- 无标题文档
查看论文信息

论文中文题名:

 基于三角位错模型反演2013年芦山Ms7.0地震同震断层滑动分布    

姓名:

 陈佳影    

学号:

 19210061027    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 地壳形变    

第一导师姓名:

 段虎荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Inversion of Coseismic Fault Slip Distribution of 2013 Lushan Ms7.0 Earthquake Based on Triangular Dislocation Model    

论文中文关键词:

 2013年芦山地震 ; 同震滑动分布 ; 三角位错模型 ; 断层几何结构 ; 联合反演    

论文外文关键词:

 2013 Lushan earthquake ; Coseismic slip distribution ; Triangular dislocation model ; Fault geometry ; Joint inversion    

论文中文摘要:

精细化的断层滑动分布模型为研究断层活动状态、认识地震发震机制等提供重要基础,对于地震灾后评估、未来地震趋势判定以及防震减灾等工作具有重要的指导意义。2013年4月20日8时,中国四川芦山爆发Ms7.0地震,造成了重大的生命财产损失。本次地震与汶川Ms8.0地震成因类似,是青藏高原向东扩过程中,受到四川盆地支撑阻挡,两大块体相互挤压、碰撞形成的一次破坏型地震。与汶川地震不同的是,此次芦山地震属于盲逆断层型地震,发震断层结构复杂,而对发震断层几何结构过于简化,会对同震滑动分布反演结果的可靠性以及对破裂过程的解释产生较大影响。三角形位错在构建复杂断层时可以有效避免位错元之间的间隙和重叠现象,适合曲面断层的构建。本文使用震区内33个GPS连续站与22个水准点同震形变观测结果以及2013年4月-2014年5月总共1993个余震精定位结果来研究芦山地震断层几何结构和同震滑动分布。本文主要的研究工作及结论如下:

(1)基于GPS数据利用贝叶斯方法反演了芦山地震单一平面断层几何参数,反演结果显示芦山地震发震断层走向为207.56°,倾角为43.22°。通过结合余震精定位结果,在单一平面断层的基础上构建了断层倾角随深度增加而逐渐减小的曲面断层结构,其倾角从地表的63.9°高倾角连续变化到底部的15.8°低倾角,体现出其上陡下缓的特征。

(2)在曲面断层几何模型的基础上,利用赫尔默特方差分量估计法联合GPS和水准数据基于三角位错模型反演同震滑动分布,反演结果显示芦山Ms7.0地震以明显的逆冲运动为主,只存在一个破裂峰值区,没有明显的破裂方向性。断层破裂面在近地表处无明显滑动,最大滑动量为0.98m,位于深度13.5km附近。释放的能量为1.05 1019 Nm,对应的矩震级为 。GPS和水准数据拟合残差分别为2.8mm和7.6mm,与平面矩形位错反演结果相比,拟合残差分别减少了1.3mm和1.9mm。

(3)研究了不同断层几何结构以及位错模型对本次地震同震滑动分布的影响。基于矩形位错模型,在平面断层结构条件下,反演的最大滑动量为0.68m,GPS和水准数据拟合残差分别为4.1mm和9.5mm;在曲面断层结构条件下,反演的最大滑动量为0.74m,GPS和水准数据拟合残差分别为3.3mm和7.8mm。基于三角位错模型,在平面断层结构条件下,反演的最大滑动量为0.97m(规则三角形)和0.91m(不规则三角形),GPS和水准数据拟合残差为3.1mm和8.8mm(规则三角形)、3.2mm和9.0mm(不规则三角形)。反演结果均表明,无论是平面断层还是曲面断层,基于三角位错模型反演的最大滑动量均大于基于矩形位错模型反演的最大滑动量,且三角位错模型拟合结果更好,表明本文采用三角位错元构建的曲面断层模型不仅能更接近真实的断层产状,而且能更好的解释地表观测位移。

论文外文摘要:

