论文中文题名: |
磁化与表面活性剂协同作用对煤体润湿性能影响实验研究
|
姓名: |
田佳敏
|
学号: |
1820089005
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井瓦斯灾害防治
|
第一导师姓名: |
李树刚
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
林海飞
|
论文提交日期: |
2021-06-18
|
论文答辩日期: |
2021-05-30
|
论文外文题名: |
Experimental study on the influence of the synergistic effect of magnetization and surfactant on the wettability of coal
|
论文中文关键词: |
磁化 ; 表面活性剂 ; 协同作用 ; 煤体润湿性
|
论文外文关键词: |
Magnetization ; Surfactant ; Synergistic effect ; Coal wettability
|
论文中文摘要: |
︿
我国煤矿瓦斯灾害严重,开采过程中,煤层瓦斯快速解吸涌出,易造成瓦斯超限及煤与瓦斯突出。为降低瓦斯危害,通常采用煤层注水等水力化措施,但水具有较高表面张力以及煤体的疏水性导致水分很难使煤体均匀润湿,煤体润湿性的改变成为抑制瓦斯解吸的关键之一,对水进行磁化及在水中添加表面活性剂可有效改善煤体润湿性。
论文选择新疆艾维尔沟煤矿煤样,通过测定溶液表面张力及煤体接触角得到表面活性剂对煤体润湿性的影响规律,得到所选表面活性剂表面张力及煤体接触角均随着质量分数的增加迅速减小直至平稳,其中质量分数0.4%的SDBS对煤体的润湿效率最高,使去离子水表面张力降低了55.59%,煤体接触角降低了73.3%,PPG400对煤体的润湿效率最低。
通过测定水及表面活性剂在不同磁化参数下的粘度、密度、酸碱性分析磁化对溶液理化性质的影响规律,得到磁化使溶液pH值增大,密度小幅上升,粘度降低。通过测量水及表面活性剂在不同磁场条件下表面张力、煤体接触角,得到煤体润湿性在磁化作用下的变化规律,与水、单一表面活性剂、磁化水相比,当表面活性剂质量分数为0.4%,磁场强度为500-550 mT,磁化时间为15 min时,SDBS对煤体润湿影响最为显著。
利用傅里叶红外光谱分析了溶液磁化前后分子结构的变化,得到磁化使APG0810氢键吸收峰面积减少了37.27%,SDBS氢键吸收峰面积减少了43.04%;测定表面活性剂浸泡前后煤体官能团结构,分析得到含氧官能团吸收峰面积增加,煤体润湿性增强,其中SDBS使煤体含氧官能团吸收峰面积增加了77.51%。通过微电泳仪对煤体Zeta电位进行测定,得到单一表面活性剂、磁化水及磁化表面活性剂能够改变溶液在煤体表面的吸附状态,使煤的负电性增强。综合分析得到磁化与表面活性剂协同作用对煤体润湿性的影响机理,即表面活性剂通过与煤体的吸附作用,磁场通过作用于液体氢键提高煤体润湿性,研究结果对煤体润湿性的改善及煤矿瓦斯解吸的抑制具有一定的指导作用。
﹀
|
论文外文摘要: |
︿
The gas disasters in coal mines in our country are serious. During the mining process, the gas in the coal seam is quickly desorbed and gushing out, which easily causes gas overrun and coal and gas outburst. In order to reduce gas hazards, hydraulic measures such as coal seam water injection are usually used. However, water has high surface tension and the hydrophobicity of the coal body makes it difficult for water to wet the coal body uniformly. The change of coal body wettability becomes one of the key to inhibiting gas desorption. Magnetization and the addition of surfactants can effectively improve the wettability of coal.
The paper selects Xinjiang Aiweiergou coal seam, by measuring the surface tension of the solution and the contact angle of the coal, the influence of the surfactant on the wettability of the coal is obtained. The study suggests that the surface tension of the selected surfactant and the contact angle of coal body decreases rapidly with the increase of mass fraction until it becomes stable. Among them, SDBS with a mass fraction of 0.4% has the highest wetting efficiency on the coal body, the surface tension of deionized water is reduced by 55.59%, and the contact angle of coal body is reduced by 73.3%, however PPG400 has the lowest wetting efficiency for coal.
