论文中文题名: |
畜牧生产和降水梯度对生态系统服务的联合效应——以黄土高原为例
|
姓名: |
冯玮含
|
学号: |
21210226049
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2025
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘工程
|
研究方向: |
地理空间信息技术与应用
|
第一导师姓名: |
李婷
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2025-06-18
|
论文答辩日期: |
2025-05-29
|
论文外文题名: |
The Combined Effect of Livestock Production and Precipitation Gradient on Ecosystem Services: A Case Study of the Loess Plateau
|
论文中文关键词: |
生态系统服务 ; 畜牧生产 ; 降水梯度 ; 结构方程模型 ; 多尺度地理加权回归 ; 二维阈值模型
|
论文外文关键词: |
Ecosystem services ; Livestock production ; Precipitation gradient ; Structural equation model ; Multiscale geographical weighted regression ; Two-dimensional threshold model
|
论文中文摘要: |
︿
过去半个世纪,旱区是开展生态恢复、实现全球土地退化“零增长”目标的关键区域。在全球气候变化及强烈人类活动背景下,围绕旱区生态系统服务驱动因素的研究是当下研究热点。其中,降水和畜牧生产是影响旱区生态系统服务的关键因素。基于此,本文以黄土高原为研究区,基于全球牲畜格网数据集(Gridded livestock of the world,GLW)、净初级生产力(Net primary productivity,NPP)与气候、地形、植被、人类活动强度(Human activity intensity,HAI)、国内生产总值(Gross domestic product,GDP)等多种环境因子,利用随机森林回归方法模拟研究区放牧密度,并量化地上可用生物量(Aboveground available biomass,AGBavailable),开展了生态恢复后不同时期(2010和2020年)黄土高原区域尺度放牧强度估算。在此基础上,结合畜牧经济数据,通过结构方程模型(Structural equation model,SEM)和多尺度地理加权回归模型(Multiscale geographical weighted regression,MGWR)探究了不同时期畜牧生产对黄土高原四项关键生态系统服务(产水量、产草量、土壤保持、防风固沙)总体影响与空间异质性影响及其变化。最终,利用二维阈值模型,探究了畜牧生产和降水梯度对四项服务的联合效应,明确不同降水梯度下最大畜牧生产因子水平。主要研究结果如下:
(1)2010~2020年,黄土高原地区禁牧效果显著,高强度放牧区得到有效控制,尤其是在黄土高原耕作区。其中,低放牧强度区面积增长4.58%,中、高放牧强度区面积分别减少2.15%和2.43%。
(2)2010~2020年,黄土高原四项生态系统服务平均值增长率均超过20%,生态恢复成效显著。总体上,畜牧经济对生态系统服务表现为消极影响,其路径系数从-0.76增至-0.95;放牧强度对生态系统服务产生直接的积极影响,路径系数由0.37增至0.47。空间上,放牧强度对四项服务均产生广泛负影响,仅在2020年于局部区域展现较低程度的积极影响;但畜牧经济因子(牛存栏量、羊存栏量、奶类产量、牧业产值)对四项服务在作用方向与影响强度上存在差异,表现出显著空间异质性特征。
(3)畜牧生产影响四项生态系统服务对降水梯度的响应阈值。在放牧密度影响下,四项服务的降水阈值分别从375.35 mm、254.54 mm、615.16 mm、688.71 mm降至331.93 mm、129.31 mm、602.09 mm、407.91 mm。降水梯度和放牧密度对四项服务均产生协同效应,放牧密度在一定程度上缓解了四项服务对水分条件的依赖。
(4)黄土高原畜牧区需降低畜牧生产因子水平以维持旱区生态系统服务,降水量高于600 mm耕作区具有畜牧生产潜力,但实际增量的确定还需结合植被恢复现状综合评估,以保护生态恢复成果。
综上,本研究通过系统的数据分析,阐明了畜牧生产对生态系统服务的影响以及降水梯度和畜牧生产对生态系统服务联合效应的内在机制,并揭示了不同降水梯度下畜牧生产的安全空间,可为旱区畜牧生产及生态系统服务的协调发展提供科学依据。
﹀
|
论文外文摘要: |
︿
Over the past half-century, drought-stricken areas have been the key regions for ecological restoration and achieving the goal of "zero growth" in global land degradation. Under the background of global climate change and intense human activities, the research on the driving factors of ecosystem services in arid areas is a current research hotspot. Among them, precipitation and livestock production are the key factors affecting ecosystem services in arid areas. Based on this, this paper takes the Loess Plateau as the research area and is based on the Gridded livestock of the world (GLW) dataset and Net primary productivity. (NPP) and various environmental factors such as climate, terrain, vegetation, Human activity intensity (HAI), and Gross domestic product (GDP), the grazing density in the study area was simulated using the random forest regression method. And quantify the Aboveground available biomass (AGBavailable) to estimate the grazing intensity at the regional scale of the Loess Plateau in different periods (2010 and 2020) after ecological restoration. On this basis, combined with livestock economic data, through the Structural equation model (SEM) and the Multiscale geographical weighted regression model, (MGWR) To