- 无标题文档
查看论文信息

论文中文题名:

 加油加气充电合建站危险源辨识与爆炸风险评价研究    

姓名:

 王少杰    

学号:

 18320214001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 工业火灾与爆炸    

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Study on hazard identification and explosion risk assessment of gas filling and charging station    

论文中文关键词:

 加油加气充电合建站 ; 危险源辨识 ; 道化学火灾爆炸指数法 ; 泄漏扩散 ; 爆炸风险    

论文外文关键词:

 Multifunctional energy supply station ; Hazard identification ; Dow Chemical fire and explosion index method ; Leakage and diffusion ; Explosion risk    

论文中文摘要:

摘  要

为应对不断增长的新能源汽车对加气、充电的需求,同时尽可能节约城市建设用地,加油、加气、充电三合一的汽车能源补给站点应运而生,越来越多的传统加油站寻求增建加气设施和充电桩的可能性。然而,由于加气设施和充电桩的增建,必将给该站点带来新的安全风险。因此,本文以西安某加油加气充电合建站为例,进行了危险源辨识、道化学火灾爆炸危险指数法评价、FLACS、SAFETI数值模拟,系统的研究了加油加气充电合建站的风险源和定量的研究了其危害后果严重度。

首先从物料危险性和设备危险性两个角度系统的辨识了加油加气充电合建站内的危险源,并对危险源进行了风险叠加分析,发现充电桩的线路过载、短路、新能源汽车电池自燃等风险与汽油、柴油储罐以及CNG储气井的燃爆风险有叠加效应。在充电桩增建过程中应保留足够的充电设施与加油加气设施间的安全距离。

在道化学火灾爆炸危险指数法评价中,选定汽油储罐、柴油储罐和CNG储气井为三个工艺单元,根据道化学火灾爆炸指数法(第七版)指南,选取了一般工艺危险系数、特殊工艺危险系数和安全措施补偿系数,评价结果显示:汽油储罐、柴油储罐、天然气储气井的危险等级分别为较轻、最轻和非常大。计入现有的安全措施补偿系数后,汽油储罐、柴油储罐、天然气储气井的危险等级分别降低为最轻、最轻和中等。目前所采取的安全措施有一定的效果,但针对CNG储气井应采取进一步的安全措施。

FLACS数值计算结果显示: CNG槽车发生25 mm孔径泄漏时,泄漏方向+X和-Y方向,气体扩散范围会波及充电桩区域,尤其时在西南风条件下,充电桩区域会积聚大量可燃气体。SAFETI数值计算结果显示:CNG槽车发生25 mm泄漏扩散时达到天然气爆炸下限浓度的最大下风距离为37.34 m, CNG储气井发生25 mm泄漏扩散时达到天然气爆炸下限浓度的最大下风距离为40.37 m。天然气发生25 mm孔径泄漏时达到爆炸下限浓度的范围完全覆盖充电桩区域。当该加油加气充电站所有可能发生泄漏部位全部发生泄漏时,整个站点全部处于闪火范围内。

通过对该加油加气充电合建站进行危险源辨识、道化学火灾爆炸危险指数法评价、天然气泄漏扩散范围数值计算以及油气泄漏爆炸风险范围数值计算认为,加油站增建加气、充电设施会给该站点增加一定的风险,增建加气设施会增加危害后果严重程度,增建充电桩会增加火灾爆炸事故发生概率。因此,对于加油加气充电合建站应该给予更高程度的重视以及更高标准的管理要求。本研究结果对加油加气充电站安全管理具有重要的指导意义。

关 键 词:加油加气充电合建站;危险源辨识;道化学火灾爆炸指数法;泄漏扩散;爆炸风险

研究类型:应用研究

论文外文摘要:

ABSTRACT

In response to the growing demand for natural gas and charging for new energy vehicles, and at the same time saving urban construction land as much as possible, a multi-functional vehicle energy supply station that can add gasoline, diesel, natural gas and charging has emerged as the times require. More and more of traditional gas stations are looking the possibility of adding gas and charging facilities. However, the addition of gas and charging facilities will inevitably bring new safety risks to the station. Therefore, this paper takes a multifunctional energy supply station in Xi'an as an example to carry out hazard identification, Dow Chemical fire and explosion hazard index method evaluation, FLACS, SAFETI numerical simulation, systematically study the risk source of the multifunctional energy supply station and further quantitatively studied the severity of its harmful consequences.