Analyze the influence of magnetization on the physical and chemical properties of the solution by measuring the viscosity, density, acidity and alkalinity of water and surfactants under different magnetization parameters, obtained magnetization makes the pH value and density of the solution increase slightly, and the viscosity decreases. By measuring the surface tension of water and surfactants and coal contact angle under different magnetization parameters, the influence of magnetization on coal wettability was obtained. The study found that compared with water, single surfactants, and magnetized water, When the mass fraction of surfactant is 0.4%, the magnetic field strength is 500-550 mT, and the magnetization time is 15 min, SDBS has the most significant impact on coal wetting.
Fourier infrared spectroscopy was used to analyze the changes of molecular structure before and after magnetization of the solution. And it was found that the magnetization reduced the hydrogen bond absorption peak area of APG0810 by 37.27% and the SDBS hydrogen bond absorption peak area by 43.04%. Fourier infrared spectrometer was used to determine the structure of coal functional groups before and after surfactant soaking, and the analysis showed that the absorption peak area of oxygen-containing functional groups increased, and the wettability of coal was enhanced. Among them, SDBS increased the absorption peak area of oxygen-containing functional groups in coal by 77.51%. The Zeta potential of coal was measured by a microelectrophoresis instrument, and it was obtained that the single surfactant, magnetized water and magnetized surfactant can change the adsorption state of the solution on the surface of the coal and increase the negative electricity of the coal. Comprehensive analysis to obtain the mechanism of the synergistic effect of magnetization and surfactants on coal wettability, surfactant improves coal wettability through its adsorption on coal, and magnetic field improves coal wettability through hydrogen bonds acting on the liquid. The research results have a certain guiding effect on the improvement of coal wettability and the suppression of coal mine gas desorption.
﹀
|
参考文献: |
︿
[1] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报, 2017, 42(1):1-7. [2] 王亮, 郑思文, 赵伟, 等. 淮北煤田煤与瓦斯突出灾害差异性和控制因素研究[J]. 煤炭科学技术, 2020, 48(10):75-83. [3] 谈国文. 突出矿井瓦斯灾害多元化精准防控系统建设[J]. 矿业安全与环保, 2020, 47(3):49-53. [4] 叶兰. 我国瓦斯事故规律及预防措施研究[J]. 中国煤层气, 2020, 17(4):44-47. [5] 林海飞, 田佳敏, 刘丹, 等. SDBS与CaCl2复配液对煤体瓦斯解吸抑制效应研究[J]. 中国安全科学学报, 2019, 29(11):149-155. [6] 马恒, 郭瑶, 梁腾飞, 等. 选煤厂原煤仓瓦斯超限治理研究[J]. 矿业安全与环保, 2021, 48(1):33-38. [7] 秦玉金, 苏伟伟, 田富超, 等. 