The refined fault slip distribution model provides an important basis for exploring the causes of earthquakes and studying the rupture mechanism, and is an important guide for earthquake emergency rescue, regional earthquake trend prediction, and earthquake disaster prevention and mitigation work. April 20, 2013 at 8:00, the Ms7.0 earthquake erupted in Lushan, Sichuan, China, causing significant loss of life and property. This earthquake is similar to the Wenchuan Ms8.0 earthquake in that it is a destructive earthquake formed by the extrusion and collision of two major blocks during the eastward movement of the Qinghai-Tibet Plateau due to the support and blockage of the Sichuan Basin. Unlike the Wenchuan earthquake, the Lushan earthquake is a blind reverse-fault type earthquake with a complex fault structure, and oversimplification of the geometric structure of the fault will have a greater impact on the reliability of the inversion results of the coseismic slip distribution and on the interpretation of the rupture process. In this paper, the geometric structure and coseismic slip distribution of the Lushan earthquake fault are studied using the results of 33 continuous GPS stations and 22 leveling points in the earthquake area with the observation of coseismic deformation and a total of 1993 aftershocks from April 2013 to May 2014. The main research work and conclusions of this paper are as follows:

      (1) The geometric parameters of the single plane fault of the Lushan earthquake were inversed using Bayesian method based on GPS data, and the results of the inversion showed that the seismogenic fault of the Lushan earthquake had a strike of 207.56° and an inclination of 43.22°. By combining the results of aftershock precise localization, a curved fault structure was constructed on the basis of the single plane fault, in which the dip angle of the fault gradually decreases with depth, and its dip angle changes continuously from 63.9° high dip angle at the surface to 15.8° low dip angle at the bottom, reflecting its characteristics of steep at the top and slow at the bottom.

(2) Based on the geometric model of the curved fault, the inversion of the coseismic sliding distribution based on the triangular dislocation model using the Helmut variance component estimation method combined with GPS and level data shows that the Ms7.0 earthquake in Lushan is dominated by an obvious reverse motion, with only one rupture peak area and no obvious rupture directionality. The fault rupture surface has no obvious slip near the surface, and the maximum slip is 0.98m, located near the depth of 13.5km. The released energy is 1.05×1019 Nm, and the corresponding moment magnitude is Mw6.63. The fitted residuals of GPS and leveling data are 2.8mm and 7.9mm, respectively, which are reduced by 1.3mm and 1.6mm compared with the planar rectangular dislocation.

(3) The effects of different fault geometries and dislocation models on the coseismic slip distribution of this earthquake are investigated. Based on the rectangular dislocation model, the maximum slip in the inversion is 0.68m under the planar fault structure, and the residuals of GPS and level data fitting are 4.1mm and 9.5mm, respectively; under the curved fault structure, the maximum slip in the inversion is 0.91m, and the residuals of GPS and level data fitting are 3.2mm and 9.0mm, respectively. Based on the triangular dislocation model, the maximum slip of the inversion is 0.97m (regular triangle) and 0.91m (irregular triangle) under the condition of planar fault structure, and the residuals of GPS and leveling data fitting are 3.1mm and 8.8mm (regular triangle), 3.2mm and 9.0mm (irregular triangle). The inversion results show that the maximum slip based on the triangular dislocation model is larger than that based on the rectangular dislocation model for both planar and curved faults, and the triangular dislocation model fits better, which indicates that the curved fault model constructed by using triangular dislocation elements is not only closer to the real fault production, but also can better explain the surface observed displacement.

参考文献:

[1] Bilham, Roger.Seismology: Raising Kathmandu[J].Nature Geoscience,2015, 8 (8): 582-584.

[2] 王中山.唐山地震人员伤亡概况及原因宏观分析[J].灾害学,1989 (02): 51-56.

[3] 李西, 周光全, 郭君等.汶川8.0级地震人员伤亡及分布特征分析[J].地震研究,2008, 31 (S1): 515-520.

[4] 乔学军, 王琪, 杜瑞林等.昆仑山口西Ms8.1地震的地壳变形特征[J].大地测量与地球动力学,2002 (04): 6-11.

[5] 汪建军, 许才军, 申文斌.2010年Mw 6.9级玉树地震同震库仑应力变化研究[J].武汉大学学报(信息科学版),2012, 37 (10): 1207-1211.

[6] 孟令媛, 周龙泉, 刘杰.2013年四川芦山M_S7.0地震近断层强地面运动模拟及烈度分布估计[J].地球物理学报,2014, 57 (02): 441-448.

[7] Lin X, Chu R, Zeng X.Rupture processes and Coulomb stress changes of the 2017 Mw 6.5 Jiuzhaigou and 2013 Mw 6.6 Lushan earthquakes[J].Earth, Planets and Space,2019, 71 (1): -.

