论文中文题名: |
基于时间尺度的综采工作面粉尘变化规律及防控技术研究
|
姓名: |
郭阳
|
学号: |
19203213040
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085218
|
学科名称: |
工学 - 工程 - 矿业工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
能源学院
|
专业: |
矿业工程
|
研究方向: |
职业危害防治
|
第一导师姓名: |
高晓旭
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-22
|
论文答辩日期: |
2022-05-28
|
论文外文题名: |
Study on variation law and prevention and control technology of flour dust in fully mechanized mining based on time scale
|
论文中文关键词: |
综采工作面 ; 时间尺度 ; 粉尘变化规律 ; 喷雾降尘 ; 降尘参数优化
|
论文外文关键词: |
Fully mechanized mining face ; Time scale ; Dust variation law ; Spray dust reduction ; Optimization of dust reduction parameters
|
论文中文摘要: |
︿
随着煤炭的高效开采,综采工作面会产生大量的粉尘,并因风流及井下大型设备的存在,使得综采工作面的粉尘运移规律变化复杂,且在不同空间、不同时间的粉尘质量浓度及扩散程度也各不相同,严重威胁到了井下工人的身体健康,制约了“健康中国2030”的发展。因此,研究在不同空间、不同时间下综采工作面的粉尘变化规律,优化现有的降尘技术,对粉尘的现场治理有着重要意义。本文以柠条塔煤矿S12002综采工作面为研究对象,结合理论分析,现场实测,实验研究,数值模拟等手段,对粉尘的变化规律及降尘技术展开研究。
首先,从微观视角上分析了粉尘的受力理论,通过现场实测及实验研究相结合的方式,对粉尘的浓度、分散度等参数进行了测定及检测。以实测数据为基础依据,确定模型的边界条件、离散相等相关参数;其次,开展了数值模拟,研究了在现场实测风速的情况下风流的分布规律以及在割煤、移架时粉尘的逸散规律,并且将时间与空间结合,模拟研究了粉尘在不同时间尺度下动态变化过程;最后,通过比较初始粉尘浓度确定降尘率及数值模拟的结果,对风速、增架喷雾间隔进行了数值优化,并且通过喷雾降尘原理以及雾粒蒸发时间的分析,确定了合适的喷嘴直径和喷雾压力。
通过对柠条塔煤矿S12002综采工作面的粉尘实测、模拟及防治研究,结果表明:柠条塔煤矿采煤机截割是产生粉尘的重点环节,并与实际测量情况相符,通过数值模拟确定了时间尺度下的风流-粉尘的运移规律,从而对工人的健康防护提供了有利支撑;综采工作面的降尘技术的进一步优化,不仅可以有效降低员工尘肺病的发病几率,而且为矿井的高产高效与可持续发展提供了理论支撑和技术保障。
﹀
|
论文外文摘要: |
︿
With the efficient mining of coal, a large amount of dust will be produced in the fully mechanized mining face. Due to the existence of air flow and large underground equipment, the dust movement law of the fully mechanized mining face changes complicatedly, and the dust mass concentration and diffusion degree vary in different space and time, seriously threatening the health of underground workers and restricting the development of "healthy China 2030". Therefore, it is of great significance to study the dust change law of fully mechanized mining face in different space and time and optimize the existing dust reduction technology for the on-site treatment of dust. In this paper, the S12002 fully mechanized mining face in Ningtiaota Coal Mine is taken as the research object. Combined with theoretical analysis, field measurement, experimental research, numerical simulation and other means, the change law of dust and dust reduction technology are studied.
Firstly, the force theory of dust is analyzed from the micro perspective. Through the combination of field measurement and experimental research, the parameters such as dust concentration and dispersion are measured and detected. Based on the measured data, the boundary conditions and discrete parameters of the model are determined; Secondly, the numerical simulation is carried out to study the distribution law of air flow under the field measured wind speed and the dust emission law during coal cutting and rack moving, and the dynamic change process of dust under different time scales is simulated by combining time and space; Finally, by comparing the initial dust concentration to determine the dust reduction rate and the results of numerical simulation, the wind speed and the additional spray interval are numerically optimized, and the appropriate nozzle diameter and spray pressure are determined through the analysis of spray dust reduction principle and spray evaporation time.