煤层注水微观效应研究现状及发展方向[J]. 中国矿业大学学报, 2020, 49(3):428-444. [8] 曹垚林. 水力化技术防治煤与瓦斯突出研究现状及展望[J]. 煤矿安全, 2020, 51(10):60-66. [9] Wang C, Zhou G, Jiang W, et al. Preparation and performance analysis of bisamido-based cationic surfactant fracturing fluid for coal seam water injection[J]. Journal of Molecular Liquids, 2021:115806. [10] 赵伞, 陈向军, 戚灵灵. 煤的孔隙特性研究现状及发展趋势[J]. 煤炭技术, 2019, 38(12):127-130. [11] Wang P, Jiang Y, Liu R, et al. Experimental study on the improvement of wetting performance of OP-10 solution by inorganic salt additives[J]. Atmospheric Pollution Research, 2020, 11(6):153-161. [12] 张伟伟, 张志峰, 薄华涛, 等. 磁化水性能的时效性研究[J]. 机电工程技术, 2020, 49(2):71-73,154. [13] Ofori P, Firth B, O’Brien G, et al. Assessing the hydrophobicity of petrographically heterogeneous coal surfaces[J]. Energy & fuels, 2010, 24(11):5965-5971. [14] 李娇阳, 李凯琦. 煤表面润湿性的影响因素[J]. 煤炭学报, 2016, 41(S2):448-453. [15] 陈跃, 马东民, 夏玉成, 等. 低阶煤不同宏观煤岩组分润湿性及影响因素研究[J]. 煤炭科学技术, 2019, 47(9):97-104. [16] 程卫民, 薛娇, 周刚, 等. 烟煤煤尘润湿性与无机矿物含量的关系研究[J]. 中国矿业大学学报, 2016, 45(3):462-468. [17] 文金浩, 薛娇, 张磊, 等. 基于XRD分析长焰煤润湿性与其灰分的关系[J]. 煤炭科学技术, 2015, 43(11):83-86,121. [18] 王亮, 廖晓雪, 查梦霞, 等. 基于主成分分析法的松软煤体煤尘润湿特性研究[J]. 煤炭科学技术, 2020, 48(2):104-109. [19] Zhou G, Xu C, Cheng W, et al. Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment[J]. Journal of analytical methods in chemistry, 2015, 467242. [20] 程卫民, 徐翠翠, 周刚. 煤尘表面碳、氧基团随变质增加的演化规律及其对润湿性的影响[J]. 燃料化学学报, 2016, 44(3):295-304. [21] Wang P, Tan X, Zhang L, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying[J]. Process Safety and Environmental Protection, 2019, 132:189-199. [22] Li Q, Lin B, Zhao S, et al. Surface physical properties and its effects on the wetting behaviors of respirable coal mine dust[J]. Powder Technology, 2013, 233:137-145. [23] 杨静, 谭允顿, 王振华, 等. 煤尘表面特性及润湿机理的研究[J]. 煤炭学报, 2007, 32(7):737-740. [24] 陈基瑜, 姚艳斌, 孙晓晓, 等. 二氧化碳和氦气对低煤阶煤煤润湿性的影响研究[J]. 煤炭科学技术, 2015, 43(11):129-134. [25] Arif M, Barifcani A, Lebedev M, et al. CO2 wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery[J]. Fuel, 2016, 181:680-689. [26] Zhu C, Wan J, Tokunaga T K, et al. Impact of CO2 injection on wettability of coal at elevated pressure and temperature[J]. International Journal of Greenhouse Gas Control, 2019, 91:102840. [27] Ma Y, Sun J, Ding J, et al. Synthesis and characterization of a penetrating and pre-wetting agent for coal seam water injection[J]. Powder Technology, 2021, 380:368-376. [28] Han W, Zhou G, Wang J, et al. Experimental investigation on combined modification for micro physicochemical characteristics of coal by compound reagents and liquid nitrogen freeze-thaw cycle[J]. Fuel, 2021, 292:120287. [29] 李佳妮, 季淮君, 马鸿途, 等. 