论文中文题名: | 智慧城市建设对城市绿色发展的作用研究——来自中西部四大城市群的经验数据 |
姓名: | |
学号: | 19202001002 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 020205 |
学科名称: | 经济学 - 应用经济学 - 产业经济学 |
学生类型: | 硕士 |
学位级别: | 经济学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 区域经济发展 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-14 |
论文答辩日期: | 2022-06-08 |
论文外文题名: | Research on the Role of Smart City Construction on Urban Green Development: Empirical Data from the Four Major Urban Agglomerations in the Central and Western Regions |
论文中文关键词: | |
论文外文关键词: | Smart city ; Urban agglomeration ; Green development ; Projection pursuit method ; Grey relational analysis |
论文中文摘要: |
实现城市的绿色发展是缓解当前“大城市病”愈演愈烈的现实迫切需求,同样也是实现国家可持续发展、高质量发展的重要一环。而城市要想实现资源节约型、环境友好型的发展模式,势必离不开智慧城市的建设。智慧城市的提出为解决城市发展问题提供了新的路径,不仅智慧城市本身包含了绿色发展的理念,而且智慧城市的各系统建设也多方面地影响了城市的绿色发展水平。因此,研究智慧城市建设对城市绿色发展产生何种影响,对于智慧城市建设的科学规划,实现资源节约和环境保护的生产生活方式,以及促进人类社会发展与自然社会发展相协调,都有着重要的意义。 本文在对智慧城市和绿色发展的概念界定的基础上,建立了智慧城市评价指标体系和城市绿色发展指标体系,对中西部地区智慧城市建设和城市绿色发展水平进行了全方位的综合评价,并以四大中西部城市群为研究样本,运用了灰色关联分析法实证检验智慧城市的建设与城市绿色发展水平的关联程度,研究了中西部四大城市群反映的不同关联特征。研究结论表明:(1)智慧城市建设是一个系统工程,包含了智慧基础设施、智慧产业、智慧公民、智慧区位、智慧治理服务等五个系统,各个系统都从不同角度对城市绿色发展水平产生影响,其中智慧区位产生了核心影响;(2)中西部智慧城市发展呈现层次分级,且城市群内部智慧协同程度不足。西安、成都、重庆、武汉和郑州作为 “智慧领跑城市”发挥着重要的引领带动作用,其它城市则智慧水平相对较低,还未形成对中心城市强劲的支撑力;(3)中西部城市绿色发展水平分布较为集中,大部分城市还处于绿色发展初级阶段,而城市群内部绿色发展水平呈现较大分层,城市群内部的绿色发展协同度低;(4)中西部智慧城市建设与城市绿色发展的关联关系为:2012-2020年智慧治理服务对城市绿色发展的影响最强,智慧区位次之,而智慧基础设施、智慧公民、智慧产业对城市绿色发展的影响力较弱。(5)中西部四大城市群的智慧城市建设与绿色发展的关联关系为:从城市群内部关联度来看,关中平原城市群、成渝城市群、武汉城市群和中原城市群的智慧治理服务和智慧区位对绿色发展的影响最强。城市群间比较来看,关中平原城市群在智慧基础设施、智慧公民和智慧产业对城市绿色发展的影响上具有比较优势,中原城市群在智慧区位方面具有比较优势,而成渝城市群在智慧治理服务方面具有比较优势。基于本文实证结果,提出三条对策建议,分别是:整体规划布局,发挥区位优势;健全发展机制,提升发展质量;立足城市群,建设智慧城市等。 |
论文外文摘要: |
Achieving the green development of cities is an urgent need to alleviate the current "big city disease" intensifying, and it is also an important part of achieving sustainable and high-quality development of the country. In order to realize a resource-saving and environment-friendly development model, cities cannot do without the construction of smart cities. The proposal of smart city provides a new way to solve the problem of urban development. Not only does smart city itself contain the concept of green development, but the construction of various systems in smart city also affects the level of green development of the city in many ways. Therefore, it is of great significance to study the impact of smart city construction on the green development of cities, for the scientific planning of smart city construction, to realize the production and lifestyle of resource conservation and environmental protection, and to promote the coordination between the development of human society and the development of natural society. On the basis of defining the concepts of smart city and green development, this paper establishes a smart city evaluation index system and an urban green development index system, and conducts an all-round comprehensive evaluation of the smart city construction and urban green development level in the central and western regions, and taking the underdeveloped smart city agglomerations in the central and western regions as research samples, using the grey relational analysis method to empirically test the degree of correlation between the construction of smart cities and the level of urban green development, as well as the different correlation characteristics reflected in the four major urban agglomerations in the central and western regions. The research conclusions show that: (1) Smart city construction is a systematic project, including