explore the overall impact and spatial heterogeneity impact of livestock production in different periods on four key ecosystem services (water production, grass production, soil conservation, and windbreak and sand fixation) of the Loess Plateau and their changes. Using the two-dimensional threshold model, the combined effect of livestock production and precipitation gradients on the four services was analyzed to clarify the level of the maximum livestock production factor under different precipitation gradients. The main research results are as follows:
(1) From 2010 to 2020, the grazing ban in the Loess Plateau region achieved remarkable results. The high-intensity grazing areas were effectively controlled, especially in the cultivated areas of the Loess Plateau. Among them, the area of the low grazing intensity zone increased by 4.58%, while the areas of the medium and high grazing intensity zones decreased by 2.15% and 2.43% respectively.
(2) From 2010 to 2020, the average growth rate of the four ecosystem services on the Loess Plateau all exceeded 20%, and the ecological restoration achieved remarkable results. Overall, the livestock economy shows a negative impact on ecosystem services, and its path coefficient increases from -0.76 to -0.95. Grazing intensity has a direct positive impact on ecosystem services, and the path coefficient increases from 0.37 to 0.47. Spatially, grazing intensity had extensive negative impacts on all four services, and only showed a relatively low degree of positive impact in local areas in 2020. However, the economic factors of animal husbandry (cattle inventory, sheep inventory, milk production, and pastoral output value) have differences in the direction of action and the intensity of influence on the four services, showing significant spatial heterogeneity characteristics.
(3) Livestock production affects the response thresholds of four ecosystem services to precipitation gradients. Under the influence of grazing density, the precipitation thresholds of the four services decreased from 375.35 mm, 254.54 mm, 615.16 mm, and 688.71 mm to 331.93 mm, 129.31 mm, 602.09 mm, and 407.91 mm respectively. The precipitation gradient and grazing density all have a synergistic effect on the four services, and the grazing density alleviates the dependence of the four services on water to a certain extent.
(4) In the pastoral areas of the Loess Plateau, the levels of livestock production factors need to be reduced to maintain ecosystem services in arid areas. The cultivated areas with precipitation higher than 600 mm have the potential for livestock production. However, the determination of the actual increment still needs to be comprehensively evaluated in combination with the current situation of vegetation restoration to protect the achievements of ecological restoration.
In conclusion, through systematic data analysis, this study has clarified the impact of livestock production on ecosystem services and the internal mechanism of the combined effect of precipitation gradients and livestock production on ecosystem services. It has also revealed the safety space of livestock production under different precipitation gradients, which can provide a scientific basis for the coordinated development of livestock production and ecosystem services in arid areas.
