- 无标题文档
查看论文信息

论文中文题名:

 综采面硬岩夹矸液态二氧化碳相变致裂机理及应用    

姓名:

 房凡祥    

学号:

 22203226070    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 能源与矿业工程学院    

专业:

 资源与环境    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 邓广哲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-24    

论文答辩日期:

 2025-05-30    

论文外文题名:

 Phase transformation fracture mechanism and application of liquid carbon dioxide in hard rock intercalated with gangue in fully mechanized mining face    

论文中文关键词:

 硬岩夹矸 ; 二氧化碳相变 ; 岩体致裂 ; 裂纹扩展 ; 影响因素    

论文外文关键词:

 Hard rock gangue ; Carbon dioxide phase transformation ; rock fracturing ; Crack propagation ; influencing factors    

论文中文摘要:

岩体破碎技术是解决含硬岩夹矸煤层开采难题的重要手段。液态二氧化碳相变致裂技术作为一种非炸药、低扰动的破岩技术,利用二氧化碳相变过程中产生的高压气体实现岩石破碎,近年来在矿业工程领域展现出良好的应用前景。本文通过物理力学实验、理论分析、数值模拟、现场试验相结合的方法,对二氧化碳岩石致裂机理和裂纹扩展规律进行了研究,结合工程背景开展了现场验证。主要取得如下研究成果:

(1)采用岩石力学试验方法,对硬岩夹矸主要岩性的物理力学特性进行了研究。结合矿物组成与微观结构特征分析,夹矸岩石中脆性矿物含量较高,易于形成复杂裂缝网络。并通过孔隙率与分形维数计算,表明其适合进行致裂改造。

(2)基于热力学理论,采用S-W状态方程分析了液态二氧化碳相变过程中热物性参数的演化规律;利用P-R状态方程描述了二氧化碳气体压力释放过程中的特性,明确了其在临界状态附近剧烈的体积膨胀与压力释放特征。采用压缩气体与水蒸气条件下的泄压能量方法计算了二氧化碳致裂岩体所释放的能量。

(3)分析了液态二氧化碳相变致裂高压气体作用于岩体产生的应力波传播规律与裂纹扩展机制。以二氧化碳基本物理特性为基础,结合弹性理论、断裂力学,揭示了二氧化碳相变破岩致裂机理;结果表明,在应力波作用下岩体产生初始裂隙,随后高压气体楔入裂隙产生气楔效应持续驱动裂隙扩展,当应力强度因子大于岩体裂隙的断裂韧度时,裂隙继续扩展,最终形成宏观裂纹,致使岩体破碎,岩体内部依次形成粉碎区、裂隙区和震动区。

(4)运用LS-DYNA显式动力学软件建立了液态二氧化碳相变致裂岩体的数值模型。通过模拟分析致裂孔间距的合理性,发现合理孔距能有效增强裂纹的贯通效果并提高能量的利用效率。针对自由控制孔的设置,模拟研究揭示了自由控制孔对裂纹演化具有导向作用。针对现有布孔方式存在致裂盲区的问题,设计自由控制孔的优化布孔方案,有效改善了裂纹的扩展路径,提高了岩体破碎效率。

(5)通过在综采面典型硬岩夹矸区域进行范围相变致裂试验。通过钻孔窥视与超声波裂隙探测方法确定了致裂作用范围,并对裂纹连通情况进行分析。致裂后硬岩夹矸的截割比能耗显著降低、单刀截割时间缩短,从而提高煤层回采效率。

论文外文摘要:

Rock crushing technology is an important means to solve the mining problem of coal seams containing hard rock and gangue. Liquid carbon dioxide phase change fracturing technology is a non-explosive, low-disturbance rock breaking technology that uses high-pressure gas generated during the phase change of carbon dioxide to achieve rock crushing. In recent years, it has shown good application prospects in the field of mining engineering. This paper studies the carbon dioxide rock fracturing mechanism and crack propagation law through a combination of physical and mechanical experiments, theoretical analysis, numerical simulation, and field tests, and conducts field verification in combination with engineering background. The main research results are as follows:

(1)The physical and mechanical properties of the main lithology of hard rock gangue were studied by rock mechanics test methods. Combined with the analysis of mineral composition and microstructural characteristics, the content of brittle minerals in the gangue rock is high, which is easy to form a complex fracture network. The porosity and fractal dimension calculations show that it is suitable for fracturing transformation.