[8] 单新建, 屈春燕, 宋小刚等.汶川Ms8.0级地震InSAR同震形变场观测与研究[J].地球物理学报,2009, 52 (2): 9.

[9] Hooper A, Bekaert D, Spaans K, et al.Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J].Tectonophysics,2012, 514-517: 1-13.

[10] 李闰. 地震断层同震滑动分布的反演[D]. 西安科技大学,2019.

[11] Reid H F. The California earthquake of April 18, Volume II. The mechanics of the earthquake[R]. Washington D C: Carnegie Institution of Washington Publication,1910.

[12] Steketee, J. A.On volterra's dislocations in a semi-infinite elastic medium[J].Canadian Journal of Physics,1958, 36 (2): 192-205.

[13] Okada Y.Surface deformation due to shear and tensile faults in a half-space[J].Bulletin of the Seismological Society of America,1985, 82 (2): 1018-1040.

[14] Sato R, Matsu'ura M.Static deformation due to the fault spreading over several layers in a multi-layered medium. Part I: Displacement[J].Journal of Physics of the Earth,1973, 21 (3): 227-249.

[15] Wang R, Martın F L, Roth F.Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP[J].Computers & Geosciences,2003, 29 (2): 195-207.

[16] Wang R, Lorenzo-Martín F, Roth F.PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J].Computers & Geosciences,2006, 32 (4): 527-541.

[17] Yoffe, Elizabeth H.The angular dislocation[J].Philosophical Magazine,1960, 5 (50): 161-175.

[18] Comninou M, Dundurs J.The angular dislocation in a half space[J].Journal of Elasticity,1975, 5 (3-4): 203-216.

[19] Jeyakumaran M, Rudnicki J W, Keer L M.Modeling slip zones with triangular dislocation elements[J].Bulletin of the Seismological Society of America,1992, 82 (5): 2153-2169.

[20] Meade B J.Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space[J].Computers and Geosciences,2006, 33 (8).

[21] Nikkhoo M, Walter T R.Triangular dislocation: an analytical, artefact-free solution[J].Geophysical Journal International,2015, 201 (2): 1119-1141.

[22] Maerten F, Resor P, Pollard D, et al.Inverting for Slip on Three-Dimensional Fault Surfaces Using Angular Dislocations[J]. Bulletin of the Seismological Society of America,2005, 95 (5): 00001654-00001665.

[23] Elliott J R, Jolivet R, González P J, et al.Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake[J].Nature Geoscience,2016, 9 (2): 174-180.

[24] Barnhart W D, Hayes G P, Gold R D.The July 2019 Ridgecrest, California, Earthquake Sequence: Kinematics of Slip and Stressing in Cross-Fault Ruptures[J].Geophysical Research Letters,2019, 46 (21): 11859-11867.

[25] 王启欣, 江在森, 武艳强等.不同模型下地震位错理论的对比及其应用进展综述[J].地震学报,2015, 37 (04): 690-704+712.

[26] Sun W, Okubo S.Surface potential and gravity changes due to internal dislocations in a spherical earth—I. Theory for a point dislocation[J].Geophysical Journal International,1993, 114 (3).

[27] Sun W, Okubo S, Fu G.Green's functions of coseismic strain changes and investigation of effects of Earth's spherical curvature and radial heterogeneity[J].Geophysical Journal International,2006, 167 (3).

[28] Y.Tanaka, J.Okuno, S.Okubo.A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (I)—vertical displacement and gravity variation[J].Geophysical Journal International,2006, 164 (2): 273-289.

[29] 付广裕, 孙文科.球体位错理论计算程序的总体设计与具体实现[J].地震,2012, 32 (02): 73-87.

[30] Massonnet D, Rossi M, Carmona C, et al.The displacement field of the Landers earthquake mapped by radar interferometry[J].Nature,1993, 364 (6433): 138-142.

[31] Wright T J, Parsons B E, Lu Z.Toward mapping surface deformation in three dimensions using InSAR[J].Geophysical Research Letters,2004, 31 (1).

[32] Jonsson, S.Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J].Bull.seismol.soc.am,2002, 92 (4): 1377-1389.

[33] 陈运泰, 黄立人, 林邦慧等.用大地测量资料反演的1976年唐山地震的位错模式[J].地球物理学报,1979, 000 (003): 201.

