论文中文题名: | 基于深度学习的图表示学习研究 |
姓名: | |
学号: | 20208223033 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图表示学习 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-25 |
论文答辩日期: | 2023-06-04 |
论文外文题名: | Graph Representation Learning Research based on Deep Learning |
论文中文关键词: | |
论文外文关键词: | graph representation learning ; attention mechanism ; graph convolutional network ; static ; dynamic |
论文中文摘要: |
现实生活中,许多数据以图的形式存在,如社交网络、交易网络、引文网络等。有效地分析这些图数据至关重要。图表示学习是学习图数据的重要方法,其目的是学习一个映射函数,将图中所有节点映射为低维向量表示,同时尽可能地保留图中丰富的信息。图数据根据拓扑结构和节点/边的属性信息是否随时间演变可以划分为静态图和动态图两类,为此,本文分别针对静态图和动态图研究了图表示学习模型。 针对现有静态图表示学习方法中区分节点重要性能力不足和信息丢失的问题,提出一种基于图卷积网络的静态图表示学习模型。首先,为了缓解特征学习过程中信息丢失的问题,使用密集图卷积网络(Graph Convolutional Network,GCN);然后,使用曲率生成模块将曲率聚合到GCN中,以增强模型区分节点在图拓扑结构中重要性的能力;最后,将密集GCN和曲率GCN得到的节点表示融合得到最终节点表示。在节点分类任务上验证模型性能,实验结果证明了模型的有效性。 针对现有的动态图表示学习方法中难以有效地捕获节点的高阶近邻关系和动态图的时序信息问题,提出一种基于图注意力网络的动态图表示学习模型。首先,采用叠加的图注意力网络捕捉节点的高阶近邻关系,同时,引入ResNet网络的残差连接机制缓解叠加的图注意力网络导致的过平滑问题;其次,使用独热编码对快照的相对时间位置信息进行编码来处理动态图的时序信息;然后,引入因果卷积作为时序学习的预处理来避免未来的信息泄露;最后,引入时序注意力机制来进一步学习动态网络的拓扑结构随时间的演化模式。实验结果证明了模型的有效性。 |
论文外文摘要: |
In reality, many data exist in the form of graphs, such as social networks, transaction networks, citation networks, etc. The effective analysis of such graph data is crucial. Graph representation learning is an important approach for studying graph data, with the aim of learning a mapping function that can map all the nodes in a graph to low-dimensional vector representations while retaining the rich information present in the graph. Graph data can be categorized into two types: static graphs and dynamic graphs, based on whether the topology and attributes of nodes/edges evolve over time. In this regard, this paper focuses on studying graph representation learning models specifically designed for static and dynamic graphs, respectively. In order to address the limitations of existing static graph representation learning methods in terms of distinguishing node importance and information loss, a novel static graph representation learning model is proposed. Firstly, to mitigate the issue of information loss during feature learning, a dense Graph Convolutional Network (GCN) is employed. Then, a curvature generation module is used to aggregate curvature information into the GCN, enhancing the model's ability to differentiate the importance of nodes within the graph’s topological structure. Finally, the node representations obtained from the dense GCN and the curvature GCN are fused to obtain the final node representation. The model’s performance is evaluated on a node classification task, and experimental results demonstrate its effectiveness. In response to the challenges of effectively capturing high-order neighboring relationships of nodes and temporal information in dynamic graph representation learning methods, a dynamic graph representation learning model is proposed. Firstly, a stacked graph attention network is employed to capture the high-order neighboring relationships of nodes. The residual connection mechanism from the ResNet network is introduced to alleviate the oversmoothing issue caused by the stacked graph attention network. Secondly, the relative temporal positional information of snapshots is encoded using one hot encoding to handle the temporal information of dynamic graphs. Next, causal convolution is introduced as a preprocessing step for temporal learning to prevent future information leakage. Finally, a temporal attention mechanism is incorporated to further learn the evolving patterns of the dynamic network’s topology over time. Experimental results validate the effectiveness of the model. |
参考文献: |
[2]蔡晓东, 曾志杨. AFGSRec:一种自适应融合全局协同特征的社交推荐模型[J]. 华南理工大学学报(自然科学版), 2022, 50(12): 71-79. [3]韩忠明, 王宇航, 毛雅俊, 等. 基于图神经网络的比特币交易预测[J]. 计算机应用研究, 2022, 39(12): 3562-3567. [4]朱丹浩, 黄肖宇. 基于异构特征融合的论文引用预测方法[J]. 数据采集与处理, 2022, 37(05): 1134-1144. [6]袁立宁,李欣,王晓冬, 等. 图嵌入模型综述[J]. 计算机科学与探索, 2022, 16(01): 59-87. [8]陈东洋, 郭进利. 基于图注意力的高阶网络节点分类方法[J]. 计算机应用研究: 2023, 40(4): 1095-1100, 1136. [10]郑裕龙, 陈启买, 贺超波, 等. 图卷积网络增强的非负矩阵分解社区发现方法[J]. 计算机工程与应用, 2022, 58(11): 73-83. [24]Kipf T N, Welling M. Variational graph auto-encoders[J]. stat, 2016, 1050: 21. [62]温雯, 黄家明, 蔡瑞初, 等. 一种融合节点先验信息的图表示学习方法[J].软件学报, 2018, 29(03): 786-798. [63]蒋林浦,陈可佳. 基于对比预测的自监督动态图表示学习方法[J/OL].计算机科学, 2023, 1-9. [64]李青,王一晨,杜承烈. 图表示学习方法研究综述[J/OL].计算机应用研究, 2023, 40(6): 1-16. [65]刘杰, 尚学群, 宋凌云, 等. 图神经网络在复杂图挖掘上的研究进展[J]. 软件学报, 2022, 33(10): 3582-3618. [72]韩旭, 闵超, 张靖雯. 基于多维特征的引文扩散模式预测研究[J]. 图书情报工作, 2022, 66(09): 82-92. [73]曹燕, 董一鸿, 邬少清, 等. 动态网络表示学习研究进展[J]. 电子学报, 2020, 48(10): 2047-2059. |
中图分类号: | 391.9 |
开放日期: | 2023-06-26 |