论文中文题名: |
干湿交替老化对木材燃烧蔓延行为影响机制研究
|
姓名: |
宋佳佳
|
学号: |
18120089004
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
消防科学与工程
|
第一导师姓名: |
邓军
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-23
|
论文答辩日期: |
2022-06-02
|
论文外文题名: |
Effect mechanism of dry and wet alternating aging on wood combustion and spread behavior
|
论文中文关键词: |
建筑消防 ; 木材 ; 热释放 ; 燃烧特征 ; 火蔓延行为 ; 干湿交替老化
|
论文外文关键词: |
Building fire fighting ; Wood ; Thermal behavior ; Combustion characteristics ; Fire spread ; Dry and wet alternate aging
|
论文中文摘要: |
︿
木结构古建筑的消防安全保护历来得到国家和社会各界的重视,但由于木结构古建筑本身具有的木质老化、木构造设计多样、空间布局复杂等特点,难以对木结构古建筑着火及火灾蔓延进行早期预测和精准预警。近几年,发生了多起木结构古建筑火灾事故,造成重大文物损失和社会影响。为此,本文根据木结构古建筑干湿老化损伤的特点,针对老化木质材料可燃物的燃烧及火蔓延行为等关键科学问题,采用木材干湿老化、燃烧实验和理论分析相结合的方法,开展干湿老化木材的燃烧及火蔓延行为研究,掌握老化木材的燃烧和蔓延特征,为木结构古建筑的火灾的精准防控及救援提供数据参考和理论支撑,具有一定科学价值和实际意义。取得主要创新性成果如下:
(1)根据木材受到长久老化残损的特点,确定了人工加速干湿交替老化方法,以古建筑常见木材种类为研究对象,获得不同干湿老化程度木材;通过实验测试分析了人工加速干湿老化木材基础物理特征。研究表明,受干湿交替老化过程中细胞壁发生塑性变形的影响,木材局部结构出现不同程度塌陷,表面撕裂程度增大,微小裂隙增多;由于吸着和解吸循环过程中木材细胞壁受到弹性应力和机械吸附蠕变应力的共同影响,造成木材的孔隙变形随老化程度变化呈现出周期性和阻尼性,从而导致木材的热物性参数随老化程度加深均表现为正弦阻尼特征。
(2)通过热分析方法,研究了不同木材在干湿老化前后热流演化过程,掌握了干湿老化前后其热释放的阶段迁移规律。阐释了木材燃烧热释放过程随干湿老化程度演化特征;基于热流对干湿老化木材热释放过程的动力学特性进行了分析,揭示了干湿交替老化过程对木材热反应进程影响机制。研究表明,干湿交替老化对木材燃烧过程影响的主要热释放阶段为挥发分析出阶段;由于老化交替过程造成孔隙蠕变塑性变形引起其热运输能力增强,导致木材燃烧热释放过程中挥发分析出阶段所需温度范围大幅减少,挥发分燃烧阶段热释放强度增强,炭燃烧阶段缩短。通过表观活化能分析表明,干湿交替老化对木材不同放热阶段反应能量需求的影响存在干湿老化程度阶段性;在加速放热阶段,初期干湿交替老化过程(10次-30次)导致木材表观活化能与新木整体发生相反的变化趋势;干湿交替老化对快速放热阶段末期发生氧化反应能量需求的影响随着老化程度的加深逐渐减小。
(3)采用锥形量热仪,结合干湿老化作用下木材的释热特性,开展了木材的燃烧特性研究,分析了干湿老化及厚度作用下点燃时间、质量损失、热释放、烟气产率等关键燃烧参数变化规律,揭示了干湿老化和厚度耦合条件下木材燃烧过程演化规律。结果表明,随着干湿老化程度的加深,木材燃烧过程中维持原有尺寸和形状的性能则逐渐减弱。持续的干湿交替循环导致木材表面燃烧过程中质量损失峰和放热峰强度增大;干湿老化后木材中心炭燃烧阶段的质量损失峰和放热峰出现时间随着干湿老化程度的加深而逐渐提前,但质量损失峰和放热峰强度降低。木材厚度越大,表面挥发物析出峰强度变化稳定的初期干湿交替老化过程持续越深,受干湿老化作用的影响越小;相同老化程度下,受到中心挥发物运移和传热过程的影响,干湿老化的影响程度和厚度呈负相关;当老化木材的厚度小于热穿透厚度时,燃烧过程特征峰的强度和时间随老化程度变化表现出周期性和阻尼性。
(4)开展了水平和倾角条件下干湿老化木材小型火蔓延实验,分析了干湿交替老化对木材火蔓延行为影响规律,建立了水平条件下老化木材火蔓延模型,揭示了木材火蔓延行为受干湿老化影响演变机制。研究表明,在水平条件下,由于老化过程引起木材热运输能力周期性和阻尼性演化,导致木材在火蔓延过程中火焰高度、火焰宽度、火焰面积、火蔓延速率等火焰参数均随干湿老化程度的加深其演化规律均呈现正弦阻尼变化规律。当倾斜角度较小时干湿交替老化过程对木材火蔓延行为的影响较大;由于老化过程引起木材燃烧挥发物析出强度增大,导致木材火蔓延速率快速增长的临界倾斜角度变小。
﹀
|
论文外文摘要: |
︿
The fire safety protection of ancient wooden structure buildings has always been paid attention by the country and all sectors of society. However, due to the characteristics of wood aging, diverse wood structure design and complex spatial layout, it is difficult to make early prediction and accurate warning of the fire and fire spread of ancient wooden structure ancient buildings. In recent years, there have been many fire accidents of ancient wooden structure buildings, causing major loss of cultural relics and social impact. Therefore, according to the characteristics of dry and wet aging damage of ancient wood structure buildings, in view of the key scientific problems such as the burning and fire spread behavior of aging wood materials. Using the combination of dry and wet aging, combustion experiment and theoretical analysis, the combustion and fire spreading behavior of dry and wet aging wood are carried out to master the combustion and spreading characteristics of aging wood. It is of certain scientific value and practical significance to provide data reference and theoretical support for the precise fire prevention and rescue of ancient wooden buildings. The main innovative achievements were made are as follows:
(1)According to the characteristics of long-term aging damage of wood, the method of artificial accelerated dry and wet alternating aging is determined. Taking the common wood types of ancient buildings as the research object, the wood with different dry and wet aging degrees was obtained, and the basic physical characteristics of artificial accelerated dry and wet aging were tested and analyzed. The study shows that, affected by the plastic deformation of the cell wall in the process of alternating dry and wet aging, the local structure of the wood collapses to different degrees, the surface tear degree increases, and the small cracks increase. Due to the joint influence of elastic stress and mechanical adsorbed creep stress in the process of desorption cycle, the pore deformation of wood shows periodicity and damping with the aging degree, that the thermoproperty parameters of wood were both sinusoidal damping characteristic with the deepening of aging degree.