可溶有机质对煤的润湿性影响分析[J]. 煤矿安全, 2017, 48(6):169-172. [30] 余坤坤, 张小东, 李贵中, 等. 不同煤岩成分萃取后的表面张力变化[J]. 煤炭转化, 2018, 41(5):1-6. [31] 孟筠青, 夏捃凯, 牛家兴, 等. SDBS溶液对赵庄煤表面润湿作用机理的研究[J]. 中国矿业大学学报, 2021, 50(2):381-388. [32] 姜丽, 袁树杰. 生物型表面活性剂在煤表面润湿吸附规律研究[J]. 中国安全生产科学技术, 2019, 15(8):33-37. [33] 许国超, 樊民强, 刘爱荣, 等. 吐温类表面活性剂对粗煤泥离心脱水促进作用研究[J]. 煤炭学报, 2018, 43(S1):284-289. [34] Chang H, Zhang H, Jia Z, et al. Wettability of coal pitch surface by aqueous solutions of cationic Gemini surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494:59-64. [35] 高晓荣, 崔勇, 赵晓霞, 等. 羟基和酯基型Gemini双季铵盐表面活性剂在煤沥青表面的润湿特性[J]. 化工学报, 2017, 68(1):230-237. [36] Liu S, Liu X, Guo Z, et al. Wettability modification and restraint of moisture re-adsorption of lignite using cationic gemini surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508:286-293. [37] Meng J, Yin F, Li S, et al. Effect of different concentrations of surfactant on the wettability of coal by molecular dynamics simulation[J]. International Journal of Mining Science and Technology, 2019, 29(4):577-584. [38] 李树刚, 郭豆豆, 白杨, 等. 不同质量分数SDBS对煤体润湿性影响的分子模拟[J]. 中国安全科学学报, 2020, 30(3):21-27. [39] Guo J, Zhang L, Liu S, et al. Effects of hydrophilic groups of nonionic surfactants on the wettability of lignite surface: Molecular dynamics simulation and experimental study[J]. Fuel, 2018, 231:449-457. [40] 赵璐, 张蕾, 文欣, 等. 表面活性剂复配对低阶煤煤尘润湿性的影响[J]. 矿业安全与环保, 2021, 48(1):39-43. [41] 林海飞, 刘宝莉, 严敏, 等. 非阳离子表面活性剂对煤润湿性能影响的研究[J]. 中国安全科学学报, 2018, 28(5):123-128. [42] 李皓伟, 王兆丰, 基伟, 等. 不同类型表面活性剂对煤体的润湿性研究[J]. 煤矿安全, 2019, 50(3):22-25. [43] 翁安琦, 袁树杰, 王晓楠, 等. 煤层注水降尘中表面活性剂复配应用研究[J]. 中国安全科学学报, 2020, 30(10):90-95. [44] 秦桐, 蒋曙光, 张卫清. 煤的润湿性研究进展[J]. 煤矿安全, 2017, 48(9):163-166. [45] Wang X, Yuan S, Jiang B. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples[J]. Advanced Powder Technology, 2019, 30(8):1696-1708. [46] Xi X, Jiang S, Zhang W, et al. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal[J]. Fuel, 2019, 244:176-183. [47] Mao Y, Xia W, Peng Y, et al. Wetting of coal pores characterized by LF-NMR and its relationship to flotation recovery[J]. Fuel, 2020, 272:117737. [48] Shi G Q, Han C, Wang Y, et al. Experimental study on synergistic wetting of a coal dust with dust suppressant compounded with noncationic surfactants and its mechanism analysis[J]. Powder Technology, 2019, 356:1077-1086. [49] Lyu S, Chen X, Shah S M, et al. Experimental study of influence of natural surfactant soybean phospholipid on wettability of high-rank coal[J]. Fuel, 2019, 239:1-12. [50] Sun J, Zhou G, Wang C, et al. Experimental synthesis and performance comparison analysis of high-efficiency wetting enhancers for coal seam water injection[J]. Process Safety and Environmental Protection, 2020, 147:320-333. [51] 安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律[J]. 