论文中文题名: | 基于三角位错模型反演2013年芦山Ms7.0地震同震断层滑动分布 |
姓名: | |
学号: | 19210061027 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0816 |
学科名称: | 工学 - 测绘科学与技术 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地壳形变 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-27 |
论文答辩日期: | 2022-06-09 |
论文外文题名: | Inversion of Coseismic Fault Slip Distribution of 2013 Lushan Ms7.0 Earthquake Based on Triangular Dislocation Model |
论文中文关键词: | |
论文外文关键词: | 2013 Lushan earthquake ; Coseismic slip distribution ; Triangular dislocation model ; Fault geometry ; Joint inversion |
论文中文摘要: |
精细化的断层滑动分布模型为研究断层活动状态、认识地震发震机制等提供重要基础,对于地震灾后评估、未来地震趋势判定以及防震减灾等工作具有重要的指导意义。2013年4月20日8时,中国四川芦山爆发Ms7.0地震,造成了重大的生命财产损失。本次地震与汶川Ms8.0地震成因类似,是青藏高原向东扩过程中,受到四川盆地支撑阻挡,两大块体相互挤压、碰撞形成的一次破坏型地震。与汶川地震不同的是,此次芦山地震属于盲逆断层型地震,发震断层结构复杂,而对发震断层几何结构过于简化,会对同震滑动分布反演结果的可靠性以及对破裂过程的解释产生较大影响。三角形位错在构建复杂断层时可以有效避免位错元之间的间隙和重叠现象,适合曲面断层的构建。本文使用震区内33个GPS连续站与22个水准点同震形变观测结果以及2013年4月-2014年5月总共1993个余震精定位结果来研究芦山地震断层几何结构和同震滑动分布。本文主要的研究工作及结论如下: (1)基于GPS数据利用贝叶斯方法反演了芦山地震单一平面断层几何参数,反演结果显示芦山地震发震断层走向为207.56°,倾角为43.22°。通过结合余震精定位结果,在单一平面断层的基础上构建了断层倾角随深度增加而逐渐减小的曲面断层结构,其倾角从地表的63.9°高倾角连续变化到底部的15.8°低倾角,体现出其上陡下缓的特征。 (2)在曲面断层几何模型的基础上,利用赫尔默特方差分量估计法联合GPS和水准数据基于三角位错模型反演同震滑动分布,反演结果显示芦山Ms7.0地震以明显的逆冲运动为主,只存在一个破裂峰值区,没有明显的破裂方向性。断层破裂面在近地表处无明显滑动,最大滑动量为0.98m,位于深度13.5km附近。释放的能量为1.05 1019 Nm,对应的矩震级为 。GPS和水准数据拟合残差分别为2.8mm和7.6mm,与平面矩形位错反演结果相比,拟合残差分别减少了1.3mm和1.9mm。 (3)研究了不同断层几何结构以及位错模型对本次地震同震滑动分布的影响。基于矩形位错模型,在平面断层结构条件下,反演的最大滑动量为0.68m,GPS和水准数据拟合残差分别为4.1mm和9.5mm;在曲面断层结构条件下,反演的最大滑动量为0.74m,GPS和水准数据拟合残差分别为3.3mm和7.8mm。基于三角位错模型,在平面断层结构条件下,反演的最大滑动量为0.97m(规则三角形)和0.91m(不规则三角形),GPS和水准数据拟合残差为3.1mm和8.8mm(规则三角形)、3.2mm和9.0mm(不规则三角形)。反演结果均表明,无论是平面断层还是曲面断层,基于三角位错模型反演的最大滑动量均大于基于矩形位错模型反演的最大滑动量,且三角位错模型拟合结果更好,表明本文采用三角位错元构建的曲面断层模型不仅能更接近真实的断层产状,而且能更好的解释地表观测位移。 |
论文外文摘要: |
The refined fault slip distribution model provides an important basis for exploring the causes of earthquakes and studying the rupture mechanism, and is an important guide for earthquake emergency rescue, regional earthquake trend prediction, and earthquake disaster prevention and mitigation work. April 20, 2013 at 8:00, the Ms7.0 earthquake erupted in Lushan, Sichuan, China, causing significant loss of life and property. This earthquake is similar to the Wenchuan Ms8.0 earthquake in that it is a destructive earthquake formed by the extrusion and collision of two major blocks during the eastward movement of the Qinghai-Tibet Plateau due to the support and blockage of