(2)The wood heat flow evolution process was analyzed before and after dry and wet aging, and the stage migration law of wood heat release before and after dry and wet aging is mastered. The evolution characteristic of wood combustion heat release process with dry and wet aging degree was explained. The dynamics of the heat release process in dry and wet aging wood was analyzed, the mechanism of the influence of the dry and wet alternating aging process on the heat reaction process was revealed. The study shows that the main heat release stage of dry and wet aging on wood combustion process was volatilization analysis stage. Due to the enhancement of the alternating aging process of the heat transport capacity of wood, the temperature range required in the volatile analysis stage was greatly reduced, the heat release in the volatile combustion stage was enhanced, and the carbon combustion stage was shortened. The apparent activation energy analysis shown that the dry and wet aging effect reduces the energy barrier of wood in the initial stage of accelerated heat release, and the effects of alternating dry and wet aging on the energy demand of wood in different exothermic stages exist in stages during the dry and wet aging. In the stage of accelerated exothermic, the initial dry and wet alternating aging process (10-30 times) leads to the opposite trend of apparent activation energy. The effect of alternating dry and wet aging on the energy demand of oxidation reaction at the end of the rapid exotherphase gradually decreases with the deepening of aging.
(3) Using a cone calorimeter, combined with the heat release characteristics of wood under the action of dry and wet aging, the combustion characteristics of wood were studied. The variation law of key combustion parameters such as ignition time, mass loss, heat release and flue gas yield under dry and wet aging and thickness was analyzed, and the evolution law of wood combustion process under dry and wet aging and thickness coupling was revealed. The results show that with the deepening of dry and wet aging, the performance of wood in maintaining the original size and shape was gradually weakened. The continuous alternating dry and wet aging leads to the increase of precipitation peak and exothermic peak strength of volatiles during wood surface combustion. After dry and wet aging, the occurrence time of carbon combustion peak and exothermic peak in the central carbon combustion stage of wood gradually advances with the deepening of dry and wet aging degree, but the strength of mass loss peak and exothermic peak was reduced. The larger the wood thickness, the wider the aging degree of the peak strength of the surface volatile precipitate changes and stabilizes, and the less the influence of dry and wet aging. Under the same degree of aging, the degree of aging and thickness were negatively correlated by the influence of central volatile transport and heat transfer. When the thickness of the aging wood was less than the thermal penetration thickness, the characteristic peaks of the combustion process show periodic and damped changes with the degree of aging.
(4)The experiment of dry and wet aging wood under horizontal and inclination conditions, analyzed the influence law of dry and wet alternating aging on wood fire spread behavior, established the aging wood fire spread model under horizontal conditions, and revealed the evolution mechanism of wood fire spread behavior affected by dry and wet aging. Under the horizontal condition, due to the periodic and damped evolution of wood heat transport capacity caused by the aging, the flame parameters such as flame height, flame width, flame area and fire spread rate all shown the change law of sinusoidal damping along with the deepening of dry and wet aging degree. When the tilt Angle was small, the dry and wet alternating aging process has a great influence on the spread behavior of wood fire. Because the aging process causes the increase of wood combustion volatile analysis strength, the critical tilt angle of wood fire spread rate becomes smaller.