煤炭学报, 2020, 45(12):4074-4086. [52] 汪李龙, 康健婷, 康天合, 等. SDS溶液改变无烟煤润湿性与冲击产尘粒径分布的实验研究[J]. 煤矿安全, 2020, 51(1):30-37. [53] Ni G, Qian S, Meng X, et al. Effect of NaCl-SDS compound solution on the wettability and functional groups of coal[J]. Fuel, 2019, 257:116077. [54] Xie J, Ni G, Xie H, et al. The effect of adding surfactant to the treating acid on the chemical properties of an acid-treated coal[J]. Powder Technology, 2019, 356:263-272. [55] Xie H, Ni G, Xie J, et al. The effect of SDS synergistic composite acidification onthechemical structure and wetting characteristics of coal[J]. Powder Technology, 2020, 367:253-265. [56] Yao Q, Xu C, Zhang Y, et al. Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants[J]. Process Safety and Environmental Protection, 2017, 111:726-732. [57] 赵振保. 磁化水的理化特性及其煤层注水增注机制[J]. 辽宁工程技术大学学报(自然科学版), 2008(2):192-194. [58] 张园园, 张军, 尹杰, 等. 磁化水对细颗粒水汽凝结长大的影响[J]. 煤炭学报, 2020, 45(12):4178-4183. [59] 张园园, 张军, 尹杰, 等. 磁化水对燃煤PM2.5润湿性的影响[J]. 东南大学学报(自然科学版), 2020, 50(5):904-911. [60] 秦波涛, 周刚, 周群, 等. 煤矿综采工作面活性磁化水喷雾降尘技术体系与应用[J/OL]. 煤炭学报:1-11. [61] 陈梅岭, 宋文超, 蒋仲安, 等. 煤矿磁化水喷雾降尘机理及试验研究[J]. 煤炭科学技术, 2014, 42(7):65-68,87. [62] 荆德吉, 任帅帅, 葛少成. 不同磁化抑尘剂对煤粉润湿性影响规律的实验研究[J]. 中国安全生产科学技术, 2019, 15(7):107-112. [63] 黄鑫, 姚韦靖. 节能型气动低温磁化水降尘系统的设计与分析[J]. 矿业安全与环保, 2019, 46(1):78-81,86. [64] 秦波涛, 周群, 李修磊, 等. 煤矿井下磁化水与表面活性剂高效协同降尘技术[J]. 煤炭学报, 2017, 42(11):2900-2907. [65] 聂百胜, 丁翠, 李祥春, 等. 磁场对矿井水表面张力影响规律的实验研究[J]. 中国矿业大学学报, 2013, 42(1):19-23. [66] 聂百胜, 郭建华, 袁少飞, 等. 外加磁场与表面活性剂对水表面张力影响程度对比[J]. 煤炭科学技术, 2015, 43(4):48-52. [67] 王怀增, 李修磊, 丁仰卫. 煤矿井下活性磁化水降尘技术应用研究[J]. 煤矿机械, 2018, 39(8):132-134. [68] Liu J, Cao Y. Experimental study on the surface tension of magnetized water[J]. International Communications in Heat and Mass Transfer, 2021, 121:105091. [69] Cui D, Baisheng N, Hua Y, et al. Experimental research on optimization and coal dust suppression performance of magnetized surfactant solution[J]. Procedia Engineering, 2011, 26:1314-1321. [70] Zhou Q, Qin B, Wang J, et al. Effects of preparation parameters on the wetting features of surfactant-magnetized water for dust control in Luwa mine, China[J]. Powder technology, 2018, 326:7-15. [71] 周群. 煤矿井下活性磁化水降尘机制及技术研究[D]. 中国矿业大学, 2019. [72] Zhou Q, Qin B, Wang F, et al. Experimental investigation on the performance of a novel magnetized apparatus used to improve the dust suppression ability of surfactant-magnetized water[J]. Powder Technology, 2019, 354:149-157. [73] Wang H, Xuan W, Zhang Z, et al. Experimental investigation of the properties of dust suppressants after magnetic-field treatment and mechanism exploration[J]. Powder Technology, 2019, 342:149-155. [74] Wang H, He S, Xie G, et al. Study of the mechanism by which magnetization reduces dust suppressant usage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558:16-22. [75] 王永珍. 