Through the actual measurement, simulation and prevention of dust in the S12002 fully mechanized face of Ningtiaota Coal Mine, the results show that the shearer cutting in Ningtiaota Coal Mine is the key link to produce dust, which is consistent with the actual measurement. Through the numerical simulation, the air flow dust migration law under the time scale is determined, which provides a favorable support for the health protection of workers; The further optimization of dust reduction technology in fully mechanized mining face can not only effectively reduce the incidence of pneumoconiosis among employees, but also provide theoretical support and technical guarantee for the high yield, high efficiency and sustainable development of the mine.
﹀
|
参考文献: |
︿
[1]国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[N]. 人民日报, 2021-02-01(10). [2]李晨. 2020年世界煤炭产量突破80亿吨煤炭消费量增长1.5%[J]. 中国矿山工程, 2021, 48(3): 79. [3]Cheng W, Yu H, Zhou G, et al. The diffusion and pollution mechanisms of airborne dusts in fully-mechanized excavation face at mesoscopic scale based on CFD-DEM[J]. Process Safety and Environmental Protection, 2016, 104: 240-253. [4]何清海. 综掘工作面粉尘防治新技术[J]. 矿业安全与环保, 2008, 35(6): 31-33. [5]煤炭科学研究院重庆研究所. 矿井粉尘译文集[M]. 煤炭工业出版社, 1981. [6]Fan J, Qian L, Ma Y, et al. Computational modeling of pulverized coal combustion processes in tangentially fired furnaces[J]. Chemical Engineering Journal, 2001, 81(1-3): 261-269. [7]高雯, 袁聚祥, 范红敏. 煤炭企业粉尘职业危害现状及防治进展[J]. 中国煤炭工业医学杂志, 2008, 11(12): 1903-1904. [8]林传兵, 陈大川, 孙文德, 等. 基于ANSYS软件的掘进工作面风流流动规律数值模拟[J]. 煤矿安全, 2013, 44(6): 175-178. [9]王省身. 矿井灾害防治理论与技术[M]. 中国矿业大学出版社, 1986. [10]宋建业, 牛国庆. 矿井巷道掘进中粉尘防治机理浅析[J]. 内蒙古煤炭经济, 2017(18): 121-121. [11]陈勇. 中国能源与可持续发展[M]. 科学出版社, 2007. [12]赵益芳. 矿井防尘理论及技术[M]. 煤炭工业出版社, 1995. [13]杨胜强. 粉尘防治理论及技术[M]. 中国矿业大学出版社, 2007. [14]袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报, 2020, 45(1): 1-7. [15]李德文, 隋金君, 刘国庆, 等. 中国煤矿粉尘危害防治技术现状及发展方向[J]. 矿业安全与环保, 2019, 46(6): 1-7. [16]谭聪, 蒋仲安, 陈举师, 等. 综采割煤粉尘运移影响因素的数值模拟[J]. 北京科技大学学报, 2014, 36(06): 716-721. [17]程卫民, 周刚, 陈连军, 等.我国煤矿粉尘防治理论与技术20年研究进展及展望[J].煤炭科学技术, 2020, 48(2): 1-20. [18]Ji Y. L, Ren T, Wynne P, et al. A comparative study of dust control practices in Chinese and Australian longwall coal mines[J]. International Journal of Mining science and Technology, 2016, 26(2): 199-208. [19]Wang H, Nie W, Cheng W, et al. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel's fully-mechanized working face[J]. Advanced Powder Technology, 2017, 29(2): 230-244. [20]王杰, 郑林江. 煤矿粉尘职业危害监测技术及其发展趋势[J]. 煤炭科学技术, 2017, 45(11): 119-125. [21]周刚, 聂文, 程卫民, 等. 煤矿综放工作面高压雾化降尘对粉尘颗粒微观参数影响规律分析[J]. 煤炭学报, 2014, 39(10): 2053-2059. [22]Thiruvengadam M, Zheng Y, Tien J.C. DPM simulation in an underground entry: Comparison between particle and species models[J]. International Journal of Mining Science and Technology, 2016, 26(3): 487-494. [23]Cheng W, Yu H, Zhou G, et al. The diffusion and pollution mechanisms of airborne dusts in fully-mechanized excavation face at mesoscopic scale based on CFD-DEM[J]. Process Safety and Environmental Protection, 2016, 104: 240-253. [24]俞辉, 蒋仲安, 刘毅. 综采工作面粉尘运移规律的研究[J]. 中国煤炭, 2008, 34(9): 64-66. [25]许满贵, 刘欣凯, 文新强, 等. 煤矿综采工作面粉尘分布及运移规律研究[J]. 西安科技大学学报, 2014, 34(5): 533-538. [26]李红儒, 沈荣喜, 邱黎明, 等. 综采面截煤产尘风流-粉尘运移规律研究[J]. 煤炭技术, 2019, 38(2): 104-107. [27]王建国, 周侗柱, 戚斐文, 等. 凉水井矿综采工作面粉尘运移规律数值仿真[J]. 西安科技大学学报, 2020, 40(2): 195-203. [28]Kurnia Jundika Candra, Sasmito Agus Pulung, Mujumdar Arun Sadashiv. Dust dispersion and management in underground mining faces[J]. International Journal of Mining Science and Technology, 2014, 24(01): 39-44. [29]庞杰文, 谢建林, 李川田, 等. 大采高综采工作面粉尘分布特征研究[J]. 煤炭科学技术, 2017,45(03):78-83. [30]蒋仲安, 陈雅, 王佩. 双尘源耦合下呼吸性粉尘扩散的紊流系数求解[J]. 哈尔滨工业大学学报, 2017, 49(8): 129-134. [31]Zhang Q, Zhou G, Qian X. M, et al. Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation[J]. Journal of Cleaner Production, 2018, 184: 239-250. [32]Silvester S A, Lowndes I S, Hargreaves D M. A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions[J]. Atmospheric Environment, 2019, 43(40): 6415-6424. [33]Nazif H R, Basirat T. Development of boundary transfer method in simulation of gas-solid turbulent flow of a riser[J]. Applied Mathematical Modelling, 2013, 37(4):2445-2459. [34]聂百胜, 李祥春, 杨涛, 等. 工作面采煤期间PM2.5粉尘的分布规律[J]. 煤炭学报, 2013, 38(01): 33-37. [35]蒋仲安, 陈举师, 牛伟皮, 等. 皮带运输巷道粉尘质量浓度分布规律的数值模拟[J]. 北京科技大学学报, 2012, 34(9): 977-981. [36]陈举师, 蒋仲安, 姜兰. 胶带输送巷道粉尘分布及其影响因素的实验研究[J]. 煤炭学报, 2014, 39(1): 135-140. [37]张广, 尚少鹏, 武文斐. 大采高综采工作面煤尘质量浓度分布特性[J]. 辽宁工程技术大学学报(自然科学版), 2014, 33(4): 456-460. [38]周刚, 张琦, 白若男, 等. 