﹀
|
参考文献: |
︿
[1] 朱士光, 肖爱玲. 古都西安的发展变迁及其与历史文化嬗变之关系[J].陕西师范大学学报(哲学社会科学版),2005, 34(4). [2] 魏晓平. 历史文化名城的保护与发展评介《古都北京五十年演变录》[J].建筑与文化, 2006(8): 110-110. [3] 郑孝燮. 古都北京皇城的历史功能、传统风貌紫禁城的“整体性”[J]. 故宫博物院院刊, 2005, 2005(5): 8-22. [4] 段新芳,黄荣凤.古建筑木结构无损检测和保护技术研究进展[M].中国建材工业出版社, 2008. [5] 陈明达.中国古代木结构建筑技术(战国-北宋)[M].文物出版社, 1990. [6] Yin W, Yamamoto H, Yin M, et al. Estimating the volume of large-size wood parts in historical timber-frame buildings of China: Case study of imperial palaces of the Qing Dynasty in Shenyang[J]. Journal of Asian Architecture and Building Engineering, 2012,11(2): 321-326. [7] 斡锦攀.紫外线对植物的影响[J].河南农业大学学报,1961, (3). [8] 张文会,郭尚敬,张秀省.紫外线对植物影响的研究进展[C] 山东植物生理学会第七次代表大会暨植物生物学与现代农业研讨会论文集, 2012. [9] 陈树元.太阳紫外线(UV)辐射对植物的影响闭.环境科学, 1992,(6): 52-56. [10] Rozema J,Staaij J V D, Bj Rn L O, et al. UV-B as an environmental factor in plant life: stress and regulation[J]. Trends in Ecology&Evolution, 1997, 12(1): 22-28. [11] Flint S D, Jordan P W, Caldwell M M. Plant response to enhanced Uv-B radiation under field conditions: leaf optical properties and photosynthesis[J]. Photochemistry &Photobiology, 1984, 41(1): 95-99. [12] 李坚.木质材料耐候性的研究[J].林业科学,1988, 24(3):366-371. [13] Guan L. Preparation of future weather data to study the impact of climate change on buildings[J]. Building&Environment, 2009, 44(4):793-800. [14] 梁海颖.针对国内古建筑的现状引发对未来古建发展趋势的相关思考[J].美与时代城市, 2016(12). [15] 周勇.高分子材料的老化研究[J].国外塑料, 2012, (01): 35-41. [16] 王小青,任海青.毛竹材表面光化降解的FTIR和XPS分析[J].光谱学与光谱分析, 2009, 29(7). [17] Krishna K. Pandey. Study of the effect of photo-irradiation on the surface chemistry of wood [J].Polymer Degradation and Stability, 2005,90(1): 9-20. [18] Horn Brent A, Qiu Jinjin. FTIR studies of weathering effects in western red cedar and southern pine [J].Society for Applied Spectroscopy, 1994, 48(6): 662-668. [19] 斡锦攀.紫外线对植物的影响[J].河南农业大学学报,1961, (3). [20] 张文会, 郭尚敬, 张秀省. 紫外线对植物影响的研究进展[C].山东植物生理学会第七次代表大会暨植物生物学与现代农业研讨会论文集, 2012. [21] 陈树元.太阳紫外线(UV)辐射对植物的影响闭[J]. 环境科学, 1992, 5(6): 52-56. [22] Rozema J, Staaij J V D, Bj Rn L O, et al. UV-B as an environmental factor in plant life: stress and regulation[J]. Trends in Ecology&Evolution, 1997, 12(1):22-28. [23] Flint S D, Jordan P W, Caldwell M M. Plant Response to Enhanced Uv-B Radiation under Field Conditions: Leaf Optical Properties and Photosynthesis [J]. Photochemistry& Photobiology, 1984, 41(1): 95-99. [24] 李坚.木质材料耐候性的研究[J].林业科学, 1988, 24(3): 366-371. [25] 付自政.木粉复合材料的制备及其紫外加速老化性能研究[D]. 华中农业大学, 2009. [26] 刘一星, 赵广杰. 木材学[M]. 北京,中国林业出版社, 2012. [27] 徐明刚,邱洪兴.古建筑旧木材材料性能试验研究[J].工程抗震与加固改造.2011, 33(4). [28] Harris J M. The dimensional stabilityshrinkage intersection point and related properties of New Zealand timbers[R].New Zealand,Wellington: Forest Research Institute,1961. [29] Xie Y, Hill C A S, Jalaludin Z, et al. The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model[J]. Journal of Materials Science. 2011, 46(2): 479-489. [30] 徐明刚, 邱洪兴. 古建筑木结构老化问题研究新思路[J]. 工程抗震与加固改造, 2009, 31(2): 96-100. [31] Wilcox.Review of literature on the effects of early stages of decay on wood strength [J].Wood&Fiber, 1978, 9(4): 252-257. [32] Irbe I, Andersons B.On the of pinewood (Pines sylvesfris L.) Chemical composition and during the attack by brown-rot Postia placenta and Coniophora puteana. International Biodeterioration& Biodegradation [J]. 2006, 57: 99-106. [33] Morrel JJ, Zabel R. Wood strength and weight losses caused by soft rot fungi isolated from treated southern pine utility poles [J]. Wood and Fiber Science. 1985.17(1):132-143. [34] Winandy Morrell J. Relationship between incipient decay, and chemical composition of Douglas-Fir heartwood [J]. Wood and Fiber Science, 1993, 25 (3):278-288. [35] Curling SF, Clausen CA, Winandy JE. Relationships between mechanical properties, weight loss, and chemical composition of wood incipient brown-rot decay. Forestry Products Journal, 2002, 52(7/8): 34-39. [36] 秦岭. 