磁化表面活性剂降尘技术在综放工作面应用研究[J]. 煤炭技术, 2016, 35(11):93-95. [76] 刘金璐, 谷明月. 磁化复配表面活性剂与压风细雾喷嘴耦合协同雾化降尘的性能研究[J]. 矿业安全与环保, 2020, 47(2):52-55,60. [77] Hosseini H, Apourvari S N, Schaffie M. Wettability alteration of carbonate rocks via magnetic fields application[J]. Journal of Petroleum Science and Engineering, 2019, 172:280-287. [78] 聂百胜, 何学秋, 冯志华, 等. 磁化水在煤层注水中的应用[J]. 辽宁工程技术大学学报, 2007(1):1-3. [79] 张大明, 马云东. 矿井粉尘污染防治新技术浅析[J]. 辽宁工程技术大学学报, 2009, 28(S2):22-24. [80] 谢丹, 姜福川, 王嘉瑞. 煤层脉冲注磁化水防尘应用研究[J]. 煤炭技术, 2015, 34(9):231-233. [81] GB/T212-2008, 煤的工业分析方法[S]. [82] GB/T31391-2015, 煤的元素分析[S]. [83] GB/T6948-2008, 煤的镜质体反射率显微镜测定方法[S]. [84] 张旋, 张天赐, 葛际江, 等. 表面活性剂对气-液界面纳米颗粒吸附规律的影响[J]. 物理学报, 2020, 69(2):217-224. [85] 林海飞, 刘宝莉, 严敏, 等. 非阳离子表面活性剂对煤润湿性能影响的研究[J]. 中国安全科学学报, 2018, 28(5):123-128. [86] 肖锟, 刘聪洋, 王仁女, 等. 表面活性剂影响微生物降解多环芳烃的研究进展[J]. 微生物学通报, 2021, 48(2):582-595. [87] Shi G Q, Qi J M, Wang Y, et al. Synergistic influence of noncationic surfactants on the wettability and functional groups of coal[J]. Powder Technology, 2021, 385:92-105. [88] 张鹏, 魏文珑, 李兴, 等. 4种阴离子表面活性剂在煤沥青表面的润湿规律[J]. 煤炭学报, 2014, 39(5):966-970. [89] 王雁, 安秋凤. 表面活性剂的安全性问题[J]. 日用化学品科学, 2008(1):28-31. [90] 林佩施, 何小维, 王志刚, 等. 辛烯基琥珀酸淀粉糖酯在沐浴露中的应用研究[J]. 日用化学品科学, 2015, 38(3):25-28. [91] JB/T 7901-1999, 金属材料实验室均匀腐蚀全浸试验方法[S]. [92] 白利松, 赵勇. 表面活性剂的绿色化及研究进展[J]. 中国洗涤用品工业, 2017(8):48-54. [93] Yu Y, Zhang J, Zhong H. Heterogeneous condensation of magnetized water vapor on fine SiO2 particles[J]. Environmental research, 2019, 169:173-179. [94] 朱元保, 颜流水, 曹祉祥, 等. 磁化水的物理化学性能[J]. 湖南大学学报, 1999(1):3-5. [95] Lee S H, Jeon S I, Kim Y S, et al. Changes in the electrical conductivity, infrared absorption, and surface tension of partially-degassed and magnetically-treated water[J]. Journal of Molecular Liquids, 2013, 187:230-237. [96] 丁振瑞, 赵亚军, 陈凤玲, 等. 磁化水的磁化机理研究[J]. 物理学报, 2011(6):432-439. [97] Chen S W, Khor O K, Liao M W, et al. Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field[J]. Sensors and Actuators B: Chemical, 2014, 199:384-388. [98] Wang Y, Zhang B, Gong Z, et al. The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments[J]. Journal of Molecular Structure, 2013, 1052:102-104. [99] 邓波. 磁处理水的物理特性及其生物效应的研究[D]. 电子科技大学, 2009. [100] 庞晓峰, 邓波. 水在磁场作用后的特性变化研究[J]. 