(2)Based on thermodynamic theory, the S-W state equation was used to analyze the evolution of thermophysical parameters during the phase change of liquid carbon dioxide. The P-R state equation was used to describe the characteristics of carbon dioxide gas pressure release, and its drastic volume expansion and pressure release characteristics near the critical state were clarified. The energy released by carbon dioxide-induced rock fracturing was calculated using the pressure relief energy method under compressed gas and water vapor conditions.

(3)The stress wave propagation law and crack extension mechanism generated by liquid carbon dioxide phase change fracturing high pressure gas acting on rock mass were analyzed. Based on the basic physical properties of carbon dioxide, combined with elastic theory and fracture mechanics, the mechanism of carbon dioxide phase change rock breaking and fracturing was revealed; the results show that under the action of stress waves, initial cracks are generated in the rock mass, and then the high pressure gas wedges into the cracks to produce gas wedge effect to continuously drive the crack expansion. When the stress intensity factor is greater than the fracture toughness of the rock crack, the crack continues to expand and eventually forms macro cracks, causing the rock mass to break, and the crushing zone, fracture zone and vibration zone are formed in the rock mass in turn.

(4)The numerical model of liquid carbon dioxide phase change fractured rock mass was established using LS-DYNA explicit dynamics software. Through simulation analysis of the rationality of the fracture hole spacing, it was found that a reasonable hole spacing can effectively enhance the crack penetration effect and improve the energy utilization efficiency. Regarding the setting of free control holes, the simulation study revealed that the free control holes have a guiding effect on crack evolution. In view of the problem of fracture blind areas in the existing hole layout method, an optimized hole layout scheme for free control holes was designed, which effectively improved the crack propagation path and improved the rock mass crushing efficiency.

(5)A range phase change fracturing test was conducted in a typical hard rock intercalated gangue area of ​​a fully mechanized mining face. The fracturing range was determined by borehole peek and ultrasonic crack detection methods, and the crack connectivity was analyzed. After fracturing, the cutting specific energy consumption of hard rock intercalated gangue was significantly reduced, and the single-knife cutting time was shortened, thereby improving the coal seam recovery efficiency.

参考文献:

[1]王双明,申艳军,宋世杰等.“双碳”目标下煤炭能源地位变化与绿色低碳开发[J].煤炭学报,2023,48(7):2599-2612.

[2]国家统计局.中华人民共和国2024年国民经济和社会发展统计公报[N].人民日报,2025-02-28.

[3]张吉雄,张强,周楠,等.煤炭资源四元开发模式创新与实践[J/OL].煤炭学报,2024:1-15.

[4]周昌台,谢和平,朱建波.基于能量理论的岩石动态破坏准则[J].岩石力学与工程学报,2023,42(8):1890-1898.

[5]王小飞,胡少斌,王恩元.超临界CO2热冲击破岩技术:致裂原理与振动安全研究[J].土木工程学报,2023,56(8):118-130.

[6]邓广哲,刘华.综采工作面砂岩夹矸层酸化压裂破碎机理[J].煤矿安全,2021,52(3):75-83.

[7]邓广哲,王健航,张旭东.综采工作面硬岩夹矸层预裂破碎技术研究[J].煤炭工程,2021,53(10):95-99.

[8]伍永平,汤业鹏,解盘石,等.含煤线夹矸岩体力学特性及变形破坏特征的数值实验[J].采矿与安全工程学报,2022,39(6):1198-1209.

[9]冯宇峰.综放开采含硬夹矸顶煤破碎机理及控制技术研究[J].煤炭科学技术,2020,48(3):133-139.

[10]潘泱波,刘泽功.含硬夹矸高瓦斯低透气性煤层多向聚能爆破技术研究[J].中国安全生产科学技术,2019,15(11):144-150.

