论文中文题名: | 煤矿巷道掘进智能锚索支护系统研究 |
姓名: | |
学号: | 22205224118 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085500 |
学科名称: | 工学 - 机械 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 机器人技术 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-12 |
论文答辩日期: | 2025-05-30 |
论文外文题名: | Research on intelligent anchor cable support system for roadway excavation in coal mine |
论文中文关键词: | |
论文外文关键词: | Anchor intelligent support ; Anchor cable transportation ; Manipulator ; Virtual prototype ; Kinematic dynamics |
论文中文摘要: |
针对煤矿巷道掘进过程中锚索支护自动化水平低、作业人员劳动强度大、井下空间受限等问题,在本团队所研发的钻锚机器人的基础上提出一套智能化锚索支护系统方案,将锚索支护流程分解为物料抓取、锚索输送与锚索紧固三阶段,通过机械臂、锚索输送装置与锚杆钻机协同作业,实现锚索智能安装。 根据锚索输送安装的功能需求,提出一种煤矿巷道掘进智能锚索支护系统;针对井下作业空间受限的问题,对锚索支护系统中各部分的位置关系进行分析,以机械臂输送锚索时锚索曲率最小及锚索悬空长度最小为指标建立目标函数,利用多目标粒子群算法求解得到系统最优空间布局。 基于锚索支护工艺,设计了一种圆盘式的锚索库,确定了接触力的主要影响因素,通过响应面回归实验分析了各因素对接触力的影响权重,最终得到锚索库最优结构参数;提出一种“输送弯道+滚轮”组合锚索输送结构,建立了锚索参数、锚索弯曲弹性力和弯管参数关系之间的力学模型,实现柔性锚索输送功能;设计了基于连杆机构的锚索夹持装置,具有一对分离式输送通道,可在锚索紧固阶段中实现锚索的校直并与锚杆钻机协同完成锚索的紧固任务。 研究分析了输送锚索及物料(药卷、锁具、托盘)的系统功能需求,建立了机械臂运动学模型,对机械臂的工作空间的分析表明末端执行器能够覆盖所有任务所在的空间位置;采用数值方法对机械臂的逆运动学进行求解,对关键路径点上的8组独立解进行组合,以关节最短行程为准则,得到了最优逆解组合;针对机械臂输送药卷、锁具和锚索三种情况,利用直线插补和三次多项式方法进行了机械臂关节轨迹规划,仿真结果验证了轨迹规划的有效性和机械臂的运动平稳性。 采用拉格朗日方法建立了机械臂的动力学方程,通过虚功原理将锚索的时变负载与接触阻力转化为广义力,得到了变负载的机械臂动力学模型;基于绝对节点坐标法(ANCF)建立了锚索的动力学模型;基于RecurDyn软件搭建了锚索支护系统的虚拟样机模型,通过刚柔耦合分析方法完成了机械臂、输送装置、钻机、锚索的协同作业仿真,精确复现了机械臂对锚索抽取与输送装置对锚索输送两阶段的动态仿真。仿真结果表明,机械臂抽取锚索的角度和速度均对关节力矩产生显著影响。综合考虑抽取过程的效率和关节力矩波动得到了的抽取过程的最优参数组合,从而改善了关节力矩负载和抽取力波动幅值。输送滚轮的线速度与锚索速度之差较小,验证了计算结果的准确性。 本研究针对煤矿巷道锚索支护自动化难题,创新提出集成机械臂、锚索库与输送装置的智能支护系统;通过空间布局优化与结构创新设计,实现柔性锚索高效输送;基于刚柔耦合动力学建模与虚拟仿真验证了支护系统的可行性与可靠性。研究成果为井下锚索输送系统开发与输送装置结构改进的提供了理论依据。 |
论文外文摘要: |
Aiming at the problems of low automation level of anchor cable support, high labor intensity of operators and limited underground space in the process of coal mine roadway excavation, a set of intelligent anchor cable support system scheme is proposed on the basis of the drilling and anchoring robot developed by our team. The anchor cable support process is decomposed into three stages : material transportation, anchor cable transportation and anchor cable fastening. The precise installation of anchor cable is realized by the cooperative operation of mechanical arm, anchor cable conveying device and bolt drilling rig. Propose a coal mine tunnel excavation anchor support system based on the functional requirements of anchor cable transportation and installation; In response to the problem of limited underground working space, the position relationship of each part in the anchor support system is analyzed. The objective function is established based on the minimum curvature of the anchor cable and the minimum hanging length of the anchor cable when the mechanical arm transports the anchor cable. The multi-objective particle swarm algorithm is