[34] 陈运泰, 林邦慧, 林中洋等.根据地面形变的观测研究1966年邢台地震的震源过程[J].地球物理学报,1975 (3).

[35] 单新建, 马瑾, 王长林等.利用星载D-INSAR技术获取的地表形变场提取玛尼地震震源断层参数[J].中国科学:D辑,2002, 32 (10): 8.

[36] 万永革, 王敏, 沈正康等.利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布[J].地震地质,2004.

[37] Qi W, Xuejun Q, Qigui L, et al.Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J].Nature Geoscience,2011, 4 (9): 634-640.

[38] Hao J, Ji C, Wang W, et al.Rupture history of the 2013 Mw 6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves[J].Geophysical Research Letters,2013, 40 (20).

[39] Huang Y, Qiao X, Freymueller J T, et al.Fault Geometry and Slip Distribution of the 2013 Mw 6.6 Lushan Earthquake in China Constrained by GPS, InSAR, Leveling, and Strong Motion Data[J].Journal of Geophysical Research: Solid Earth,2019, 124 (7).

[40] Jiang Z, Wang M, Wang Y, et al.GPS constrained coseismic source and slip distribution of the 2013 Mw6.6 Lushan, China, earthquake and its tectonic implications[J]. Geophysical Research Letters,2014, 41 (2).

[41] Li M, Zhang S, Zhang C, et al.Fault Slip Model of 2013 Lushan Earthquake Retrieved Based on GPS Coseismic Displacements[J].Journal of Earth Science,2015, 26 (04): 537-547.

[42] Li Z, Wen Y, Zhang P, et al.Joint Inversion of GPS, Leveling, and InSAR Data for The 2013 Lushan (China) Earthquake and Its Seismic Hazard Implications[J].Remote Sensing,2020, 12 (4).

[43] 刘云华, 汪驰升, 单新建等.芦山M_s7.0级地震InSAR形变观测及震源参数反演[J].地球物理学报,2014, 57 (08): 2495-2506.

[44] 王卫民, 郝金来, 姚振兴.2013年4月20日四川芦山地震震源破裂过程反演初步结果[J].地球物理学报,2013, 56 (04): 1412-1417.

[45] 张勇, 许力生, 陈运泰.芦山4.20地震破裂过程及其致灾特征初步分析[J].地球物理学报,2013, 56 (04): 1408-1411.

[46] Mathew J, Majumdar R, Kumar K V.SAR interferometry and optical remote sensing for analysis of co-seismic deformation, source characteristics and mass wasting pattern of Lushan (China, April 2013) earthquake[J].International Journal of Applied Earth Observations and Geoinformation,2015, 35.

[47] 陈运泰, 杨智娴, 张勇等.从汶川地震到芦山地震[J].中国科学:地球科学,2013, 43 (06): 1064-1072.

[48] Fang L H, Wu J P, Wang W, et al.Relocation of the mainshock and aftershock sequences of M(S)7.0 Sichuan Lushan earthquake[J].Chinese Science Bulletin,2013, 58 (Z2).

[49] Long F, Wen X Z, Ruan X, et al.A more accurate relocation of the 2013 M s7.0 Lushan, Sichuan, China, earthquake sequence, and the seismogenic structure analysis[J].Journal of Seismology,2015, 19 (3).

[50] 冯杨洋, 于常青, 范柱国等.从反射地震剖面中认识芦山地区的地壳精细结构和构造[J].地球物理学报,2016, 59 (09): 3248-3259.

[51] 王夫运, 赵成彬, 酆少英等.深反射剖面揭示的芦山7.0级地震发震构造[J].地球物理学报,2015, 58 (09): 3183-3192.

[52] 易桂喜, 龙锋, Vallage A等.2013年芦山地震序列震源机制与震源区构造变形特征分析[J].地球物理学报,2016, 59 (10): 3711-3731.

[53] 詹艳, 赵国泽, Martyn U等.龙门山断裂带西南段4.20芦山7.0级地震区的深部结构和孕震环境[J].科学通报,2013, 58 (20): 1917-1924.

[54] 赵荣涛, 安美建, 冯梅等.利用余震震中分析芦山M_S7.0地震发震构造[J].地震学报,2015, 37 (02): 205-217+370.

