富, 吴延春, 等. 岩石与水相互作用的正交各向异性损伤数值模拟[J]. 岩石力学与工程学报, 2007(02): 323-330.

[115] 陈红江. 裂隙岩体应力—损伤—渗流耦合理论、试验及工程应用研究[D]: 中南大学, 2010.

[116] 赵延林. 裂隙岩体渗流—损伤—断裂耦合理论及应用研究[D]: 中南大学, 2009.

[117] 彭守建, 张倩文, 许江, 等. 基于三维数字图像相关技术的砂岩渗流-应力耦合变形局部化特性试验研究[J]. 岩土力学, 2022,43(05): 1197-1206.

[118] 文志杰, 姜鹏飞, 景所林, 等. 煤矿地下水库底板渗流模拟试验系统研制及验证[J]. 煤炭学报, 2021,46(05): 1487-1497.

[119] Lomize G. Flow in Fractured Rocks[J]. Gosenergoizdat, Moscow, 1951: 127.

[120] 肖维民, 夏才初, 王伟. 考虑三维形貌特征的粗糙节理渗流空腔模型研究[J]. 岩石力学与工程学报, 2011,30(S2): 3786-3795.

[121] Maximilian O K, Anton A P, Tobias S B, et al. The Hydraulic Efficiency of Single Fractures: Correcting The Cubic Law Parameterization for Self-affine Surface Roughness and Fracture Closure[J]. Solid Earth, 2020,11(3).

[122] Ranjith P G, Viete D R. Applicability of The ‘Cubic Law’ for Non-Darcian Fracture Flow[J]. Journal of Petroleum Science and Engineering, 2011,78(2).

[123] 陈卫忠, 隋群, 王鲁瑀, 等. 岩石节理面应力–渗流耦合剪切流变试验系统的研制与应用[J]. 岩石力学与工程学报, 2021,40(09): 1729-1738.

[124] 向博. 卸围压条件下裂隙岩体流固耦合分析与工程应用[D]: 重庆交通大学, 2019.

[125] 曹树刚. 现代采矿理论及技术研究进展[M]: 重庆大学出版社, 2020: 298.

[126] Ma D, Miao X X, Chen Z Q, et al. Experimental Investigation of Seepage Properties of Fractured Rocks Under Different Confining Pressures[J]. Rock Mechanics and Rock Engineering, 2013,46(5).

[127] Ma D, Miao X X, Chen Z Q, et al. Erratum to: Experimental Investigation of Seepage Properties of Fractured Rocks Under Different Confining Pressures[J]. Rock Mechanics and Rock Engineering, 2015,48(5).

[128] 张磊, 王浩盛, 袁欣鹏, 等. 考虑煤渗透性变化的抽采渗流耦合模型研究及应用[J]. 煤炭工程, 2022,54(07): 104-108.

[129] 何峰. 岩石蠕变—渗流耦合作用规律研究[D]: 辽宁工程技术大学, 2010.

[130] 夏同强, 王有湃, 周福宝, 等. 煤岩体应力-渗流-温度多过程耦合试验系统[J]. 中国矿业大学学报, 2021,50(02): 205-213.

[131] 庄宁. 裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究[D]: 同济大学, 2007.

[132] 张良. 含瓦斯煤蠕变-渗流演化实验与理论研究[D]: 中国矿业大学(北京), 2021.

[133] 项吕. 渗流影响下裂隙岩体损伤断裂机制的数值分析研究[D]: 山东大学, 2012.

[134] Oda M, Katsube T, Takemura T. Microcrack Evolution and Brittle Failure of Inada Granite in Triaxial Compression Tests at 140 MPa[J]. Journal of Geophysical Research: Solid Earth, 2002,107(B10): 1-9.

[135] 仵彦卿, 曹广祝, 丁卫华. CT尺度砂岩渗流与应力关系试验研究[J]. 岩石力学与工程学报, 2005(23): 4203-4209.

[136] Tsang C F, Jing L, Stephansson O, et al. The DECOVALEX III Project: A Summary of Activities and Lessons Learned[J]. International Journal of Rock Mechanics and Mining Sciences, 2005,42(2): 593-610.

[137] Rutqvist J, Freifeld B, Min K B, et al. Analysis of Thermally Induced Changes in Fractured Rock Permeability During 8 Years of Heating and Cooling at the Yucca Mountain Drift Scale Test[J]. International Journal of Rock Mechanics and Mining Sciences, 2008,45(8): 1373-1389.

[138] Read R S. 20 Years of Excavation Response Studies at AECL's Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004,41(8): 1251-1275.

[139] 杨天鸿. 岩石破裂过程渗透性质及其与应力耦合作用研究[J]. 岩石力学与工程学报, 2002(03): 457.

[140] Nowak T, Kunz H, Dixon D, et al. Coupled 3D Thermo-Hydro-Mechanical Analysis of Geotechnological in Situ Tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2011,48(1): 1-15.

[141] Kogure. Experimantal Study on Permeability of Crushed Rock[J]. Memoirs of the Defense Academy, 1976,16(4): 149-159.

[142] Kumar P. Non-Darcy cConverging Flow Through Coarse Granular Media[J]. Journal of the Institution of Engineers (India): Civil Engineering Division, 1995,76: 6-17.

[143] 谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术, 2017,49(02): 1-16.