used to solve the optimal spatial layout of the system. According to the anchor cable support technology, a disc-type anchor cable library was designed. The main influencing factors of contact force were determined by theoretical analysis. The influence weight of each factor on contact force was analyzed by response surface regression experiment. Finally, the optimal structural parameters of anchor cable library were obtained. A combined anchor cable conveying structure of ' conveying bend + roller ' is proposed. The mechanical model between the parameters of anchor cable, the bending elastic force of anchor cable and the parameters of bend pipe is established. Combined with the design of movable slide rail, the flexible anchor cable conveying function is realized. The anchor cable clamping device based on the link mechanism is designed, which has a pair of separate conveying channels, which can realize the straightening of the anchor cable in the anchor cable fastening stage and cooperate with the anchor rig to complete the anchor cable fastening task. According to the requirements of conveying anchor cable and materials (cartridge, lock, tray) the kinematics model of the manipulator is established. The analysis of the workspace of the manipulator shows that the end effector can cover the spatial position of all tasks. The numerical method is used to solve the inverse kinematics of the manipulator. Eight groups of independent solutions on the critical path points are combined. The optimal inverse solution combination is obtained by comparison with the shortest joint stroke as the criterion. Aiming at the three cases of conveying cartridge, lock and anchor cable, the trajectory planning of manipulator joint is carried out by using linear interpolation and cubic polynomial method. The simulation results verify the effectiveness of trajectory planning and the motion stability of manipulator. The dynamic equation of the robotic arm was established using the Lagrangian method, and the time-varying load and contact resistance of the anchor cable were converted into generalized forces through the principle of virtual work, resulting in a dynamic model of the robotic arm with variable loads; A dynamic model of the anchor cable was established based on the Absolute Node Coordinate Method (ANCF); A virtual prototype model of the anchor support system was built based on RecurDyn software, and the collaborative operation simulation of the robotic arm, conveying device, drilling rig, and anchor cable was completed through the rigid flexible coupling analysis method. The dynamic simulation of the two stages of anchor cable extraction by the robotic arm and anchor cable transportation by the conveying device was accurately reproduced.The simulation results show that the