[11]王家臣,杨印朝,孔德中,等.含夹矸厚煤层大采高仰采煤壁破坏机理与注浆加固技术[J].采矿与安全工程学报,2014,31(6):831-837.

[12]李明昊,郝哲,范佳艺,等.含夹矸煤层条件下采煤机螺旋滚筒优化设计[J].山东科技大学学报(自然科学版),2024,43(1):119-126.

[13]李明昊,赵丽娟,乔捷.MG400/951-WD型采煤机螺旋滚筒可靠性灵敏度优化设计[J].煤炭学报,2022,47(5):2106-2119.

[14]王志强,王朋飞,仲启尧,等.极近距煤层(群)间夹矸层处理与利用[J].采矿与安全工程学报,2018,35(5):960-968.

[15]Luo H, Liang S, Yao Q, et al. Mechanism and application of hydraulic fracturing in the high-level thick and hard gangue layer to improve top coal caving in fully mechanized caving mining of an ultra-thick coal seam[J]. Minerals, 2022, 12(12): 1605.

[16]刘晋霞,马超,焦志愿,等.镐型截齿对含不同分布夹矸层煤岩的截割过程研究[J].山东科技大学学报(自然科学版),2018,37(5):97-103.

[17]李国盛,李振华,杜锋,等.含矸煤层煤壁稳定性夹矸厚度效应研究[J].中国安全科学学报,2023,33(10):183-191.

[18]Li, G, Li Z, Du F, et al. Mechanical mechanism of rib spalling and sensitivity analysis of gangue parameters to rib spalling in gangue-bearing coal seams[J]. Environmental Science and Pollution Research, 2023, 30, 38713-38727.

[19]Zhang M, Zhao L, Wang Y, et al. Construction and correction of a 3D digital twin for a complex gangue-bearing coal seam[J]. Coal Geology & Exploration, 2024, 52(12): 40-53.

[20]Zhang, W, Zhao H, Liu Z, et al. Fracture propagation characteristics and energy evolution law of deep coal seam containing gangue based on discrete lattice method[J]. Physics of Fluids, 2025, 37(1), 017177.

[21]Cao Y, Zhang J, Zhai H, et al.CO2 gas fracturing: A novel reservoir stimulation technology in low permeability gassy coal seams[J]. Fuel, 2017, 203: 197-207.

[22]Weir P, Edwards J H. Mechanical loading and Cardox revolutionize an old mine[J]. Coal Age, 1928, 33: 288-290.

[23]袁永,陈忠顺,梁小康,等.二氧化碳相变爆破致裂机理与应用研究进展[J].煤炭科学技术,2024,52(02):63-78.

[24]阿比尔的,吴发友,刘明维,等.超临界CO2相变致裂技术中致裂管释压特性研究[J/OL].工程科学与技术,2025,1-13.

[25]孙小明.液态二氧化碳相变致裂掏槽破岩试验研究[J].煤炭科学技术,2021,49(8):81-87.

[26]陶明,赵华涛,李夕兵,等.液态CO2相变致裂破岩与炸药破岩综合对比分析[J].爆破,2018,35(2):41-49.

[27]张宏伟,朱峰,李云鹏,等.液态CO2致裂技术在冲击地压防治中的应用[J].煤炭科学技术,2017,45(12):23-29.

[28]白鑫,张东明,王艳,等.液态CO2相变射流压力变化及其煤岩致裂规律[J].中国矿业大学学报,2020,49(4):661-670.

[29]孙可明,辛利伟,吴迪.超临界CO2气爆煤体致裂机理实验研究[J].爆炸与冲击,2018,38(2):302-308.

[30]Jiang, K, Deng S,Li Y, et al. Calculating the number of radial cracks around a wellbore formed by liquid CO2 phase transition blasting (LCPTB) technology[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(11): 4515-4531.

[31]王长禄,彭然,郑义,等.煤层液态CO2相变致裂半径预测研究[J].工矿自动化,2023,49(10):110-117.