大采高综采面风流-呼尘耦合运移规律CFD数值模拟[J]. 中国矿业大学学报, 2016, 45(4): 684-693. [39]Sun B, Chen W. M, Wang J. Y, et al. Effects of turbulent airflow from coal cutting on pollution characteristics of coal dust in fully-mechanized mining face: A case study[J]. Journal of Cleaner Production, 2018, 201: 308-324. [40]Chen D. W, Nie W, Cai P, et al. The diffusion of dust in a fully-mechanized mining face with a mining height of 7m and the application of wet dust-collecting nets[J]. Journal of Cleaner Production, 2018, 201: 308-324. [41]菅洁, 谢建林, 郭勇义. 煤矿井下粉尘浓度与粉尘粒度测定分析[J]. 太原理工大学学报, 2017, 48(4): 592-597. [42]周刚, 程卫民, 徐翠翠, 等. 不同变质程度煤尘润湿性差异的13C-NMR特征解析[J]. 煤炭学报, 2015, 40(12), 2849-2855. [43]彭亚, 蒋仲安, 付恩琦, 等. 综采工作面煤层注水防尘优化及效果研究[J]. 煤炭科学技术, 2018, 46(1): 224-230. [44]程卫民, 刘伟, 聂文, 等. 煤矿采掘工作面粉尘防治技术及其发展趋势[J]. 山东科技大学学报(自然科学版), 2010, 29(4): 77-82. [45]Tessum M. W, Raynor P. C. Effects of spray surfactant and particle charge on respirable coal dust capture[J]. Safety and Health at Work, 2017, 8(3): 296-305. [46]秦跃平, 张苗苗, 崔丽洁, 等.综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J]. 北京科技大学学报, 2011, 33(7): 790-794. [47]Xu C, Nie W, Liu Z, et al. Multi-factor numerical simulation study on spray dust suppression device in coal mining process[J]. Energy, 2019, 182(SEP.1): 544-558. [48]刘丹丹, 刘衡, 李德文, 等. 基于响应曲面法煤矿粉尘浓度测量装置优化研究[J]. 煤炭科学技术, 2020, 48(4): 224-229. [49]Kollipara V. K, Chugh Y. P, Mondal K. Physical. mineralogical and wetting characteristics of dusts from Interior Basin coal mines[J]. International Journal of Coal Geology, 2014, 127: 75-87. [50]程卫民, 聂文, 周刚, 等. 煤矿高压喷雾雾化粒度的降尘性能研究[J]. 中国矿业大学学报, 2011, 40(2): 185-189, 206. [51]Ren T. X, Plush B, Aziz N. Dust controls and monitoring practices on Australian longwalls[J]. Procedia Engineering, 2011, 26: 1417-1429. [52]赵丽娟, 田震, 王野. 采煤机外喷雾系统数值模拟研究[J]. 煤炭学报, 2014, 39(6): 1172-1176. [53]Cybulski K, Malich B, Wieczorek A. Evaluation of the effectiveness of coal and mine dust wetting[J]. Journal of Sustainable Mining, 2015, 14(2): 83-92. [54]聂文, 刘阳昊, 程卫民, 等. 综采面架间喷雾引射除尘技术[J]. 中南大学学报(自然科学版), 2015, 46(11): 4384-4390. [55]周刚, 尹文婧, 冯博. 综采工作面移架尘源粉尘-雾滴场分布特征模拟分析与工程应用[J]. 煤炭学报, 2018, 43(12): 3425-3435. [56]杜善周, 莫金明, 王全龙, 等. 大采高综采工作面粉尘运移分布规律及机载除尘器关键工艺参数研究[J]. 