﹀
|
参考文献: |
︿
[1]Li C, Fu B, Wang S, et al. Drivers and impacts of changes in China’s drylands [J]. Nature Reviews Earth & Environment, 2021, 2(12): 858-873. [2]Eldridge D J, Delgado‐Baquerizo M. Continental‐scale Impacts of Livestock Grazing on Ecosystem Supporting and Regulating Services [J]. Land Degradation & Development, 2016, 28(4): 1473-1481. [3]Delgado C L. Rising demand for meat and milk in developing countries: implications for grasslands-based livestock production [M]. Grassland: a global resource. Wageningen Academic. 2005: 29-39. [4]Deng X, Gibson J, Wang P. Quantitative measurements of the interaction between net primary productivity and livestock production in Qinghai Province based on data fusion technique [J]. Journal of Cleaner Production, 2017, 142: 758-766. [5]Qi J, Xin X, John R, et al. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt [J]. Ecological Processes, 2017, 6(1). [6]Herrero‐Jáuregui C, Oesterheld M. Effects of grazing intensity on plant richness and diversity: a meta‐analysis [J]. Oikos, 2018, 127(6): 757-766. [7]Velasco Ayuso S, Oñatibia G R, Maestre F T, et al. Grazing pressure interacts with aridity to determine the development and diversity of biological soil crusts in Patagonian rangelands [J]. Land Degradation & Development, 2019, 31(4): 488-499. [8]Zhang F, Nilsson C, Xu Z, et al. Evaluation of restoration approaches on the Inner Mongolian Steppe based on criteria of the Society for Ecological Restoration [J]. Land Degradation & Development, 2020, 31(3): 285-296. [9]Schönbach P, Wan H, Gierus M, et al. Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem [J]. Plant and Soil, 2010, 340(1-2): 103-115. [10]Li X, Zhang Z, Tan H, et al. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert [J]. Science China Life Sciences, 2014, 57(5): 539-548. [11]Hobley E, Garcia‐Franco N, Hübner R, et al. Reviewing our options: Managing water‐limited soils for conservation and restoration [J]. Land Degradation & Development, 2018, 29(4): 1041-1053. [12]Koerner S E, Smith M D, Burkepile D E, et al. Change in dominance determines herbivore effects on plant biodiversity [J]. Nature Ecology & Evolution, 2018, 2(12): 1925-1932. [13]Liu S, Zamanian K, Schleuss P-M, et al. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles [J]. Agriculture, Ecosystems & Environment, 2018, 252: 93-104. [14]Wang S, Fan J, Li Y, et al. Dynamic response of water retention to grazing activity on grassland over the Three River Headwaters region [J]. Agriculture, Ecosystems & Environment, 2019, 286: 106662. [15]Zhang R, Wang J, Niu S. Toward a sustainable grazing management based on biodiversity and ecosystem multifunctionality in drylands [J]. Current Opinion in Environmental Sustainability, 2021, 48: 36-43. [16]Dick M, Abreu Da Silva M, Franklin Da Silva R R, et al. Environmental impacts of Brazilian beef cattle production in the Amazon, Cerrado, Pampa, and Pantanal biomes [J]. Journal of Cleaner Production, 2021, 311: 127750. [17]De Faccio Carvalho P C, De Albuquerque Nunes P A, Pontes-Prates A, et al. Reconnecting Grazing Livestock to Crop Landscapes: Reversing Specialization Trends to Restore Landscape Multifunctionality [J]. Frontiers in Sustainable Food Systems, 2021, 5. [18]Davies K W, Bates J D, Boyd C S. Response of Planted Sagebrush Seedlings to Cattle Grazing Applied to Decrease Fire Probability [J]. Rangeland Ecology & Management, 2020, 73(5): 629-635. [19]Jose S, Dollinger J. Silvopasture: a sustainable livestock production system [J]. Agroforestry Systems, 2019, 93(1): 1-9. [20]魏韵. 