the Sichuan Basin. Unlike the Wenchuan earthquake, the Lushan earthquake is a blind reverse-fault type earthquake with a complex fault structure, and oversimplification of the geometric structure of the fault will have a greater impact on the reliability of the inversion results of the coseismic slip distribution and on the interpretation of the rupture process. In this paper, the geometric structure and coseismic slip distribution of the Lushan earthquake fault are studied using the results of 33 continuous GPS stations and 22 leveling points in the earthquake area with the observation of coseismic deformation and a total of 1993 aftershocks from April 2013 to May 2014. The main research work and conclusions of this paper are as follows: (1) The geometric parameters of the single plane fault of the Lushan earthquake were inversed using Bayesian method based on GPS data, and the results of the inversion showed that the seismogenic fault of the Lushan earthquake had a strike of 207.56° and an inclination of 43.22°. By combining the results of aftershock precise localization, a curved fault structure was constructed on the basis of the single plane fault, in which the dip angle of the fault gradually decreases with depth, and its dip angle changes continuously from 63.9° high dip angle at the surface to 15.8° low dip angle at the bottom, reflecting its characteristics of steep at the top and slow at the bottom. (2) Based on the geometric model of the curved fault, the inversion of the coseismic sliding distribution based on the triangular dislocation model using the Helmut variance component estimation method combined with GPS and level data shows that the Ms7.0 earthquake in Lushan is dominated by an obvious reverse motion, with only one rupture peak area and no obvious rupture directionality. The fault rupture surface has no obvious slip near the surface, and the maximum slip is 0.98m, located near the depth of 13.5km. The released energy is 1.05×1019 Nm, and the corresponding moment magnitude is Mw6.63. The fitted residuals of GPS and leveling data are 2.8mm and 7.9mm, respectively, which are reduced by 1.3mm and 1.6mm compared with the planar rectangular dislocation. (3) The effects of different fault geometries and dislocation models on the coseismic slip distribution of this earthquake are investigated. Based on the rectangular dislocation model, the maximum slip in the inversion is 0.68m under the