Firstly, the hazard sources in the multi-functional energy supply station were systematically identified from the perspectives of material hazard and equipment hazard, and a risk superposition analysis was carried out for the hazard sources. It was found that the line overload, short circuit, the risk of spontaneous combustion of new energy vehicle batteries and the risk of explosion of gasoline, diesel storage tanks and CNG gas storage wells have superimposed effects. Sufficient safety distance between charging facilities and oil and gas facilities should be reserved during the construction of charging piles.

In the evaluation of Dow Chemical's fire and explosion hazard index method, gasoline storage tanks, diesel storage tanks and CNG gas storage wells are selected as three process units. According to the Dow Chemical Fire and Explosion Index Method (Seventh Edition) guidelines, the general process hazard factor, the special process hazard factor and the compensation factor for safety measures are selected. The evaluation results show that the hazard levels of gasoline storage tanks, diesel storage tanks, and natural gas storage wells are light, lightest, and very large, respectively. After taking into account the compensation coefficient of the existing safety measures, the hazard levels of gasoline storage tanks, diesel storage tanks, and natural gas storage wells are reduced to the lightest, lightest, and medium, respectively. The safety measures taken at present have a certain effect, but further safety measures should be taken for CNG gas storage wells.

The FLACS numerical calculation results show that when a CNG tanker leaks with a 25 mm aperture, the gas diffusion in the +X and -Y directions will spread to the charging pile area, especially under southwest wind conditions, a large amount of combustible gas will accumulate in the charging pile area. The SAFETI numerical calculation results show that the maximum distance to reach the lower limit concentration of natural gas explosion when a 25 mm leak occurs in a CNG tanker is 37.34 m, and it’s of CNG gas storage well is 40.37 m. When natural gas leaks with an aperture of 25 mm, the range that reaches the lower explosion limit concentration completely covers the charging pile area. When all possible leaking parts of the multi-functional energy supply station leak, the entire station is within the flash fire range.

Through the identification of hazard sources, the evaluation of the fire and explosion risk index method of Dow Chemical, the numerical calculation of the scope of natural gas leakage and the numerical calculation of the explosion risk scope of oil and gas leakage, it is believed that the addition of natural gas and charging facilities to the traditional gas station will increase risks of the station. Adding natural gas facilities will increase the severity of harmful consequences, and adding charging facilities will increase the probability of fire and explosion accidents. Therefore, a higher degree of attention and higher management requirements should be given to the multi-functional energy supply station. The results of this study have important guiding significance for the safety management of multi-functional energy supply stations.

Key words: Multifunctional energy supply station; Hazard identification; Dow Chemical fire and explosion index method; Leakage and diffusion; Explosion risk

Thesis   :Research for application

 

参考文献:

[1] 邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(04):469-477.

[2] 段艳妮,董俊.中国新能源汽车产业发展问题探讨[J].汽车与配件.2017, (8):36-37.

[3] 李迎.充电站和天然气加气站合建站的分析[J].煤气与热力,2016,36(10):78-80.

[4] 张建民,张三卿.加油加气站增设电动汽车充电设施的设计[J].石油化工设计,2012,29(3):1-3.

[5] 李素鹏.ISO风险管理标准全解[M].北京:人民邮电出版社,2012.43-45.

[6] 王凯全,李亚丽,康美华,等.化工重大危险源区域风险因素的评价与控制[J].中国安全生产科学技术,2009(6):72-76.

[7] 卢文刚,陈晨.安全生产应急能力评价体系构建初探——基于石化企业的分析[J].北京航空航天大学学报(社会科学版),2012(5):15-19.