生物质热解动力学及反应机理的研究[D]. 北京:清华大学, 2012. [37] 宋春财, 胡浩权. 秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化, 2003, 26(3): 91-97. [38] 陆振荣. 几种新的热分析动力学数据处理方法[J]. 现代科学仪器, 1998(5): 27-29. [39] 陆振荣. 热分析动力学的新进展[J].无机化学学报, 1998, 14(2): 119-126. [40] Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part C Polymer Letters, 1966, 4(5): 323-328. [41] Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers[J]. Journal of National Bureau of Standards-a Physics&Chemistrya, 1966,70A(6). [42] Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of the National Bureau of Standards, 1956;57:217-221. [43] Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data[J]. Nature,1956,57(4): 217-221. [44] Liu HM, Chen MQ, Han ZL, Fu BA. Isothermal kinetics based on two-periods scheme for co-drying of biomass and lignite[J]. Thermochimica Acta, 2013, 573(1) :25-31. [45] Chaos M, Khan MM, Krishnamoorthy N, Ris JLD, Dorofeev SB. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests[J]. Proceedings of the Combustion Institute, 2011, 33(2) :2599-2606. [46] 程备久. 生物质能学[M].北京:化学工业出版社,2008. [47] 中科院中国植物志委员会. 中国植物志[M]. 北京: 科学出版社,1999. [48] Fang X, Jia L, Yin L. A weighted average global process model based on two-stage kinetic scheme for biomass combustion[J]. Biomass and Bioenergy, 2013,48(1): 43-50. [49] 彭锦星,陈冠益,王德芹,等. 木质材料热解动力学及典型气体产物分析[J]. 太阳能学报, 2011, 32(12): 1719-1724. [50] 王慧, 贾娜, 辛颖.木材的热重分析实验及动力学分析[J].消防科学与技术, 2017(9):1209-1212. [51] Ding Y, Ezekoye OA, Lu S, Wang C, Zhou R. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood[J]. Energy Conversion and Management, 2017,132: 102-109. [52] 文丽华, 王树荣, 施海云,等. 木材热解特性和动力学研究[J]. 消防科学与技术, 2004, 23(001):2-5. [53] 刘乃安,范维澄,林其钊,等. 空气气氛下木材表观热解动力学[J]. 火灾科学,2001, 10(3):125-134. [54] 杜洪双,常建民,李瑞,等. 落叶松木材的热解特性[J]. 东北林业大学学报,2009,37(12):25-29. [55] 张翔,覃文清,李风. 古建筑木材的热稳定性及热解动力学研究[J]. 消防科学与技术,2008,27(9):636-639,647 [56] 沈德魁,余春江,方梦祥,等. 热辐射下常用木材热解的动力学与燃烧特性[J]. 燃烧科学与技术,2008,14(5):446-452 [57] 怀超平,刘芳,董佩文,等. 木材热重试验及动力学分析[J]. 消防科学与技术,2020,39(6):757-760. [58] 蔡鑫,赵雪娥,郑晓,等. 番龙眼木的热分解失重及动力学研究[J]. 中国安全生产科学技术,2013,9(6):42-47 [59] 李宇宇,李瑞,田启魁,等. 热重法研究落叶松热解动力学特性[J]. 东北林业大学学报,2011,39(7):63-66. [60] 洪欢,关明杰,田皓友. 热处理南洋楹木材的热重分析[J]. 林业科技开发,2015, 29(5):73-76 [61] 任学勇,杜洪双,王文亮,等. 基于TG-FTIR的落叶松木材热失重与热解气相演变规律研究[J]. 光谱学与光谱分析,2012,32(4):944-948 [62] 袁诚,翟胜丞,章一蒙,等. 红外光谱结合热重法对考古木材降解状况的分析[J]. 光谱学与光谱分析,2020,40(9):2943-2950. [63] 钱红亮,杨婷婷,刘畅,等. 木材热解过程的热化学平衡分析[J]. 化工学报,2014,5:1622-1628. [64] 辛颖,薛伟,侯卫萍,等. 木材剩余物热解实验与动力学研究[J]. 实验室研究与探索,2014,33(7):39-43. [65] 肖忠平,陆继圣,马世春,等. 热重法研究阻燃杉木间伐材热解反应动力学[J]. 福建林学院学报,2002,22(2):113-116. [66] 胡云楚,刘元. 酚类阻燃剂处理杉木热解过程的热动力学研究[J]. 林业科学,2003, 39(3):116-120. [67] 李爱民,孙兰军,李润东,等. 常用木质装饰板材的热解特性研究[J]. 热科学与技术,2004,3(4):337-342. [68] 王振宇,邱墅,何正斌,等. 基于TG-FTIR的圆柏心、边材热解研究[J]. 光谱学与光谱分析,2017,37(4):1090-1094. [69] 王慧,贾娜,辛颖. 木材的热重分析实验及动力学分析[J]. 消防科学与技术,2017,36(9):1209-1212. [70] Bixel, E.C. and H.J. Moore, Are fires caused by steam pipes case school of applied acience. Pittsburgh, 1910. [71] Prince RE. Tests on the inflammability of untreated wood and wood treated with fire-retarding compounds. NFPA Proceedings, 1915: 108-112. [72] Setchkin NP, A method and apparatus for determining the ignition characteristics of plastics. Research Paper, 1949: 591-608. [73] Di BC, Branca C, Santoro A, et al. Pyrolytic behavior and products of some wood varieties[J]. Combustion & Flame, 2001, 124(1):165-177. [74] Simms D L, Law M. The ignition of wet and dry wood by radiation[J]. Combustion & Flame, 1967, 11(5): 377-388. [75] Moghtaderi B. The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels[J]. Fire and Materials, 2006, 30(1):1-34. [76] Spearpoint M J, Quintiere J. Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux[J]. Fire Safety Journal, 2001, 36(4):391-415. [77] Bilbao R, Mastral J F, Aldea M E, et al. Experimental and theoretical study of the ignition and smoldering of wood including convective effects[J]. Combustion and Flame, 2001, 126(1-2):1363-1372. [78] Delichatsios M A. Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres[J]. Fire Safety Journal, 2005, 40(3):197-212. [79] Yafei W, Lizhong Y, Xiaodong Z, et al. Experiment study of the altitude effects on spontaneous ignition characteristics of wood[J]. Fuel, 2010, 89(5):1029-1034. [80] 王亚飞.热解气体流动特性对炭化可燃物热解着火特性影响规律研究[D].中国科学技术大学,2011. [81] Wang, Y and X. Zheng, Modeling and experimental study of the effect of pressure on pyrolysis of wet wood[J]. Journal of Fire Sciences, 2013,24:114-119. [82] Zhang Y, Sun J H, Huang X J, et al. Heat transfer mechanisms in horizontal flame spread over wood and extruded polystyrene surfaces[J]. International Journal of Heat and Mass Transfer, 2013,61:28-34. [83] Quintiere J .A theoretical basis for flammability properties[J]. Fire & Materials, 2010, 30(3):175-214. [84] Ahn J, Kim H J. Combustion process of a Korean wood pellet at a low temperature[J]. Renewable Energy, 2020, 145: 391-398. [85] Caposciutti G, Almuina-Villar H, Dieguez-Alonso A, et al. Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion[J]. Biomass and Bioenergy, 2019, 123:1-13. [86] Mi B, Liu Z, Hu W, et al. Investigating pyrolysis and combustion characteristics of torrefied bamboo, torrefied wood and their blends[J]. Bioresource Technology, 2016, 209: 50-55. [87] Wiens E, Trudel E, Hallett W L H, et al. Fuel particle shape effects in the packed bed combustion of wood[J]. Combustion and Flame, 2018, 198: 100-111. [88] Lu Z, Li X, Jian J, et al. Flame combustion of single wet-torrefied wood particle: Effects of pretreatment temperature and residence time[J]. Fuel,2019, 250: 160-167.。 [89] Pimenta A S, Monteiro T V C, Fasciotti M, et al. Fast pyrolysis of trunk wood and stump wood from a Brazilian eucalyptus clone[J]. Industrial Crops and Products, 2018, 125:630-638. [90] Drysdale D. An Introduction to Fire Dynamics: Third Edition[M]// An Introduction to Fire Dynamics, Third Edition. 2011. [91] Kambam N, Amit K, Oleg K, et al. Downward flame spread along a single pine needle: Numerical modeling[J]. Combustion and Flame, 2018,197:161-181. [92] Ferkul P, Olson S, Ruff G, et al.Flame spread: Effects of microgravity and scale[J]. Combustion and Flame, 2019, 199:168-182. [93] Ris J N D. Spread of a laminar diffusion flame[J]. Symposium on Combustion, 1969, 12(1):241-252. [94] Pagni P J. Diffusion flame analyses[J]. Fire Safety Journal, 1981, 3(4):273-285. [95] Pagni P J, Peterson T G. Flame spread through porous fuels[J]. Symposium (International) on Combustion, 1973, 14(1):1099-1107. [96] An W, Pan R, Meng Q, et al. Experimental study on downward flame spread characteristics under the influence of parallel curtain wall[J]. Applied Thermal Engineering, 2018, 128: 297-305. [97] Kim J S, Ris J D, Kroesser F W. Laminar free-convective burning of fuel surfaces[J]. Symposium (International) on Combustion, 1971, 13(1): 949-961. [98] Bhattacharjee S, Altenkirch R A. The effect of surface radiation on flame spread in a quiescent, microgravity environment[J]. 1991, 84(1-2):160-169. [99] I S, Li J, Leventon I T, et al. A flame spread simulation based on a comprehensive solid pyrolysis model coupled with a detailed empirical flame structure representation[J]. Combustion and Flame, 2015, 162:3884-3895. [100] Shaklein A A, Korobeinichev O P, Karpov A I, et al. Numerical study of horizontal flame spread over PMMA surface in still air[J]. Applied Thermal Engineering, 2018, 144:937-944. [101] Da L J, Xie Q, Luo S, et al. Experimental study on thermal structure inside flame front with a melting layer for downward flame spread of XPS foam[J]. Journal of Hazardous Materials, 2019, 379:120775. [102] Frey AE, TIen JS. A theory of flame spread over a solid fuel including finite-rate chemical kinetics[J]. Combustion & Flame, 1979, 36:263-289. [103] Funashima K, Masuyama A, Kuwana K, et al. Opposed-flow