旱区气候变化机制及其未来风险预估 [D]. 兰州大学, 2022. [21]Khan Z, Khan M N, Zhang K, et al. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability [J]. Industrial Crops and Products, 2021, 171: 113878. [22]St.Clair S B, Lynch J P. The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries [J]. Plant and Soil, 2010, 335(1-2): 101-115. [23]Pei H, Liu M, Jia Y, et al. The trend of vegetation greening and its drivers in the Agro-pastoral ecotone of northern China, 2000–2020 [J]. Ecological Indicators, 2021, 129: 108004. [24]王东. 黄土高原干旱时空特征及对植被生长潜在风险评估 [D]. 兰州大学, 2024. [25]高照良, 李永红, 徐佳,等. 黄土高原水土流失治理进展及其对策 [J]. 科技和产业, 2009, 9: 1-12. [26]贾磊. 黄土高原退耕还林生态效果及其驱动机制研究 [D]. 西北农林科技大学, 2023. [27]康晓虹. 边疆牧户对草原生态保护补助奖励政策的态度分析 [J]. 生态与农村环境学报, 2019, 35: 1282-1288. [28]Lan X, Zhang Q, Xue H, et al. Linking sustainable livelihoods with sustainable grassland use and conservation: A case study from rural households in a semi-arid grassland area, China [J]. Land Use Policy, 2021, 101: 105186. [29]Golodets C, Kigel J, Sternberg M. Plant diversity partitioning in grazed Mediterranean grassland at multiple spatial and temporal scales [J]. Journal of Applied Ecology, 2011, 48(5): 1260-1268. [30]刘娜. 放牧对内蒙古荒漠草原生态系统服务功能影响的评估 [D]. 中国农业科学院, 2016. [31]Goenster-Jordan S, Ingold M, Jannoura R, et al. Soil microbial properties of subalpine steppe soils at different grazing intensities in the Chinese Altai Mountains [J]. Sci Rep, 2021, 11(1): 1653. [32]Zhang C, Dong Q, Chu H, et al. Grassland Community Composition Response to Grazing Intensity Under Different Grazing Regimes [J]. Rangeland Ecology & Management, 2018, 71(2): 196-204. [33]Zhang Z, Zhao Y, Lin H, et al. Comprehensive analysis of grazing intensity impacts alpine grasslands across the Qinghai-Tibetan Plateau: A meta-analysis [J]. Frontiers in Plant Science, 2023, 13. [34]Carvalho P C D F, Peterson C A, Nunes P a D A, et al. Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification [J]. Journal of Animal Science, 2018, 96(8): 3513-3525. [35]Grace J B. Structural equation modeling and natural systems [M]. Cambridge University Press, 2006. [36]王酉石, 储诚进. 结构方程模型及其在生态学中的应用 [J]. 植物生态学报, 2011, 35: 337-344. [37]Li M, Li X, Liu S, et al. Ecosystem services under different grazing intensities in typical grasslands in Inner Mongolia and their relationships [J]. Global Ecology and Conservation, 2021, 26: e01526. [38]Zhang R, Wang Z, Han G, et al. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China [J]. Agriculture, Ecosystems & Environment, 2018, 265: 73-83. [39]Gaglio M, Madin M B, Nelson K S. Effects of landscape simplicity on crop yield: A reanalysis of a global database [J]. Plos One, 2023, 18(12): e0289799. [40]Zhang B, Zheng L, Wang Y, et al. Multiscale ecosystem service synergies/trade-offs and their driving mechanisms in the Han River Basin, China: implications for watershed management [J]. Environmental Science and Pollution Research, 2023, 30(15): 43440-43454. [41]Liu Y, Liu S, Sun Y, et al. Effect of grazing exclusion on ecosystem services dynamics, trade-offs and synergies in Northern Tibet [J]. Ecological Engineering, 2022, 179: 106638. [42]Li C, Zhao J. Investigating the Spatiotemporally Varying