angle and speed of the manipulator to extract the anchor cable have a significant impact on the joint torque. Considering the efficiency of the extraction process and the fluctuation of the joint torque, the optimal parameter combination of the extraction process is obtained, which improves the joint torque load and the fluctuation amplitude of the extraction force. The difference between the linear speed of the conveying roller and the speed of the anchor cable is small, and there is almost no slippage, which verifies the accuracy of the calculation results. This study aims to address the automation challenges of anchor cable support in coal mine tunnels, and innovatively proposes an intelligent support system that integrates mechanical arms, anchor cable warehouses, and conveying devices; By optimizing spatial layout and innovating structural design, efficient transportation of flexible anchor cables can be achieved; The feasibility and reliability of the support system were verified through rigid flexible coupling dynamics modeling and virtual simulation. The research results provide a theoretical basis for the development of underground anchor cable conveying systems and the improvement of conveying device structures. |
参考文献: |
[1]王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术,2019,47(08):1-36. [2]丁永成.高效快速掘进系统现状及支护设备发展[J].煤炭工程,2020,52(12):168-171. [3]赵昊,马宏伟,王川伟,等.复杂地质条件煤矿巷道多履带钻锚机器人运动学研究[J].煤炭工程,2022,54(02):121-126. [4]李久云.锚索支护在煤矿开采中的应用[J].机械管理开发,2018,33(06):109-111. [5]国家能源局,国家矿山安全监察局,《煤矿智能化建设指南(2021年版)》[EB/OL].[2021-6-5]. [7]Nong Z , Cheng W , Yi-Ming Z .Rapid development of coalmine bolting in China[J]. 2009. [8]胡效东,巩礼晓,王吉岱,等.锚索锚杆联合支护技术在煤巷中的应用[J].煤矿机械,2010,31(01):174-177. [9]马宏伟,孙思雅,王川伟等.多机械臂多钻机协作的煤矿巷道钻锚机器人关键技术[J].煤炭学报,2023,48(01):497-509. [10]殷骏;李占炎;李辉.智能Cabletec M型锚索台车在谦比希铜矿的应用研究[J].中国设备工程,2022,(05):42-44. [11]刘纪新,胡凤菊,王吉岱.气-液联动锚索安装作业车的设计[J].煤矿机械,2012,33(11):32-33. [12]蒲长晏. 一种单臂锚索钻车:CN201620946118.8[P]. 2017-02-22. [13]刘宝,李鹏飞,陈俊宇.煤矿顶板支护锚索辅助供送装置研究[J].机械工程师,2018,(03):12-14. [14]陈明健.新型辅助送锚索装置研究[J].凿岩机械气动工具,2023,49(01):18-20. [15]中国铁建重工集团股份有限公司.一种锚索液压自动送索装置:CN201410250361.1[P].2021-04-27. [16]中国葛洲坝集团三峡建设工程有限公司. 一种锚索液压自动送索装置:CN201410250361.1[P]. 2014-09-17. [17]巩礼晓.掘进巷道钻孔及锚索安装装置的研究[D].山东科技大学,2011. [18]中国铁建重工集团股份有限公司. 一种锚索安装装置:CN202110783953.X[P]. 2021-09-28. [19]中国三峡建工(集团)有限公司. 一种角度可调式锚索自动下索机及锚索下索施工方法:CN202311005807.X[P]. 2023-09-19. [20]廊坊景隆重工机械有限公司. 一种集成锚索输送和钻杆夹持功能的钻孔机构:CN202310217845.5[P]. 2023-06-23. [21]乔伊·姆·特拉华公司.顶部锚杆支护的铺索供送设备:CN201010163785.6[P].2011.01.05. [22]上海中联重科桩工机械有限公司. 锚索输送系统:CN202311556231.6[P]. 2024-01-02. [23]山西汾西矿业(集团)有限责任公司. 一种用于输送锚索的设备:CN202022213279.5[P]. 2021-08-03. [24]陈加胜,邱艳菊,佘成刚等.旋转冲击式单体气动锚杆钻机研究[J].内江科技,2018,39(12):25-26. [25]王育恒.新型机载锚杆锚索钻机设计与研究[D].太原科技大学,2022. [26]李旺年.掘锚一体机机载锚杆钻机的研制[J].煤矿安全,2021,52(07):138-141. [27]张立平.