[32]陈少波,卢玉斌,袁海梁,等.基于ANSYS/LS-DYNA的液态CO2相变破岩裂纹扩展特征研究[J].中国安全生产科学技术,2023,19(6):74-82.

[33]袁海梁,刘孝义,陈少波,等.基于SPH算法的CO2相变破岩数值模拟[J].工程爆破,2023,29(1):62-68.

[34]周西华,门金龙,宋东平,等.液态CO2爆破煤层增透最优钻孔参数研究[J].岩石力学与工程学报,2016,35(3):524-529.

[35]潘红宇,王康,张天军,等.CO2气爆含控制孔煤层裂隙演化颗粒流模拟[J].西安科技大学学报,2021,41(2):230-236.

[36]董庆祥,王兆丰,韩亚北,等.液态CO2相变致裂的TNT当量研究[J].中国安全科学学报,2014,24(11):84-88.

[37]Wang, B, Li H, Xing H, et al. Modelling of gas-driven fracturing and fragmentation in liquid CO2 blasting using finite-discrete element method[J]. Engineering Analysis with Boundary Elements, 2022, 144: 409-421.

[38]贾进章,柯丁琳,李斌.液态CO2爆破钻孔布置参数优化[J].辽宁工程技术大学学报(自然科学版),2021,40(2):97-103.

[39]Niezgoda T, Miedzińska D, Malek E, et al. Study on carbon dioxide thermodynamic behavior for the purpose of shale rock fracturing[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(3), 605-612.

[40]李豪君,王兆丰,陈喜恩,等.液态CO2相变致裂技术在布孔参数优化中的应用[J].煤田地质与勘探,2017,45(4):31-37+43.

[41]叶美娜,仲海书,张震,等.甘肃早子沟金矿典型岩石微观结构特征及其渗透性研究[J].地质与勘探,2024,60(6):1142-1152.

[42]王超,王川婴,王益腾,等.基于孔壁光学图像的岩石孔隙结构识别与分析方法研究[J].岩石力学与工程学报,2021,40(9):1894-1901.

[43]谢和平,于广明,杨伦,等.采动岩体分形裂隙网络研究[J].岩石力学与工程学报,1999,(2):29-33.

[44]左婧,徐卫亚,王环玲,等.岩石电镜扫描图像的分形特征研究[J].三峡大学学报(自然科学版),2014,36(2):72-76.

[45]商政.基于BLEVE的液态二氧化碳相变致裂煤体增透机制与应用研究[D].徐州:中国矿业大学,2021.

[46]李得飞.超临界二氧化碳驱替煤层瓦斯研究[D]. 太原:太原理工大学,2012.

[47]杜玉昆,陈晓红,王瑞和,等.超临界二氧化碳粒子射流破岩性能分析[J].中国石油大学学报(自然科学版),2019,43(2):85-90.

[48]张中正.二氧化碳的吸附分离[D].天津:天津大学,2012.

[49]Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425.

[50]Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical engineering science, 1972, 27(6): 1197-1203.

[51]Lopez-Echeverry J S, Reif-Acherman S, Araujo-Lopez E. Peng-Robinson equation of state: 40 years through cubics[J]. Fluid Phase Equilibria, 2017, 447: 39-71.

[52]张义祥,林冲,赫建明,等.页岩的超临界二氧化碳压裂机理及其优势分析[J].工程地质学报,2024,32(4):1301-1308.

[53]杜泽生,范迎春,薛宇飞,等.二氧化碳爆破采掘装备及技术研究[J].煤炭科学技术,2016,44(09):36-42.

[54]蒋楠,姚颖康,朱斌,等.SC-CO2与工业乳化炸药破岩效应的等效试验[J].工程科学学报,2025,47(2):249-258.

[55]张嘉凡,程树范,高壮,等.煤岩液态二氧化碳爆破开采实践与模拟[J].煤炭科学技术,2020,48(S1):24-27.

[56]张琳,胡少斌,蔡余康,等.地应力对高温高压CO2热冲击破岩的影响研究[J].地下空间与工程学报,2024,20(6):1818-1829.