Correlation between Urban Spatial Patterns and Ecosystem Services: A Case Study of Nansihu Lake Basin, China [J]. ISPRS International Journal of Geo-Information, 2019, 8(8): 346. [43]Hu C, Wang Z, Li J, et al. Quantifying the Temporal and Spatial Patterns of Ecosystem Services and Exploring the Spatial Differentiation of Driving Factors: a Case Study of Sichuan Basin, China [J]. Frontiers in Environmental Science, 2022, 10. [44]Xue C, Chen X, Xue L, et al. Modeling the spatially heterogeneous relationships between tradeoffs and synergies among ecosystem services and potential drivers considering geographic scale in Bairin Left Banner, China [J]. Science of The Total Environment, 2023, 855: 158834. [45]唐霜, 朱崇京, 高洁,等. 复杂地形下西南地区水生态系统服务时空变化与影响因素分析 [J]. 水土保持学报, 2024, 38: 244-252. [46]Weiskopf S R, Rubenstein M A, Crozier L G, et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States [J]. Sci Total Environ, 2020, 733: 137782. [47]Lohmann D, Tietjen B, Blaum N, et al. Shifting thresholds and changing degradation patterns: climate change effects on the simulated long‐term response of a semi‐arid savanna to grazing [J]. Journal of Applied Ecology, 2012, 49(4): 814-823. [48]Ruppert J C, Harmoney K, Henkin Z, et al. Quantifying drylands' drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime [J]. Global Change Biology, 2015, 21(3): 1258-1270. [49]Zhou G, Luo Q, Chen Y, et al. Interactive effects of grazing and global change factors on soil and ecosystem respiration in grassland ecosystems: A global synthesis [J]. Journal of Applied Ecology, 2019, 56(8): 2007-2019. [50]马帅. 植被变化对生态系统服务的影响阈值及地形梯度效应 [D]. 南京林业大学, 2022. [51]Yang B, Gong J, Li X, et al. Integrated response of carbon sequestration along co-varying gradients of climate and grazing intensity in a desert steppe ecosystem [J]. Applied Soil Ecology, 2023, 186: 104845. [52]Hoffmann C, Giese M, Dickhoefer U, et al. Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: Synthesis of a 6-year grazing experiment [J]. Journal of Arid Environments, 2016, 135: 50-63. [53]Ahlborn J, Wesche K, Lang B, et al. Interactions between species richness, herbivory and precipitation affect standing biomass in Mongolian rangelands [J]. Applied Vegetation Science, 2021, 24(2). [54]Smet M, Ward D. Soil quality gradients around water-points under different management systems in a semi-arid savanna, South Africa [J]. Journal of Arid Environments, 2006, 64(2): 251-269. [55]Bailey D W. Identification and Creation of Optimum Habitat Conditions for Livestock [J]. Rangeland Ecology & Management, 2005, 58(2): 109-118. [56]Feldt T, Schlecht E. Analysis of GPS trajectories to assess spatio-temporal differences in grazing patterns and land use preferences of domestic livestock in southwestern Madagascar [J]. Pastoralism, 2016, 6(1). [57]Macarthur R. Fluctuations of animal populations and a measure of community stability [J]. ecology, 1955, 36(3): 533-536. [58]Elton C S. The ecology of invasions by animals and plants [M]. Springer Nature, 2020. [59]白晓航, 赵文武, 尹彩春. 稳态转换视角下生态系统服务变化过程与作用机制 [J]. 生态学报, 2022, 42: 6054-6065. [60]喻海东, 卢亮. 2004-2013年中国经济与空气质量的耦合关系及其发展趋势 [J]. 