planar fault structure, and the residuals of GPS and level data fitting are 4.1mm and 9.5mm, respectively; under the curved fault structure, the maximum slip in the inversion is 0.91m, and the residuals of GPS and level data fitting are 3.2mm and 9.0mm, respectively. Based on the triangular dislocation model, the maximum slip of the inversion is 0.97m (regular triangle) and 0.91m (irregular triangle) under the condition of planar fault structure, and the residuals of GPS and leveling data fitting are 3.1mm and 8.8mm (regular triangle), 3.2mm and 9.0mm (irregular triangle). The inversion results show that the maximum slip based on the triangular dislocation model is larger than that based on the rectangular dislocation model for both planar and curved faults, and the triangular dislocation model fits better, which indicates that the curved fault model constructed by using triangular dislocation elements is not only closer to the real fault production, but also can better explain the surface observed displacement. |
参考文献: |
[1] Bilham, Roger.Seismology: Raising Kathmandu[J].Nature Geoscience,2015, 8 (8): 582-584. [2] 王中山.唐山地震人员伤亡概况及原因宏观分析[J].灾害学,1989 (02): 51-56. [3] 李西, 周光全, 郭君等.汶川8.0级地震人员伤亡及分布特征分析[J].地震研究,2008, 31 (S1): 515-520. [4] 乔学军, 王琪, 杜瑞林等.昆仑山口西Ms8.1地震的地壳变形特征[J].大地测量与地球动力学,2002 (04): 6-11. [5] 汪建军, 许才军, 申文斌.2010年Mw 6.9级玉树地震同震库仑应力变化研究[J].武汉大学学报(信息科学版),2012, 37 (10): 1207-1211. [6] 孟令媛, 周龙泉, 刘杰.2013年四川芦山M_S7.0地震近断层强地面运动模拟及烈度分布估计[J].地球物理学报,2014, 57 (02): 441-448. [8] 单新建, 屈春燕, 宋小刚等.汶川Ms8.0级地震InSAR同震形变场观测与研究[J].地球物理学报,2009, 52 (2): 9. [10] 李闰. 地震断层同震滑动分布的反演[D]. 西安科技大学,2019. [17] Yoffe, Elizabeth H.The angular dislocation[J].Philosophical Magazine,1960, 5 (50): 161-175. [25] 王启欣, 江在森, 武艳强等.不同模型下地震位错理论的对比及其应用进展综述[J].地震学报,2015, 37 (04): 690-704+712. [29] 付广裕, 孙文科.球体位错理论计算程序的总体设计与具体实现[J].地震,2012, 32 (02): 73-87. [33] 陈运泰, 黄立人, 林邦慧等.用大地测量资料反演的1976年唐山地震的位错模式[J].地球物理学报,1979, 000 (003): 201. [34] 陈运泰, 林邦慧, 林中洋等.根据地面形变的观测研究1966年邢台地震的震源过程[J].地球物理学报,1975 (3). [35] 单新建, 马瑾, 王长林等.利用星载D-INSAR技术获取的地表形变场提取玛尼地震震源断层参数[J].中国科学:D辑,2002, 32 (10): 8. [36] 万永革, 王敏, 沈正康等.利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布[J].地震地质,2004. [43] 刘云华, 汪驰升, 单新建等.芦山M_s7.0级地震InSAR形变观测及震源参数反演[J].地球物理学报,2014, 57 (08): 2495-2506. [44] 王卫民, 郝金来, 姚振兴.2013年4月20日四川芦山地震震源破裂过程反演初步结果[J].地球物理学报,2013, 56 (04): 1412-1417. [45] 张勇, 许力生, 陈运泰.芦山4.20地震破裂过程及其致灾特征初步分析[J].地球物理学报,2013, 56 (04): 1408-1411. [47] 陈运泰, 杨智娴, 张勇等.从汶川地震到芦山地震[J].