flame spread in a narrow channel: Prediction of flame spread velocity[J]. Proceedings of the Combustion Institute, 2019, 37: 3757-3765. [104] Lin J, Zhao Z, Wei T, et al. Flame spread and burning rates through vertical arrays of wooden dowels[J]. Proceedings of the Combustion Institute, 2019, 37: 3767-3774. [105] Laue M, Bhattacharjee S, Carmignani L, et al. Opposed-flow flame spread: A comparison of microgravity and normal gravity experiments to establish the thermal regime[J]. Fire Safety Journal, 2016, 79:111-118. [106] Olson S, Ferkul P, Urban D L, et al. Flame spread: Effects of microgravity and scale[J]. Combustion and Flame, 2019, 199: 168-182 [107] Takahashi T, Daitoku T, Tsuruda T, et al. Behavior of the flame spread along a thin paper-disk in a narrow space[J]. Proceedings of the Combustion Institute, 2017, 36:3011-3017 [108] Mcalevy R F, Magee R S. The mechanism of flame spreading over the surface of igniting condensed-phase materials[J]. Symposium on Combustion, 1968, 12(1):215-227. [109] Lastrina F A, Magee R S, Iii M A. Flame spread over fuel beds: solid-phase energy considerations[J]. Symposium (International) on Combustion, 1970, 13(1):935-948. [110] Magee R.S, McAlevy R. The mechanism of flame spread(Flame spread rate over combustible polymer fuel specimens as function of surface, sample, composition, pressure and oxygen mole fraction)[J]. Journal of Fire and Flammability, 1971, 2: 271-297. [111] Royal J.H. The influence of fuel bed thickness on flame spreading rate. 1970. [112] Thomas P, Webster C. Some experiments on the burning of fabrics and the height of buoyant diffusion flames[J]. Fire Safety Science, 1960, 420:110-123. [113] Tsai KC. Width effect on upward flame spread[J]. Fire Safety Journal, 2009, 44(7): 962-967. [114] Tsai K C. Influence of sidewalls on width effects of upward flame spread[J]. Fire Safety Journal, 2011, 46(5): 294-304. [115] Tsai K C, Drysdale D. Flame height correlation and upward flame spread modelling[J]. Fire & Materials, 2002, 26(6): 279-287. [116] Tsai K C. Using cone calorimeter data for the prediction of upward flame spread rate [J]. Journal of Thermal Analysis and Calorimetry, 2013, 112(3):1601-1606. [117] Zhang Y, Chen X, Song Y, et al.The deceleration mechanism and the critical extinction angle of downward flame spread over inclined cellulosic solids[J]. Applied Thermal Engineering, 2017,124:185-190. [118] Zhou Y, Bu R, Gong J, et al. Experimental investigation on downward flame spread over rigid polyurethane and extruded polystyrene foams[J]. Experimental Thermal and Fluid Science, 2018, 92: 346-352. [119] Ito A, Kashiwagi T. Characterization of flame spread over PMMA using holographic interferometry sample orientation effects[J]. Combustion & Flame, 1988, 71(2): 189-204. [120] Thomas P, Pickard R. Fire spread in forest and heathland materials.Report Forest Research, Her Majesty’s Stationary Office, London, 1961. [121] Thomas P. Some aspects of the growth and spread of frre in the open[J]. Forestry, 1967, 40(2): 139-164. [122] Thomas P. Rates of spread of some wind-driven fires[J]. Forestry, 1971, 44(2): 155-175. [123] Zhang Y, Chen X, Song Y, et al.The deceleration mechanism and the critical extinction angle of downward flame spread over inclined cellulosic solids[J]. Applied Thermal Engineering, 2017, 124:185-190. [124] Zhou Y, Bu R, Gong J, et al.Experimental investigation on downward flame spread over rigid polyurethane and extruded polystyrene foams[J]. Experimental Thermal and Fluid Science, 2018, 92: 346-352. [125] Li K, He X, Fang J, et al. Transition condition and control mechanism of subatmospheric flame spread rate over horizontal thin paper sample[J]. Combustion and Flame, 2018, 188: 90-93 [126] Zeinali D, Verstockt S, Beji T, et al.Experimental study of corner fires-Part II: Flame spread over MDF panels[J]. Combustion and Flame, 2018, 189: 491-505. [127] Fernandez-Pello A C, Ray S R, Glassman I. Flame spread in an opposed forced flow: The effect of ambient oxygen concentration[J]. Symposium (International) on Combustion, 1981, 18(1):579-589. [128] Gong J, Zhou X, Deng Z, et al. Influences of low atmospheric pressure on downward flame spread over thick PMMA slabs at different altitudes[J]. International Journal of Heat and Mass Transfer, 2013, 61:191-200. [129] 梁参军. 