中国人口·资源与环境, 2015, 25: 55-57. [61]Dakos V, Carpenter S R, Van Nes E H, et al. Resilience indicators: prospects and limitations for early warnings of regime shifts [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1659): 20130263. [62]Dangal S R, Tian H, Lu C, et al. Synergistic effects of climate change and grazing on net primary production of Mongolian grasslands [J]. Ecosphere, 2016, 7(5): e01274. [63]Li W, Xu F, Zheng S, et al. Patterns and thresholds of grazing‐induced changes in community structure and ecosystem functioning: species‐level responses and the critical role of species traits [J]. Journal of Applied Ecology, 2016, 54(3): 963-975. [64]Berdugo M, Delgado-Baquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity [J]. Science, 2020, 367(6479): 787-790. [65]田昌园, 张红丽, 张艺,等. 长江中下游地区生态系统服务对景观占比的响应及其阈值 [J]. 生态学报, 2024, 44: 8150-8158. [66]Li C, Fu B, Wang S, et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing [J]. Nature Sustainability, 2023, 6(11): 1363-1372. [67]黄钰婷, 曹雅蓉, 吴隽宇,等. 长三角生态系统服务驱动因素的交互效应及其阈值 [J]. 生态学报, 2024, 44: 9956-9973. [68]汤青, 徐勇, 刘毅. 黄土高原地区土地利用动态变化的空间差异分析 [J]. 干旱区资源与环境, 2010, 24: 15-21. [69]何永涛, 李文华, 郎海鸥. 黄土高原降水资源特征与林木适宜度研究 [J]. 干旱区研究, 2009, 26: 406-412. [70]Fu B, Wang S, Liu Y, et al. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China [J]. Annual Review of Earth and Planetary Sciences, 2017, 45(1): 223-243. [71]王鹏. 黄土高原不同放牧强度生态经济社会系统耦合效应研究 [D]. 中国科学院大学, 2023. [72]杨孟豪. 黄土高原水-粮食-生态系统功能纽带关系及空间管理研究 [D]. 中国科学院大学, 2023. [73]李婷, 吕一河, 任艳姣,等. 黄土高原植被恢复成效及影响因素 [J]. 生态学报, 2020, 40: 8593-8605. [74]胥刚, 任继周, 冯琦胜,等. 黄土高原农业溯源 [J]. 草业科学, 2015, 32: 1695-1701. [75]胥刚. 黄土高原农业结构变迁与农业系统战略构想 [D]. 兰州大学, 2015. [76]严宝文, 刘俊民, 李靖. 黄土高原地区农业发展对农业环境地质状况的影响研究 [J]. 干旱区资源与环境, 2005: 64-70. [77]Zhang X C, Liu W Z. Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China [J]. Agricultural and Forest Meteorology, 2005, 131(3-4): 127-142. [78]Fu B, Liu Y, Lü Y, et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China [J]. Ecological Complexity, 2011, 8(4): 284-293. [79]Chen Y P, Wang K B, Fu B J, et al. 65% cover is the sustainable vegetation threshold on the Loess Plateau [J]. Environ Sci Ecotechnol, 2024, 22: 100442. [80]Piipponen J, Jalava M, De Leeuw J, et al. Global trends in grassland carrying capacity and relative stocking density of livestock [J]. Glob Chang Biol, 2022, 28(12): 3902-3919. [81]Breiman L. Random forests [J]. Machine learning, 2001, 45: 5-32. [82]万里强, 陈玮玮, 李向林,等. 放牧强度对山羊采食行为的影响 [J]. 草业学报, 2013, 22: 275-282. [83]Li X, Hou J, Huang C. High-Resolution Gridded Livestock Projection for Western China Based on Machine Learning [J]. Remote Sensing, 2021, 13(24): 5038. [84]Godde C M, Garnett T, Thornton P K, et al. Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs [J]. Global Food Security, 2018, 16: 93-105. [85]胡晓阳, 王兆锋, 张镱锂,等. 青藏高原放牧强度空间化方法与应用 [J]. 地理学报, 2022, 77: 547-558. [86]柴文雯, 贾夏, 赵永华,等. 黄土高原人类活动强度与植被覆盖的时空关联 [J]. 生态学报, 2024, 44: 6708-6721. [87]Petz K, Alkemade R, Bakkenes M, et al. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models [J]. Global Environmental Change, 2014, 29: 223-234. [88]De Leeuw J, Rizayeva A, Namazov E, et al. Application of the MODIS MOD 17 Net Primary Production product in grassland carrying capacity assessment [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78: 66-76. [89]George M, Lyle D. Stocking Rate and Carrying Capacity. Module 4: Ranch Operations and Grazing Management. Ecology and Management of Grazing, an Online Course. University of California, Davis [Z]. Online. 