中国科学:地球科学,2013, 43 (06): 1064-1072. [50] 冯杨洋, 于常青, 范柱国等.从反射地震剖面中认识芦山地区的地壳精细结构和构造[J].地球物理学报,2016, 59 (09): 3248-3259. [51] 王夫运, 赵成彬, 酆少英等.深反射剖面揭示的芦山7.0级地震发震构造[J].地球物理学报,2015, 58 (09): 3183-3192. [52] 易桂喜, 龙锋, Vallage A等.2013年芦山地震序列震源机制与震源区构造变形特征分析[J].地球物理学报,2016, 59 (10): 3711-3731. [53] 詹艳, 赵国泽, Martyn U等.龙门山断裂带西南段4.20芦山7.0级地震区的深部结构和孕震环境[J].科学通报,2013, 58 (20): 1917-1924. [54] 赵荣涛, 安美建, 冯梅等.利用余震震中分析芦山M_S7.0地震发震构造[J].地震学报,2015, 37 (02): 205-217+370. [56] 苏金蓉, 郑钰, 杨建思等.2013年4月20日四川芦山M7.0级地震与余震精确定位及发震构造初探[J].地球物理学报,2013, 56 (08): 2636-2644. [60] 马聪慧, 钱峰, 张海明.2013年M_S7.0芦山地震的动力学破裂过程及其影响因素[J].地球物理学报,2021, 64 (01): 170-181. [61] 刘琦, 闻学泽, 邵志刚.基于GPS、水准和强震动观测资料联合反演2013年芦山7.0级地震同震滑动分布[J].地球物理学报,2016, 59 (06): 2113-2125. [62] 谭凯, 王琪, 丁开华等.近场位移数据约束的2013年芦山地震破裂模型及其构造意义[J].地球物理学报,2015, 58 (09): 3169-3182. [64] 王乐洋, 李海燕, 陈汉清.2013年芦山Ms 7.0级地震断层参数模型反演[J].武汉大学学报(信息科学版),2019, 44 (03): 347-354. [65] 金明培, 汪荣江, 屠泓为.芦山7级地震的同震位移估计和震源滑动模型反演尝试[J].地球物理学报,2014, 57 (01): 129-137. [67] 段虎荣, 周仕勇, 李闰等.芦山地震断层的滑动分布与汶川地震断层的关系[J].地球物理学报,2020, 63 (01): 210-222. [70] 许才军, 陈庭, 张丽琴. 地球物理大地测量反演理论与应用[M]. 地球物理大地测量反演理论与应用,2015. [71] 李志才. 顾及地球结构的大地测量反演模式与应用[D]. 武汉大学,2005. [78] 张培震, 沈正康, 王敏等.青藏高原及周边现今构造变形的运动学[J].地震地质,2004 (03): 367-377. [79] 李勇, 黄润秋, 周荣军等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009, 17 (01): 3-18. [80] 张培震, 徐锡伟, 闻学泽等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008 (04): 1066-1073. [82] 刘杰, 易桂喜, 张致伟等.2013年4月20日四川芦山M7.0级地震介绍[J].地球物理学报,2013, 56 (04): 1404-1407. [83] 赵翠萍, 周连庆, 陈章立.2013年四川芦山Ms7.0级地震震源破裂过程及其构造意义[J].科学通报,2013, 58 (20): 1894-1900. [84] 雷生学, 冉勇康, 王虎等.关于芦山7.0级地震在龙门一带是否存在同震地表破裂的讨论[J].地震地质,2014, 36 (01): 266-274. [85] 李传友, 徐锡伟, 甘卫军等.四川省芦山M_S7.0地震发震构造分析[J].地震地质,2013, 35 (03): 671-683. [86] 徐锡伟, 闻学泽, 韩竹军等.四川芦山7.0级强震:一次典型的盲逆断层型地震[J].科学通报,2013, 58 (20): 1887-1893. [87] 郝明, 王庆良, 刘立炜等.基于水准数据的芦山7.0级地震震间期和同震位移场特征[J].科学通报,2014, 59 (36): 3631-3636. [90] 吴绍宇. 2015年泥泊尔M_w7.8地震三角位错同震滑动分布及震后余滑反演[D]. 西安科技大学,2021. [91] 吕坚, 王晓山, 苏金蓉等.芦山7.0级地震序列的震源位置与震源机制解特征[J].地球物理学报,2013, 56 (05): 1753-1763. [92] 张培震, 闻学泽, 徐锡伟等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J].科学通报,2009, 54 (07): 944-953. [94] 李水平, 陈刚, 何平等.2015年尼泊尔地震同震滑动及震后余滑的三角位错模型反演[J].武汉大学学报(信息科学版),2019, 44 (12): 1787-1796. [97] 方进, 许才军, 温扬茂等.基于方差分量估计的2015年尼泊尔M_W7.8地震同震滑动分布[J].地球物理学报,2019, 62 (03): 923-939. [99] 许才军, 邓长勇, 周力璇.利用方差分量估计的地震同震滑动分布反演[J].武汉大学学报(信息科学版),2016, 41 (01): 37-44. [100] 王福昌, 万永革.利用余震震源分布确定主震断层面的方法研究[J].内陆地震,2007 (01): 39-43. |
中图分类号: | P315.725 |
开放日期: | 2022-06-27 |