矿业安全与环保, 2020, 47(2): 45-51. [57]Wang J, Zhou G, Wei X, et al. Experimental characterization of multi-nozzle atomization interference for dust reduction between hydraulic supports at a fully mechanized coal mining face[J]. Environmental Science and Pollution Research, 2019. [58]郭奋超, 李腾龙, 马威, 等. 大采高工作面高压喷雾降尘技术研究及应用[J]. 矿业安全与环保, 2021, 48(05): 92-95. [59]郑磊. 综采工作面高压喷雾降尘技术参数确定方法[J]. 煤炭科学技术, 2014, 42(11): 55-58. [60]王涛, 张小涛, 程子华, 等. 高瓦斯松软煤层综采工作面粉尘综合防治[J]. 矿业安全与环保, 2009, 36(04): 63-64. [61]杨桐. 基于喷雾引射原理的采煤机机载式喷雾控降尘装置优化及应用[J]. 煤矿机械, 2019, 40(09): 110-112. [62]杜善周, 莫金明, 王全龙, 等.大采高综采工作面粉尘运移分布规律及机载除尘器关键工艺参数研究[J]. 矿业安全与环保, 2020, 47(02): 45-51. [63]王鹏飞, 刘荣华, 汤梦, 等. 煤矿井下高压喷雾雾化特性及其降尘效果实验研究[J]. 煤炭学报, 2015, 40(09): 2124-2130. [64]徐厚学, 施国华, 郑彦奎. 综采面采煤机割煤粉尘分布特性及防治技术[J]. 煤矿安全, 2013, 44(03): 75-77. [65]马骁. 综采工作面喷雾雾化规律与降尘技术研究[D]. 山东科技大学, 2017. [66]马威, 张群, 吴国友, 等. 采煤机割煤粉尘治理关键技术及装备研究与应用[J]. 矿业安全与环保, 2019, 46(03): 61-65. [67]周刚. 综放工作面喷雾降尘理论及工艺技术研究[D]. 山东科技大学, 2009. [68]Xu C. H, Wang D. M, Wang H. T, et al. Experimental investigation of coal dust wetting ability of anionic surfactants with different structures[J]. Process Safety and Environmental Protection, 2019, 121: 69-76. [69]Li J, Zhou F, Liu H. The selection and application of a compound wetting agent to the coal seam water infusion for dust control[J]. International Journal of Coal Preparation and Utilization, 2016, 36: 192-206. [70]聂文, 刘阳昊, 程卫民. 综采面架间喷雾引射除尘技术[J]. 中南大学学报(自然科学版), 2017, 46(11), 4384-4390. [71]王绪友, 谢华东, 陈军, 等. 综放工作面架间喷雾降尘技术优化[J]. 煤炭工程, 2018(05): 50-52. [72]尚治州. 大采高综采工作面呼吸带风流及粉尘运移数值模拟研究[D]. 西安科技大学, 2020. [73]张广, 尚少鹏, 武文斐. 大采高综采工作面煤尘质量浓度分布特性[J]. 辽宁工程技术大学学报, 2014(4): 456-460. [74]周刚, 聂文, 程卫民, 等. 煤矿综放工作面高压雾化降尘对粉尘颗粒微观参数影响规律分析[J]. 煤炭学报, 2014, 39(10). [75]吴应豪. 巷道粉尘沉降规律与转载点喷雾降尘系统研究[D]. 太原理工大学研究生院, 2007. [76]王晓珍, 蒋仲安, 王善文. 煤巷掘进过程中粉尘质量浓度分布规律的数值模拟[J]. 煤炭学报, 2010, 32(4): 38-39. [77]徐文亮. 干熄焦挡板除尘器除尘性能的数值模拟[D]. 北京科技大学研究生院, 2005. [78]蒋仲安, 姜兰, 陈举师. 露天矿潜孔打钻粉尘浓度分布规律数值模拟[J]. 深圳大学学报(理工版), 2013, 30(3): 313-318. [79]周刚. 综放工作面喷雾降尘理论及工艺技术研究[D]. 山东科技大学, 2009. [80]刘崇友, 陈华年, 周伯春, 等. 矿井粉尘译文集[M]. 北京:煤炭工业出版社, 1981. [81]陈鑫, 鲁传敬, 吴磊. 通气空泡流的多相流模型与数值模拟[J]. 水动力学研究与进展(A辑), 2005, 20: 916-920. [82]Jianping Zhang, Liang-Shih Fan, Chao Zhu, et al. Dynamic behavior of collision of elastic spheres in viscous fluids[J]. Powder Technology, 1999, 106(1/2): 98-109.
﹀
|
中图分类号: |
TD714
|
开放日期: |
2022-06-23
|