2009 [90]Lloyd J, Bird M I, Vellen L, et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate [J]. Tree physiology, 2008, 28(3): 451-468. [91]Paz-Kagan T, Ohana-Levi N, Herrmann I, et al. Grazing intensity effects on soil quality: A spatial analysis of a Mediterranean grassland [J]. Catena, 2016, 146: 100-110. [92]Ran Q, Hao Y, Xia A, et al. Quantitative Assessment of the Impact of Physical and Anthropogenic Factors on Vegetation Spatial-Temporal Variation in Northern Tibet [J]. Remote Sensing, 2019, 11(10): 1183. [93]Gilbert M, Nicolas G, Cinardi G, et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010 [J]. Sci Data, 2018, 5: 180227. [94]Manzano P, Burgas D, Cadahía L, et al. Toward a holistic understanding of pastoralism [J]. One Earth, 2021, 4(5): 651-665. [95]Sanaei A, Li M, Ali A. Topography, grazing, and soil textures control over rangelands' vegetation quantity and quality [J]. Sci Total Environ, 2019, 697: 134153. [96]杨世琦. 西北地区退耕还林还草与农业结构调整战略研究 [D]. 西北农林科技大学, 2003. [97]成思敏, 王继军. 退耕区域林草资源有效利用的思考——以安塞县为例 [J]. 水土保持研究, 2017, 24: 243-249. [98]焦彩强. 集约化生产模式下耕作对土壤物理性质的影响及效应分析 [D]. 西北农林科技大学, 2008. [99]Liu H, Liu S, Wang F, et al. Identifying ecological compensation areas for ecosystem services degradation on the Qinghai-Tibet Plateau [J]. Journal of Cleaner Production, 2023, 423: 138626. [100]Li J, Bai Y, Alatalo J M. Impacts of rural tourism-driven land use change on ecosystems services provision in Erhai Lake Basin, China [J]. Ecosystem Services, 2020, 42: 101081. [101]Su C, Dong M, Fu B, et al. Scale effects of sediment retention, water yield, and net primary production: A case‐study of the Chinese Loess Plateau [J]. Land Degradation & Development, 2020, 31(11): 1408-1421. [102]Xu B, Yang X C, Tao W G, et al. MODIS‐based remote sensing monitoring of grass production in China [J]. International Journal of Remote Sensing, 2010, 29(17-18): 5313-5327. [103]Gong J, Shi J, Zhu C, et al. Accounting for land use in an analysis of the spatial and temporal characteristics of ecosystem services supply and demand in a desert steppe of Inner Mongolia, China [J]. Ecological Indicators, 2022, 144: 109567. [104]高海东, 李占斌, 李鹏,等. 基于土壤侵蚀控制度的黄土高原水土流失治理潜力研究 [J]. 地理学报, 2015, 70: 1503-1515. [105]Williams J, Jones C, Kiniry J, et al. The EPIC crop growth model [J]. Transactions of the ASAE, 1989, 32(2): 497-0511. [106]Mccool D K, Foster G R, Mutchler C, et al. Revised slope length factor for the Universal Soil Loss Equation [J]. Transactions of the ASAE, 1989, 32(5): 1571-1576. [107]白舒婷. 中国北方农牧交错带生态系统服务时空变化及权衡与协同研究 [D], 2023. [108]祝士杰. 基于DEM的黄土高原流域面积高程积分谱系研究 [D]. 南京师范大学, 2013. [109]邢春燕, 郭中领, 常春平,等. RWEQ模型在河北坝上地区的适用性 [J]. 中国沙漠, 2018, 38: 1180-1192. [110]李慧, 王继军, 郭满才. 基于结构方程模型的黄土丘陵区商品型生态农业系统耦合关系分析 [J]. 经济地理, 2010, 30(06): 1005-1010. [111]李超显, 彭福清, 陈鹤. 流域生态补偿支付意愿的影响因素分析——以湘江流域长沙段为例 [J]. 经济地理, 2012, 32: 130-135. [112]Mansour S, Al Kindi A, Al-Said A, et al. Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR) [J]. Sustain Cities Soc, 2021, 65: 102627. [113]Fotheringham A S, Yang W, Kang W. Multiscale Geographically Weighted Regression (MGWR) [J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265. [114]Gao, H., Jin, J. Analysis of water yield changes from 1981 to 2018 using an improved Mann-Kendall Test [J]. Remote Sensing. 2022, 14, 2009. [115]Sun Y, Chang J, Fang J. Above- and belowground net-primary productivity: A field-based global database of grasslands [J]. Ecology, 2023, 104(2): e3904. [116]张路, 肖燚, 郑华,等. 2010年中国生态系统服务空间数据集 [J]. 