机载锚杆钻机夹持器的改进设计[J].煤炭技术,2018,37(05):243-244. [28]程伟.煤矿掘进机机载锚杆钻机动力学特性分析[J].机械管理开发,2022,37(05):126-127,135. [30]周桂英,陈洪月,刘辉等.掘进机机载锚杆钻机结构设计研究[J].煤矿机械,2008(07):11-12. [31]高志强,郭治富.国内外自动锚杆钻架类型特点及研究方向[J].煤炭科学技术,2023,51(03):212-224. [32]檀润娥.煤矿自动化锚杆钻机设计与研究[D].太原理工大学,2020. [33]王虹,王建利,张小峰.掘锚一体化高效掘进理论与技术[J].煤炭学报,2020,45(06):2021-2030. [35]胡效东,巩礼晓,王吉岱,等.锚索锚杆联合支护技术在煤巷中的应用[J].煤矿机械,2010,31(01):174-177. [36]中国煤炭科工集团太原研究院有限公司,山西天地煤机装备有限公司. 自动钻孔、推药、送锚索和张紧固连切断的机构:CN202110932952.7[P]. 2024-01-30. [37]马宏伟,尚东森,杨宇婷.煤矿钻锚机器人自动钻锚单元的设计与仿真分析[J].煤矿机械,2018,39(10):3-6. [38]马宏伟,王成龙,尚东森,等.煤矿井下钻锚机器人布网单元设计与仿真[J].煤炭工程,2019,51(06):160-164. [39]任有为.煤矿支护锚杆推进机器人关键结构设计[J].装备制造技术,2023,(11):212-214. [40]金流丞.钻杆输送机械手设计与分析[J].煤矿机械,2019,40(05):110-111. [41]先梅开,李维维.煤矿支护机械手的运动和动力分析[J].中国矿业大学学报,1997,(01):79-82. [42]李发泉.煤矿用于U形钢支架机械手的设计与仿真分析[J].煤矿机械,2019,40(08):108-111. [43]蒋贤海,谌小平.煤矿搬运机械手及其控制系统设计与实现[J].机电产品开发与创新,2019,32(02):79-80. [44]申树策.煤矿钻孔机器人机械手运动学建模与轨迹规划研究[D].河北工程大学,2022. [45]王宏伟,郭军军,梁威,等.采煤机滚筒工作性能优化研究[J].工矿自动化,2024,50(04):133-143. [46]王少杰,侯亮,方奕凯,等.考虑产品运行大数据的装载机变速箱优化设计[J].机械工程学报,2018,54(22):218-232. [49]马宏伟,王赛赛,王川伟,等.短横轴截割机器人直墙拱形巷道自动成形控制方法[J].西安科技大学学报,2024,44(03):418-429. [53]蔡玉强,郝瑞朝,张雪雁,等.全自动捆钢机关键零部件分析研究[J].机械设计与制造,2009,(03):206-208. [54]王智祥,周先永,广卫蓉.钢丝类打捆机送丝导路设计实践[J].重型机械,1996,(02):18-23. [55]沈鑫刚.全自动钢管打捆机的研究与开发[D].浙江大学,2005. [56]邵旭东,蔡文涌,曹君辉,等.型钢-UHPC轻型组合桥面板及其抗弯性能研究[J].土木工程学报,2024,57(06):152-168. [58]赵丽娟,杨世杰,张海宁,等.基于DEM-MFBD双向耦合技术的采煤机摇臂壳体疲劳寿命预测[J].煤炭科学技术,2023,51(S2):252-258. [61]王再翔.关于四臂锚杆机安装钻杆夹持装置技术方案[J].内蒙古石油化工,2006,(09):53-54. [62]付敏,郭世珂,张龙一,等.基于TRIZ的猕猴桃采摘机设计[J].中国农机化学报,2024,45(03):1-7. [63]张鹏辉. 一种台虎钳:CN202111541156.7[P]. 2022-03-01. [64]陕西彬长小庄矿业有限公司. 一种钻杆扶正器:CN202221386350.2[P]. 2022-11-08. [65]相吉安,刘艳波,种建,等.锚杆锚索自动牵引装置的研制与应用[J].煤炭工程,2011,(S1):38-39,41. [66]广州九恒条码股份有限公司. 一种工业机器人夹具:CN202123304559.8[P]. 2023-01-03. [69]刘科,廖映华,谭州,等.基于响应面法的五轴机床十字滑座工艺参数优化[J].机械设计,2025,42(03):113-123. [70]李超,徐凯,庞楠,等.海洋钢桩清除机具环抱结构参数优化[J].机械设计,2025,42(03):150-156. [71]郑良,李越凡,赵强,等.基于响应面分析的聚甲基丙烯酸甲酯表面微观生物污损超声防除研究[J].表面技术,2021,50(04):319-327. [72]张博文,李爱潮,郑志安,等.川麦冬往复切割式剪果装置设计与仿真试验[J].农业机械学报,2023,54(S2):81-90. [73]Siciliano B,Robotics Modelling, Planning and Control[M].Springer.2008. [74]王怡,方珍龙.五自由度双清洗盘清洗机械臂的运动学分析与路径规划[J].船舶工程,2025,47(02):119-128. [77]徐文福,梁斌.冗余空间机器人操作臂:运动学、轨迹规划及控制[M].科学出版社,2017. [78]Craig,J.J,Introduction to robotics mechanics and control[M].Prentice Hall,2004. [79]王敏,孙景健,丁基恒,等.基于D-H参数与拉格朗日联立方程的仿生水蛇机器人运动学分析及动力学建模[J].机械工程学报,2024,60(15):134-148. [80]Shabana,A.A.Dynamic of Multibody Systems[M].Cambridge University Press,2020. [81]田强.基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D].华中科技大学,2009. [85]钱伟长.宁波甬江大桥的大挠度非线性计算问题[J].应用数学和力学,2002,(05):441-451. [86]陈渊钊,朱健成,吴文军,等.浮动坐标系下大变形柔性梁的变形梯度单元[J].力学学报,2025,57(01):249-260. [87]沈聪聪,马帅,谭好超,等.基于多柔体动力学的葡萄挑藤机构参数优化与试验[J].农业工程学报,2024,40(16):24-33. |
中图分类号: | TP242 |
开放日期: | 2025-06-20 |