[8] 韩其俊.安全检查表法在安全评价中的应用及改进[J].石油化工安全技术,2003(4):13-16.

[9] 刘明礼,李明,周大为.安全评价中安全检查表的编制[J].石油与天然气化工,2003,32(5):324-326.

[10] 王庆慧,刘鹏,王丹枫.安全检查表对作业条件危险性分析方法修正的研究[J].中国安全生产科学技术,2013(8):125-129.

[11] 郭丽杰,康建新.石化装置基于风险的HAZOP分析方法[J].化学工程,2012(5):70-74.

[12] 杜廷召.基于动态模拟的危险与可操作性分析在精馏塔中的应用[J].计算机与应用化学,2010,27(8):1029-1032.

[13] 郑建.计算机辅助危险与可操作性分析在苯乙烯装置中的应用[J].安全、健康和环境,2009(10):33-37.

[14] 于庭安,戴兴国.LNG储罐火灾和爆炸事故树分析[J].中国安全科学学报,2007(8):110-114.

[15] 李永明,杨平,任丽.事件树分析法定量分析闸门事故的频率[J].黑龙江水利科技,2006(4):66-68.

[16] 王智源,来国伟,王峰,等.基于事件树分析法的油库作业安全风险评估研究[J].石油库与加油站,2010(5):31-35.

[17] Center for Chemical Process Safety. Layer of Protection Analysis[M]. New York: American Institute of Chemical Engineers, 2001.

[18] 管杰,廖海燕.保护层分析(LOPA)在炼化生产中的应用[J].安全、健康和环境,2010(1):36-38.

[19] 郑登锋,蒋金生,王明勇.基于风险矩阵和LOPA的风险评价系统在油气管道的应用研究[J].中国安全生产科学技术,2012(10):76-81.

[20] 王旭,张可旭.基于bow-tie的保护层分析法在风险分析中的应用研究[J].青岛理工大学学报,2015,36(6):93-98.

[21] Ferdous R, Khan F, Sadiq R, et al. Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations[J]. Risk Analysis, 2011,31(1):86-107.

[22] Netta L R Morten L, Niels J, et al. A functional HAZOP methodology[J]. Computers & chemical engineering, 2010,34(2):244-253.

[23] Trammell S, Lorenzo D, Davis B. Integrated hazards analysis: Using the strengths of multiple methods to maximize effectiveness: ASSE Professional Development Conference and Exposition, 2003[C].

[24] Markowski A S, Mannan M S. Exsys-LOPA for the chemical process industry[J]. Journal of Loss Prevention in the Process Industries, 2010,23(6):688-696.

[25] Summers A, VogtmannW, Smolen S. Improving PHA/LOPA by consistent consequence severity estimation[J]. Journal of Loss Prevention in the Process Industries, 2011,24(6):879-885.

[26] 曾岳梅.基于ARAMIS体系的爆炸风险评价法及其应用[J].化学工业与工程技术,2014,35(01):38-40.

[27] 赵俊茹,许铎,田峻东,戴光.石油罐区火灾爆炸事故风险评价[J].消防科学与技术,2020,39(02):267-270.

[28] 施虹.液化气码头储罐爆炸风险评价[J].上海海运学院学报,2002(02):71-74+79.

[29] 王亚琼,余建星,梁静,卢贺帅,李骁.深水浮式结构火灾爆炸风险评价方法及软件开发[J].河北工业大学学报,2016,45(01):96-100.

[30] YUAN Z, KHAKZAD N, KHAN F, et al. Risk-based Design of Safety Measures to Prevent and Mitigate Dust Explosion Hazards[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 18095-18108.

[31] YUAN Z, KHAKZAD N, KHAN F, et al. Risk Analysis of Dust Explosion Scenarios Using Bayesian Networks[J]. Risk Analysis, 2015, 35(2).

[32] YUAN Z, KHAKZAD N, KHAN F, et al.Domino Effect Analysis of Dust Explosions Using Bayesian Networks[J]. Chemical Industry & Engineering Progress, 2016, 100: 108-116.