中国科学, 2008(9):1205-1213. [101] Ghorbani S, Mohammadi-Khatami M, Ghorbani S, et al. Effect of magnetized water on the fresh, hardened and durability properties of mortar mixes with marble waste dust as partial replacement of cement[J]. Construction and Building Materials, 2021, 267:121049. [102] Esmaeilnezhad E, Choi H J, Schaffie M, et al. Characteristics and applications of magnetized water as a green technology[J]. Journal of Cleaner Production, 2017, 161:908-921. [103] 夏伟. 新型磁化雾降尘技术及煤尘润湿剂研究[D]. 中国矿业大学, 2015. [104] 熊瑞生. 磁化水的活性及其与磁感应强度的相关性分析[J]. 江西理工大学学报, 2013(5):11-16. [105] 安燕, 程江, 杨卓如, 等. 微生物磁效应在废水处理中的应用[J]. 化工环保, 2006(6):467-470. [106] Iwasaka, M. and S. Ueno. Structure of water molecules under 14 T magnetic field. Journal of Applied Physics[J]. 1998, 83(11):6459-6461. [107] 张帆. 磁化水改良黏性土路基压实特性的试验研究[D]. 南京大学, 2014. [108] Liu J, Cao Y. Experimental study on the surface tension of magnetized water[J]. International Communications in Heat and Mass Transfer, 2021, 121:105091. [109] Arif M, Jones F, Barifcani A, et al. Influence of surface chemistry on interfacial properties of low to high rank coal seams[J]. Fuel, 2017, 194:211-221. [110] 郝盼云, 孟艳军, 曾凡桂, 等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析, 2020, 40(3):787-792. [111] 李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报, 2015, 40(12):2900-2908. [112] 安文博, 王来贵, 刘向峰, 等. 基于FTIR和XRD法分析阜新长焰煤结构特征[J]. 高分子通报, 2018(3):67-74. [113] 李子文. 低阶煤的微观结构特征及其对瓦斯吸附解吸的控制机理研究[D]. 中国矿业大学, 2015. [114] 潘保龙. 煤的微观结构对软硬煤瓦斯吸附差异的影响[D]. 河南理工大学, 2017. [115] Wang H, Zhang L, Wang D, et al. Experimental investigation on the wettability of respirable coal dust based on infrared spectroscopy and contact angle analysis[J]. Advanced Powder Technology, 2017, 28(12):3130-3139. [116] Petukhov V N, Girevaya K Y, Kubak D A, et al. Interaction of the coal surface with water[J]. Coke and Chemistry, 2013, 56(8):292-298. [117] Hassanzadegan A, Blöcher G, Milsch H, et al. The effects of temperature and pressure on the porosity evolution of Flechtinger sandstone[J]. Rock mechanics and rock engineering, 2014, 47(2):421-434. [118] 刘慧芳, 宋大钊, 何学秋, 等. 煤化作用对煤微表面结构特性影响研究[J]. 中国安全科学学报, 2020, 30(1):121-127. [119] 梁昌鸿, 梁伟强, 李伍. 基于傅里叶红外光谱不同煤阶煤的官能团研究[J]. 煤炭科学技术, 2020, 48(S1):182-186. [120] 王永刚, 周剑林, 林雄超. 低阶煤含氧官能团赋存状态及其对表面性质的影响[J]. 煤炭科学技术, 2013, 41(9):182-184,187. [121] 刘志明, 商丽艳, 潘振, 等. 多孔介质与SDS复配体系中天然气水合物生成过程分析[J]. 化工进展, 2018, 37(6):2203-2213. [122] 王宝俊, 李敏, 赵清艳, 等. 煤的表面电位与表面官能团间的关系[J]. 化工学报, 2004(8):1329-1334. [123] 李相臣, 康毅力, 尹中山. 不同化学环境下煤岩表面电性与润湿性特征[J]. 中国矿业大学学报, 2014, 43(5):864-869. [124] 赵振保, 杨晨, 孙春燕, 等. 煤尘润湿性的实验研究[J]. 煤炭学报, 2011, 36(3):442-446. [125] 侯鸣晓, 张晓雨, 康天合, 等. 电化学强化无烟煤吸水性的实验研究[J]. 煤炭学报, 2020, 45(8):2940-2948.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2023-06-23
|