中国科学数据(中英文网络版), 2018, 3: 11-23. [117]唐尧, 祝炜平, 张慧,等. InVEST模型原理及其应用研究进展 [J]. 生态科学, 2015, 34: 204-208. [118]谢展, 李萍, 刘文倩,等. 气候变化和植被恢复对黄土高原水源涵养功能时空变化的影响 [J]. 生态学报, 2024, 44: 10915-10935. [119]Liu J, Atzberger C, Huang X, et al. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison [J]. Frontiers of Earth Science, 2020, 14: 413-429. [120]张恩伟. 滇中城市群产水服务和土壤保持服务时空格局演变及其影响因素研究 [D]. 云南师范大学, 2021. [121]邢丽珠. 气候变化对内蒙古巴彦淖尔生态系统服务功能的影响 [D]. 南京信息工程大学, 2021. [122]Lin Y, Hong M, Han G, et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe [J]. Agriculture, Ecosystems & Environment, 2010, 138(3-4): 282-292. [123]张艳芬, 杨晓霞, 董全民,等. 牦牛和藏羊混合放牧对放牧家畜采食量和植物补偿性生长的影响 [J]. 草地学报, 2019, 27: 1607-1614. [124]Dangal S R S, Tian H, Lu C, et al. Synergistic effects of climate change and grazing on net primary production of Mongolian grasslands [J]. Ecosphere, 2016, 7(5). [125]Barrio I C, Hik D S, Thórsson J, et al. The sheep in wolf's clothing? Recognizing threats for land degradation in Iceland using state‐and‐transition models [J]. Land Degradation & Development, 2018, 29(6): 1714-1725. [126]Ortiz-Alcaraz A, Aguirre-Muñoz A, Méndez-Sánchez F, et al. Feral sheep eradication at Socorro Island, Mexico: A mandatory step to ensure ecological restoration [J]. Interciencia, 2016, 41(3): 184-189. [127]Bresloff C J, Nguyen U, Glenn E P, et al. Effects of grazing on leaf area index, fractional cover and evapotranspiration by a desert phreatophyte community at a former uranium mill site on the Colorado Plateau [J]. Journal of Environmental Management, 2013, 114: 92-104. [128]Qu Y, Zhao Y, Ding G, et al. Spatiotemporal patterns of the forage-livestock balance in the Xilin Gol steppe, China: implications for sustainably utilizing grassland-ecosystem services [J]. Journal of Arid Land, 2021, 13(2): 135-151. [129]Richter B D, Bartak D, Caldwell P, et al. Water scarcity and fish imperilment driven by beef production [J]. Nature Sustainability, 2020, 3(4): 319-328. [130]Alexander P, Brown C, Arneth A, et al. Human appropriation of land for food: The role of diet [J]. Global Environmental Change, 2016, 41: 88-98. [131]Seber G. Wild (1989). Nonlinear Regression [Z]. Wiley, New York [132]Toms J D, Lesperance M L. Piecewise regression: a tool for identifying ecological thresholds [J]. Ecology, 2003, 84(8): 2034-2041. [133]Muggeo V M. Segmented: an R package to fit regression models with broken-line relationships [J]. R news, 2008, 8(1): 20-25. [131]Maestre F T, Eldridge D J, Soliveres S, et al. Structure and functioning of dryland ecosystems in a changing world [J]. Annu Rev Ecol Evol Syst, 2016, 47: 215-237. [135]Yuan L, Geng M, Li F, et al. Spatiotemporal characteristics and drivers of ecosystem service interactions in the Dongting Lake Basin [J]. Sci Total Environ, 2024, 926: 172012. [136]王茜. 黄土高原生态系统时空差异及其驱动因素研究 [D]. 长安大学, 2022. [137]孙世贤, 丁勇, 李夏子,等. 放牧强度季节调控对荒漠草原土壤风蚀的影响 [J]. 草业学报, 2020, 29: 23-29. [138]程积民, 井赵斌, 金晶炜,等. 黄土高原半干旱区退化草地恢复与利用过程研究 [J]. 中国科学:生命科学, 2014, 44: 267-279. [139]Oñatibia G R, Amengual G, Boyero L, et al. Aridity exacerbates grazing‐induced rangeland degradation: A population approach for dominant grasses [J]. Journal of Applied Ecology, 2020, 57(10): 1999-2009. [140]塔文妍, 刘雅莉, 张静,等. 新疆草地生态系统土壤保持服务评估与风险管理 [J]. 草地学报, 2025: 1-14. [141]刘菊红. 放牧与降水对短花针茅荒漠草原植物群落稳定性的影响 [D]. 内蒙古农业大学, 2019.
﹀
|
中图分类号: |
X171.3
|
开放日期: |
2025-06-18
|