[55] Zhuqi Z, Weitao W, Zhikun R, et al.Lushan M_S7.0 earthquake: A special earthquake occurs on curved fault[J]. Chinese Science Bulletin,2013, 58 (Z2): 3483-3490.

[56] 苏金蓉, 郑钰, 杨建思等.2013年4月20日四川芦山M7.0级地震与余震精确定位及发震构造初探[J].地球物理学报,2013, 56 (08): 2636-2644.

[57] Dong J, Wei G, Chen Z, et al.Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New insights from hydrocarbon exploration[J].Aapg Bulletin,2006, 90 (9): 1425-1447.

[58] Burchfiel B C, Royden L H, Van D H, R. D., et al.A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China[J].Gsa Today,2008, 18 (7): 4-11.

[59] Wang Z, Huang R, Pei S.Crustal deformation along the Longmen-Shan fault zone and its implications for seismogenesis[J].Tectonophysics,2014, 610.

[60] 马聪慧, 钱峰, 张海明.2013年M_S7.0芦山地震的动力学破裂过程及其影响因素[J].地球物理学报,2021, 64 (01): 170-181.

[61] 刘琦, 闻学泽, 邵志刚.基于GPS、水准和强震动观测资料联合反演2013年芦山7.0级地震同震滑动分布[J].地球物理学报,2016, 59 (06): 2113-2125.

[62] 谭凯, 王琪, 丁开华等.近场位移数据约束的2013年芦山地震破裂模型及其构造意义[J].地球物理学报,2015, 58 (09): 3169-3182.

[63] Chen Y G, Ding K H, Qi W, et al.A refined slip distribution of the 2013 Mw 6.7 Lushan, China earthquake constrained by GPS and levelling data[J].Geophysical Journal International,2020, 222 (1): 572-581.

[64] 王乐洋, 李海燕, 陈汉清.2013年芦山Ms 7.0级地震断层参数模型反演[J].武汉大学学报(信息科学版),2019, 44 (03): 347-354.

[65] 金明培, 汪荣江, 屠泓为.芦山7级地震的同震位移估计和震源滑动模型反演尝试[J].地球物理学报,2014, 57 (01): 129-137.

[66] 许才军, 周力璇, 尹智.2013年Ms 7.0级中国芦山地震断层曲面模型的构建及其滑动分布的大地测量反演[J].武汉大学学报(信息科学版),2017, 42 (11): 1665-1672.

[67] 段虎荣, 周仕勇, 李闰等.芦山地震断层的滑动分布与汶川地震断层的关系[J].地球物理学报,2020, 63 (01): 210-222.

[68] Duan H, Wu S, Kang M, et al.Fault slip distribution of the 2015 M w 7.8 Gorkha (Nepal) earthquake estimated from InSAR and GPS measurements[J].Journal of Geodynamics,2020, 139.

[69] Jiang G Y, Xu C J, Wen Y, et al.Inversion for coseismic slip distribution of the 2010 Mw 6.9 Yushu Earthquake from InSAR data using angular dislocations[J].Geophysical Journal International,2013, 194 (2): 1011-1022.

[70] 许才军, 陈庭, 张丽琴. 地球物理大地测量反演理论与应用[M]. 地球物理大地测量反演理论与应用,2015.

[71] 李志才. 顾及地球结构的大地测量反演模式与应用[D]. 武汉大学,2005.

[72] Kositsky A P, Avouac J.Inverting geodetic time series with a principal component analysis-based inversion method[J].Journal of Geophysical Research Solid Earth,2010, 115 (B3).

[73] Wang R J, Parolai S, Ge M, et al.The 2011 Mw 9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data[J].Bulletin of the Seismological Society of America,2013, 103 (2B): 1336-1347.

[74] Minson S E, Simons M, Beckj L.Bayesian inversion for finite fault earthquake source models – II: the 2011 great Tohoku-oki, Japan earthquake[J].Geophysical Journal International,2014.

[75] Cannavò F.A new user-friendly tool for rapid modelling of ground deformation[J].Computers & Geosciences,2019, 128: 60-69.

[76] Heimann S, Vasyura-Bathke H, Sudhaus H, et al.A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems[J].Solid Earth,2019, 10 (6): 1921-1935.