环境压强对固体可燃物火蔓延的影响研究[D].中国科学技术大学,2014. [130] Friedman R. A survey of knowledge about idealized fire spread over surfaces.in Fire Research Abstracts and Reviews. 1968. [131] Konno Y, Hashimoto N, Fujita O, et al. Downward flame spreading over electric wire under various oxygen concentrations[J]. Proceedings of the Combustion Institute, 2019, 37: 3817-3824. [132] Yan W, Shen Y, An W, et al. Experimental study on the width and pressure effect on the horizontal flame spread of insulation material[J]. International Journal of Thermal Sciences, 2017, 114:114-122. [133] 于海燕, 路振远. 腐朽木材的种类及其对材质的影响[J].黑龙江科技信息, 2013, (17): 272. [134] 童军, 丁金华, 胡波, 等. 土工格栅户外老化试验初步研究[J].长江科学院院报, 2017, 34(02):13-16. [135] 乔海霞, 顾东雅, 曾竟成. 聚合物基复合材料加速老化方法研究进展[J].材料导报, 2007(04):48-51. [136] 张毛毛. 人工加速老化条件下樟子松木材涂层失效行为初步研究[D].中国林业科学研究院,2015. [137] 刘军进,严凡,赵羽习.幕墙用密封胶加速老化试验方法研究[J].中国胶粘剂,2018, 27(08):5-9. [138] 石光, 秦炜, 林少全,等.木塑复合材料老化性能研究进展[J].包装工程, 2009, 30(01): 120-123. [139] 王芳芳, 傅吉全. 柞蚕丝纤维人工加速老化损伤研究[J].北京服装学院学报(自然科学版), 2008(03):32-36. [140] 杨国良, 骆锦安, 毕永韬, 等. Evotherm温拌橡胶沥青的老化特性及红外光谱分析[J].合成橡胶工业, 2020, 43(05):366-370. [141] 戴晓栋, 程沁灵, 丁敏, 等. 基于FTIR和GPC的沥青热老化特征研究[J].浙江交通职业技术学院学报,2019, 20(02):11-16. [142] 应灵慧, 汪益龙, 刘小云, 等. PBO纤维自然老化与加速老化的相关性研究[J]. 固体火箭技术, 2013, 36(01):107-112. [143] 王玉海, 石光, 杨丽庭. ABS材料人工加速老化与户外自然老化的相关性[J].工程塑料应用, 2016, 44(11):85-91. [144] 周锡球, 吕伟桃, 王斌, 等.不同老化因素对互感器伞套老化影响的研究[J]. 绝缘材料, 2014,47(03):70-74. [145] 汪鹏飞, 贺小帆, 张涵, 等. 涂层加速老化与自然曝晒试验的相关性分析[J].北京航空航天大学学报, 2022, 48(01):27-35. [146] 古建筑木结构用材的树种调查及其主要材性的实测分析, 古建筑木结构维护与加固规范,11-13 [147] Cogulet A, Blanchet P, Landry V. Wood degradation under UV irradiation: A lignin characterization[J]. Journal of Photochemistry & Photobiology B Biology, 2016, 158:184-191. [148] 张泽前. 竹木电热复合板的湿热老化研究[D]. 中国林业科学研究院, 2015. [149] 张士成,齐华春,刘一星,等.高温过热蒸汽处理对木材结晶性能的影响[J].南京林业大学学报.2010, 34(5): 164-166. [150] Ahvenainen P, Kontro I, Svedström K. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials[J]. Cellulose, 2016, 23 (2):1073-1086 [151] Parker WJ, Jenkins RJ. Thermal conductivity measurements on bismuth telluride in the presence of a 2MeV electron beam[J]. Advanced Energy Conversion, 1962, 2:87-103. [152] Cowan RD. Proposed method of measuring thermal diffusivity at high temperatures[J]. Journal of Applied Physics, 1961, 32(7): 1363-1370. [153] Cowan RD. Pulse method of measuring thermal diffusivity at high temperatures[J]. Journal of Applied Physics, 1963, 34(4): 926-927. [154] 许冬保. 例析隐藏在物理问题中的指数函数及其图像[J].物理之友,2017,33(11):1-3. [155] Plumb PA, Spolek CA, Olmstead BA. Heat and mass transfer in wood during Drying. International Journal of Heat and Mass Transfer, 1985, 28(9):1669-1678. [156] 王健, 武勇, 刘小燕,等. 景区典型树种的热解特性及动力学研究[J]. 中国安全生产科学技术, 2019, 15(2):7. [157] 袁兵. 可燃物热解与着火特性研究[D]. 浙江大学, 2004. [158] 胡亿明. 木质生物质各组分热解过程和热力学特性研究[J]. 生物质化学工程, 2014, 3:62-62. [159] 刘浩然. 典型生物质热解动力学行为及SCE算法优化研究[D]. 合肥工业大学. [160] 袁诚, 翟胜丞, 章一蒙,等. 红外光谱结合热重法对考古木材降解状况的分析[J]. 光谱学与光谱分析, 2020, 40(9):8. [161] 马艳如, 肖泽芳, 谢延军,等. 山西白台寺古榆木檐柱的劣化机制[J]. 东北林业大学学报, 2019, 47(12):7. [162] Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19. [163] 宋长忠. 火灾可燃物热解动力学及着火特性研究[D]. 浙江大学, 2006. [164] 胡荣祖, 史启祯. 热分析动力学[M]. 科学出版社, 2008. [165] Moghtaderi B. The state-of-the-art in pyrolysis modeling of lignocellulosic solid fuels[J]. Fire and Materials, 2006, 30: 1-34.; [166] Hagge M J,Bryden K M. Modeling the impact of shrinkage on the pyrolysis of dry biomass[J]. Chemical Engineering Science, 2002, 57: 2811-2823. [167] 邢东, 李坚, 王思群.