[144] 鞠杨, 任张瑜, 郑江韬, 等. 岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J]. 煤炭学报, 2022,47(01): 210-232.

[145] Ju Y, Zheng J T, Epstein M, et al. 3D Numerical Reconstruction of Well-connected Porous Structure of Rock Using Fractal Algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2014,279: 212-226.

[146] Ju Y, Wang J B, Gao F, et al. Lattice-Boltzmann Simulation of Microscale CH4 Flow in Porous Rock Subject to Force-induced Deformation[J]. Chinese Science Bulletin, 2014,59(26): 3292-3303.

[147] 任张瑜, 谢惠民, 鞠杨. 3D打印模型在光弹性法教学中的应用研究[J]. 力学与实践, 2022,44(01): 163-170.

[148] 赵阳升, 杨栋, 冯增朝, 等. 多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J]. 岩石力学与工程学报, 2008(07): 1321-1328.

[149] 李顺才, 陈占清, 缪协兴, 等. 破碎岩体中气体渗流的非线性动力学研究[J]. 岩石力学与工程学报, 2007(07): 1372-1380.

[150] 赵洪宝, 李华华, 杜秋浩, 等. 含瓦斯煤样横向变形与瓦斯流动特性耦合关系试验研究[J]. 岩土力学, 2013,34(12): 3384-3388.

[151] 盛金昌, 李凤滨, 姚德生, 等. 渗流-应力-化学耦合作用下岩石裂隙渗透特性试验研究[J]. 岩石力学与工程学报, 2012,31(05): 1016-1025.

[152] 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展(A辑), 2003(04): 419-426.

[153] 杨天鸿. 岩石破裂过程渗透性质及其与应力耦合作用研究[D]: 东北大学, 2001.

[154] 刘卫群, 缪协兴. 综放开采J型通风采空区渗流场数值分析[J]. 岩石力学与工程学报, 2006(06): 1152-1158.

[155] 张尔辉. 岩石损伤动态演化规律及其定量表征研究[D]: 华北科技学院, 2021.

[156] 王笑然. 煤岩裂纹震源机制定量反演及断裂行为研究[D]: 中国矿业大学, 2021.

[157] 李保林. 冲击地压多参量前兆响应特征及时空融合预警研究[D]: 中国矿业大学, 2022.

[158] 彭森林. 裂隙粗/细砂岩力学特性及破裂机理研究[D]: 重庆大学, 2021.

[159] 袁秋鹏. 三维静载下循环冲击煤体力学特性及累积损伤演化研究[D]: 安徽理工大学, 2022.

[160] 陆银龙. 渗流—应力耦合作用下岩石损伤破裂演化模型与煤层底板突水机理研究[D]: 中国矿业大学, 2013.

[161] 张洪伟. 裂隙岩体剪切—渗流—传热特性及断层地热开发研究[D]: 中国矿业大学, 2019.

[162] 肖江. 渗流作用下泥页岩井壁损伤失稳研究[D]: 西安石油大学, 2017.

[163] 于艳梅. THC耦合作用下钙芒硝细观结构演化研究[D]: 太原理工大学, 2013.

[164] 陶云奇. 含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D]: 重庆大学, 2009.

[165] 谢和平, 张泽天, 高峰, 等. 不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J]. 煤炭学报, 2016,41(10): 2405-2417.

[166] Yawu S, Yonglu S, Jiang X. Creep Characteristic Test and Creep Model of Frozen Soil[J], 2022.

[167] 王春来, 侯晓琳, 李海涛, 等. 单轴压缩砂岩细观裂纹动态演化特征试验研究[J]. 岩土工程学报, 2019,41(11): 2120-2125.

[168] OHTSU M. Simplified Moment Tensor Analysis and Unified Decomposition[J]. Journal of Geophysical Research, 1991,96(B4): 6211-6221.

[169] 丁煜. 含预制裂纹煤样劈裂破坏特征及尺寸效应实验研究[D]: 中国矿业大学, 2022.

[170] 文卓, 康永尚, 邓泽, 等. 中国含煤盆地浅—中深部现今地应力特点和分布规律[J]. 地质论评, 2019,65(03): 729-742.

[171] 胡云华. 高应力下花岗岩力学特性试验及本构模型研究[D]: 中国科学院研究生院(武汉岩土力学研究所), 2008.

[172] MARTIN C D. The strength of massive Lac du Bonnet granite around underground openings[D]: University of Manitoba Manitoba, 1993.

[173] 张朝鹏, 高明忠, 张泽天, 等. 不同瓦斯压力原煤全应力应变过程中渗透特性研究[J]. 煤炭学报, 2015,40(04): 836-842.

[174] 尹光志, 李小双, 赵洪宝, 等. 瓦斯压力对突出煤瓦斯渗流影响试验研究[J]. 岩石力学与工程学报, 2009,28(04): 697-702.

[175] 张奇. 低渗透页岩层压裂改造的热—流—固耦合机理及应用研究[D]: 中国矿业大学, 2019.

[176] 谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011,36(07): 1067-1074.

[177] Souley M, Homand F, Pepa S, et al. Damage-induced permeability changes in granite; a case example at the URL in Canada[J]. International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2001,38(2): 297-310.

[178] 宋岩, 徐永昌. 天然气成因类型及其鉴别[J]. 石油勘探与开发, 2005(04): 24-29.

中图分类号:

 TD82/O357.3    

开放日期:

 2026-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式