[57]倪昊,杨仁树,谭卓英,等.二氧化碳爆破射流温度场演化规律实验研究[J].爆炸与冲击,2023,43(12):70-81.

[58]窦斌,肖鹏,郑君,等.二氧化碳爆破致裂激发干热岩储层作用效果[J].地质科技通报,2022,41(5):150-159.

[59]张广超,尹茂胜,周广磊,等.厚硬岩层下板结构破断应力-能量场积聚演化规律[J].中国矿业大学学报,2024,53(4):647-663.

[60]赵云霞,江泽标,陈思粮,等.二氧化碳冲击致裂对煤中孔隙结构演化的研究[J].实验技术与管理,2025,42(3):94-103.

[61]余北辰,刘应科,张东明,等.气压致裂作用下煤岩各向异性有效应力系数演化及增渗效果研究[J/OL].煤炭学报,1-16.

[62]邓广哲,张少春.煤炭开采粒级控制理论与应用[M].北京:科学出版社,2021.

[63]于永江,刘佳铭,杨云涛,等.基于能量原理不同含水率下煤岩体变形破坏能量损伤演化机制[J].煤炭科学技术,2024,52(06):67-80.

[64]傅师贵,刘泽功,张健玉,等.高地应力下岩体控制爆破机理与损伤演化特征研究[J].采矿与安全工程学报,2024,41(04):867-878.

[65]Pyun S, Rhee C. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures[J]. Electrochimica Acta, 2004, 49(24): 4171-4180.

[66]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.

[67]Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials[J]. AIP Conference Procceedings, 1994; 309: 981-984.

[68]张鑫,刘泽功,常帅,等.爆破荷载作用下煤岩本构模型参数特性研究[J].振动与冲击,2025,44(5):263-277.

[69]Wang Z L, Shi G Y. Effect of heat treatment on dynamic tensile strength and damage behavior of medium-fine-grained Huashan granite[J]. Experimental Techniques, 2017, 41(4): 365-375.

[70]Riedel W, Thoma K, Hiermaier S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin-Strausberg Germany, 1999, 315: 315-322.

[71]李洪超,陈勇,刘殿书,等.岩石RHT模型主要参数敏感性及确定方法研究[J].北京理工大学学报,2018,38(8):779-785.

[72]Borrvall T, Riedel W. The RHT concrete model in LS-DYNA. In: Proceedings of the 8th European LS-DYNA Users Conference; 2011.

[73]Mobaraki B., Vaghefi M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion [J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2015, 47: 114-222.

[74]乔国栋,刘泽功,高魁,等.爆破载荷作用下高地应力巷道PPV衰减规律研究[J].振动与冲击,2023,42(23):260-266+283.

[75]桂玮,宗琦,汪海波,等.基于RHT模型的立井掏槽爆破空孔布置方式对破岩效果影响研究[J/OL].工程爆破,2025:1-13.

[76]冷振东,范勇,卢文波,等.孔内双点起爆条件下的爆炸能量传输与破岩效果分析[J].岩石力学与工程学报,2019,38(12):2451-2462.

[77]乔雄,黄锦聪,杨鑫,等.爆破振动传播规律及控制技术研究进展[J/OL].地震工程学报,2025:1-16.

[78]沈慧明,吴爱祥,余佑林,等.狮子山铜矿中深孔爆破参数优化设计研究[J].中国钼业,2003,(1):12-15.

[79]缪广红,孙文翔,张旭,等.两孔间导向孔对爆炸裂纹扩展方向控制的数值模拟[J].黄金科学技术,2025,33(1):139-148.

[80]杨仁树,丁晨曦,杨立云,等.岩石爆破基础理论研究进展与展望Ⅱ—动静关系[J].工程科学学报,2024,46(12):2133-2146.

[81]邓广哲,王雷,刘华,等.压裂煤层综采截割比能耗模型及应用[J].辽宁工程技术大学学报(自然科学版),2019,38(1):26-32.

中图分类号:

 TD235    

开放日期:

 2025-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式