[77] Fukuda J, Johnson K M.Mixed linear–non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters[J].Geophysical Journal International,2010.

[78] 张培震, 沈正康, 王敏等.青藏高原及周边现今构造变形的运动学[J].地震地质,2004 (03): 367-377.

[79] 李勇, 黄润秋, 周荣军等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009, 17 (01): 3-18.

[80] 张培震, 徐锡伟, 闻学泽等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008 (04): 1066-1073.

[81] Li Y, Jia D, Wang M, et al.Structural geometry of the source region for the 2013 Mw 6.6 Lushan earthquake: Implication for earthquake hazard assessment along the Longmen Shan[J].Earth and Planetary Science Letters,2014, 390.

[82] 刘杰, 易桂喜, 张致伟等.2013年4月20日四川芦山M7.0级地震介绍[J].地球物理学报,2013, 56 (04): 1404-1407.

[83] 赵翠萍, 周连庆, 陈章立.2013年四川芦山Ms7.0级地震震源破裂过程及其构造意义[J].科学通报,2013, 58 (20): 1894-1900.

[84] 雷生学, 冉勇康, 王虎等.关于芦山7.0级地震在龙门一带是否存在同震地表破裂的讨论[J].地震地质,2014, 36 (01): 266-274.

[85] 李传友, 徐锡伟, 甘卫军等.四川省芦山M_S7.0地震发震构造分析[J].地震地质,2013, 35 (03): 671-683.

[86] 徐锡伟, 闻学泽, 韩竹军等.四川芦山7.0级强震:一次典型的盲逆断层型地震[J].科学通报,2013, 58 (20): 1887-1893.

[87] 郝明, 王庆良, 刘立炜等.基于水准数据的芦山7.0级地震震间期和同震位移场特征[J].科学通报,2014, 59 (36): 3631-3636.

[88] Bagnardi M, Hooper A.Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach[J].Geochemistry, Geophysics, Geosystems,2018, 19 (7): 2194-2211.

[89] Amey R M J, Hooper A, Walters R J.A Bayesian Method for Incorporating Self-Similarity Into Earthquake Slip Inversions[J].Journal of Geophysical Research: Solid Earth,2018, 123 (7): 6052-6071.

[90] 吴绍宇. 2015年泥泊尔M_w7.8地震三角位错同震滑动分布及震后余滑反演[D]. 西安科技大学,2021.

[91] 吕坚, 王晓山, 苏金蓉等.芦山7.0级地震序列的震源位置与震源机制解特征[J].地球物理学报,2013, 56 (05): 1753-1763.

[92] 张培震, 闻学泽, 徐锡伟等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J].科学通报,2009, 54 (07): 944-953.

[93] Yin Z, Xu C J, Wen Y, et al.A new hybrid inversion method for parametric curved faults and its application to the 2008 Wenchuan (China) earthquake[J].Geophysical Journal International,2016, 205: 954-970.

[94] 李水平, 陈刚, 何平等.2015年尼泊尔地震同震滑动及震后余滑的三角位错模型反演[J].武汉大学学报(信息科学版),2019, 44 (12): 1787-1796.

[95] Zhang G H, Hetland E A, Shan X J, et al.Triggered slip on a back reverse fault in the Mw6.8 2013 Lushan, China earthquake revealed by joint inversion of local strong motion accelerograms and geodetic measurements[J].Tectonophysics,2016, 672-673: 24-33.

[96] Barnhart W, Lohman R.Automated fault discretization for inversions for coseismic slip distributions[J].Journal of Geophysical Research,2010, 115 (B10).

[97] 方进, 许才军, 温扬茂等.基于方差分量估计的2015年尼泊尔M_W7.8地震同震滑动分布[J].地球物理学报,2019, 62 (03): 923-939.

[98] Caijun,Xu, Yang,Liu, Yangmao,Wen.Coseismic Slip Distribution of the 2008 Mw 7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data[J].Bulletin of the Seismological Society of America,2010, 100 (5B): 2736-2749.

[99] 许才军, 邓长勇, 周力璇.利用方差分量估计的地震同震滑动分布反演[J].武汉大学学报(信息科学版),2016, 41 (01): 37-44.

[100] 王福昌, 万永革.利用余震震源分布确定主震断层面的方法研究[J].内陆地震,2007 (01): 39-43.

中图分类号:

 P315.725    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式