[33] 谢鹏,吕鹏飞.基于改进云模型-IAHP的涉爆粉尘企业安全风险评估[J]. 中国安全生产科学技术,2018,14(08):187-192.

[34] 迟长宇.斗式提升机粉尘爆炸实验与数值模拟研究[D].哈尔滨理工大学,2019.

[35] 李仪宣.基于CFD的地下粮道粮食粉尘分布规律模拟研究[D].哈尔滨理工大学,2019.

[36] 闫放,许开立,姚锡文,王犇.生物质气化火灾爆炸事故复合型风险评价[J].东北大学学报(自然科学版),2015,36(11):1648-1652.

[37] Hansen O R, Talberg O, Bakke J R.CFD-based methodology for quantitative gas explosion risk assessment in congested process areas: examples and validation status[C]Proceedings, AIChE/CCPS International Conference and Workshop on Modeling the Consequences of Accidental Releases of Hazardous Materials. 1999: 457-477.

[38] 何东海,杜扬,欧益宏.开敞空间蒸气云爆炸超压场数值模拟[J].后勤工程学院学报, 2012(5):26-30.

[39] 马涛.空气中爆炸波快速算法研究[D].国防科学技术大学,2014.

[40] 余波.气云爆炸场的数值模拟及结构响应分析[D]. 南京理工大学, 2015.

[41] A Rajendram, F Khan, V Garaniya. Modelling of fire risks in an offshore facility[J]. Fire Safety Journal, 2015,71:79-85.

[42] M Dadashzadeh, R Abbassi, F Khan, et al.Explosion modeling and analysis of BP Deepwater Horizon accident[J]. Safety Science, 2013, 57(8): 150-160.

[43] 魏超南,陈国明,杨冬平.基于CFD的海上钻井平台井喷天然气扩散规律研究[J].安全与环境学报,2013,13(5):271-277.

[44] 郭杰,朱渊,陈国明.基于FDS的海洋平台油气处理系统火灾危险分析[J].中国海上油气, 2011,23(2):126-130.

[45] 刘沛华.海洋平台受限空间火灾特性及早期控制策略研究[D].青岛:中国石油大学(华东), 2011.

[46] 李修峰,陈国明,师吉浩.泄漏油气燃爆灾害下FPSO结构响应分析[J].中国安全生产科学技术,2015,11(7):97-103.

[47] 王鹏.FPSO泄漏及爆炸灾害量化风险评估研究[D].浙江大学,2018.

[48] 侯向秦,曹建,贾宁.CNG加气站火灾爆炸风险后果的指数评价[J].西南石油大学学报(自然科学版), 2012,34(5):171-176.

[49] 黄海波,杨建军,李开国,等.CNG加气站设备失效与爆炸燃烧风险评价[J].西华大学学报(自然科学版),2005,24(4):17-20.

[50] 陈杨,王为民,姜东方,等.基于故障树与灰色模糊理论的城市CNG加气站安全评价[J].中国安全生产科学技术,2011,07(4).

[51] 苑伟民,袁宗明,毕建伟,等.LNG泄漏扩散模拟研究[J].天然气与石油,2011,29(4):1-5.

[52] Gupta S,Chan S.A CFD Based Explosion Risk Analysis Methodology using Time Varying Release Rates in Dispersion Simulations[J]. Journal of Loss Prevention in the Process Industries, 2016, 39:59-67.

[53] A.M.Schleder,M.R.Martins.Experimental data and CFD performance for CO2 cloud dispersion analysis. Journal of Loss Prevention in the Process Industries 43 (2016) 688-699.

[54] Sun B,Guo K,Pareek V.Dynamic simulation of hazard analysis of radiations from LNG pool fire[J]. Journal of Loss Prevention in the Process Industries, 2015, 35:200-210.

[55] Dong Lv,Wei Tan,et al.Research on maximum explosion overpressure in LNG storage tank areas. Journal of Loss Prevention in the Process Industries 49 (2017) 162-170.

中图分类号:

 X932    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式