基于CONE法的热处理杨木燃烧特性研究[J].林产工业, 2020, 57(03):15-18+24. [168] 李坚, 王清文, 李淑君, 等. 用CONE法研究木材阻燃剂FRW的阻燃性能[J]. 林业科学, 2002, 38(5):108-114 [169] Investigation F, Principles IH, et al. Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science, 2003, Vytenis Babrauskas, 0972811133, 9780972811132, Fire Science Publishers, 2003. [170] 张宇, 李军, 李思锦,等. 阻燃剂硼酸-硼砂对杨木定向刨花板热解特性的影响[J]. 北京林业大学学报, 2015(1): 127-133. [171] Karlsson B, Quintiere J. Enclosure fire dynamics [M]. New York, 1999, USA: CRC press. [172] Chen R, Lu S, Zhang B, et al. Correlation of rate of gas temperature rise with mass loss rate in a ceiling vented compartment[J]. Chinese Science Bulletin, 2014,59(33): 4559-4567. [173] Babrauskas V, Peacock R D. 1992. Heat release rate: the singly mostvariable in fire hazard[J]. Fire Safety Journal, 18(3): 255-272. [174] Luche J, Mathis E, Rogaume T, et al. High-density polyethylene thermal degradation and gaseous compound evolution in a cone calorimeter [J]. Fire Safety Journal, 2012, 54: 24-35. [175] Stoliarov S I,Crowley S,Lyon R E, et al. Prediction of the burning rates of non-charring polymers[J]. Combution and Flame, 2009,156(5):1068-1083. [176] Shi L, Chew MYL. Fire behaviors of polymers under autointion conditions in a cone calorimeter [J].Fire Safety Journal, 2013, 61: 243-253. [177] 袁利萍. 木材阻燃中的催化成炭与抑烟减毒作用[D]. 中南林业科技大学, 2018. [178] 邓光瑞. 大兴安岭森林可燃物燃烧气体释放的研究[D]. 东北林业大学, 2006. [179] Quintiere JG. Surface Flanne Spread. SFPE handbook of fire protection engineering, ed. P.J. DiNenno. 2002, National Fire Protection Association: Quincy, Mass. [180] 孙金华, 王青松, 纪杰. 火焰精细结构及其传播动力学[M].2011:科学出版社. [181] Yang L, Zhou Y, Wang Y, et al. Autoignition of solid combustibles subjected to a uniform incident heat flux: The effect of distance from the radiation source[J]. Combustion & Flame, 2011, 158(5):1015-1017. [182] 杨立中, 郄军芳, 周晓冬,等.辐射方向对木材引燃特性影响的实验研究[J].工程热物理学报, 2010, 31(12):2133-2136. [183] Cetegen B M, Dong Y. Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities[J]. Experiments in Fluids, 2000, 28(6): 546-558. [184] 纪杰, 李杰, 孙金华,等. 不同宽度和角度下木材表面火蔓延特性的实验研究[J]. 工程热物理学报, 2010, 31(2):351-354. [185] Williams FA, Combusiton Theory. 1985, Menlo Park: Benjamin Cummings. 10 [186] Bhattacharjee S, Altenkirch RA, and Sacksteder K. The effect of ambient pressure on flame spread over thin cellulosic fuel in a quiescent microgravity environment. Journal of Heat Transfer, 1996. 118(1): 10. [187] Quintiere J. Fundamentals of Fire Phenomena. 2006. The Atrium, Southern Gate, Chichester: John Wiley&Sons. [188] 赵路遥. 气体对流和样品宽度对典型固体着火及顺风火蔓延的影响[D]. 中国科学技术大学.2019. [189] Li J. Characteristics of flame spread over the surface of charring solid combustibles at high altitude. Chinese Science Bulletin, 2009. 54(11): 1957-1962. [190] Drysdale DD, Macmillan AJR. Flame spread on inclined surfaces[J]. Fire Safety Journal, 1992, 18(3):245-254. [191] 张英. 典型可炭化固体材料表面火蔓延特性研究[D]. 中国科学技术大学. 2012. [192] Quintiere JG. The effects of angular orientation on flame spread over thin materials. Fire Safety Journal, 2001, 36(3): 291-312. [193] Azhakesan MA, Shields TJ, Silcock GWH. On the nature, influence and magnitudesof flame heat transfer during surface flame spread. Fire Safety Journal, 2000,35(3): 189-222. [194] Beaulieu PA, Dembsey NA. Effect of oxygen on flame heat flux in horizontal andvertical orientations. Fire Safety Journal, 2008,43:19. [195] Ohtani H, Hirano T. Scale effects on bottom surface combustion of PMMA pieces with circular and rectangular sections. Proceeding of the Combustion Institute, 1981, 18: 591-599. [196] Incropera FP. Fundamentals of Heat and Mass Transfer. 2007, New York: John Wiley&Sons. [197] 陈鹏. 典型木材表面火蔓延行为及传热机理研究[D].中国科学技术大学,2006. [198] Drysdale D D, Macmillan A J R. Flame spread on inclined surfaces[J]. Fire Safety Journal, 1992, 18(3):245-254. [199] 王海晖, 王清安, 黄立忠. 木材着火的实验研究[J]. 中国科学技术大学学报, 1991,01: 122-127.
﹀
|
中图分类号: |
TU998.1
|
开放日期: |
2023-06-23
|