five systems: smart infrastructure, smart industry, smart citizens, smart location, and smart governance services. Each system has an impact on the level of urban green development from different perspectives, among which the smart location has a core impact; (2) The development of smart cities in the central and western regions is hierarchical, and the degree of smart coordination within the urban agglomeration is insufficient. Xi'an, Chengdu, Chongqing, Wuhan, and Zhengzhou play an important leading role as "smart leading cities". Other cities have relatively low levels of intelligence and have not yet formed a strong support for central cities; (3) The distribution of green development levels in the central and western cities is relatively concentrated, and most cities are still in the primary stage of green development, while the green development levels within urban agglomerations are relatively stratified, and the coordination degree of green development within urban agglomerations is low; (4) The relationship between the construction of smart cities in the central and western regions and the green development is as follows: From 2012 to 2020, the impact of smart governance services on urban green development is the strongest, followed by smart areas, while the impact of smart infrastructure, smart citizens, and smart industries on urban green development is weak. (5) The relationship between smart city construction and green development in the four major urban agglomerations in the central and western regions is as follows: From the perspective of the internal correlation of the urban agglomeration, among the Guanzhong Plain urban agglomeration, the Chengdu-Chongqing urban agglomeration, the Wuhan urban agglomeration and the Central Plains urban agglomeration, the impact of smart governance services and smart location on green development is most strongest. In comparison between urban agglomerations, the Guanzhong Plain urban agglomeration has comparative advantages in terms of smart infrastructure, smart citizens and smart industries for urban green development.The Central Plains urban agglomeration has comparative advantages in terms of smart location, while the Chengdu-Chongqing urban agglomeration has comparative advantages in terms of smart governance services. Based on the empirical results of this paper, three countermeasures and suggestions are put forward, namely: overall planning and layout, giving full play to location advantages; improving development mechanism and improving development quality; based on urban agglomerations, building smart cities, etc. |
参考文献: |
[7] Hollands RG.Will the Real Smart City Please Stand Up? [J].City,2008,12 (3): 303-320. [8] Margarita Angelidou. Smart City Policies: A Spatial Approach[J].Cities,2014,6 (4): 3-11. [9] UNESCAP. State of the Environment in Asia and the Pacific, 2000[J]. 2000. [21] SHWAYRIST. A model Korean ubiquitous eco-city?[J].Urban Technol,2013,20(1):39-55. [24] 陈立枢.智慧产业发展与中国产业转型升级研究[J]. 改革与战略,2016,32(10):64-67. [25] 张协奎,乔冠宇,徐筱越,陈伟清.西部地区智慧城市建设影响因素研究[J].生态经济,2016,32(07):110-115. [26] 刘鸿雁,雷磊.中国智慧产业发展水平综合评价与时空特征[J]. 经济地理,2017,37(02):106-113. [27] 盛广耀.智慧城市建设与城市转型发展研究[J]. 中共福建省委党校学报,2017,(06):19-26. [28] 陈玉兰,张灵.长三角城市智慧产业发展比较研究[J].南通大学学报(社会科学版),2017,33(06):6-11. [29] 王剑,李锐.长三角智慧城市群建设探讨——促进长三角地区更高质量一体化发展[J].上海城市规划,2019(02):11-17. [30] 盛彦文,苟倩,宋金平.城市群创新联系网络结构与创新效率研究——以京津冀、长三角、珠三角城市群为例[J].地理科学,2020,40(11):1831-1839. [31] 谈毅.区块链与智慧城市群相互赋能发展策略研究[J].人民论坛·学术前沿,2020(05):76-81. [32] 锁箭,汤瑞丰.粤港澳大湾区高质量创新协同发展研究[J].科技进步与对策,2020,37(24):46-53. [33] 高怡冰.珠三角城市群协同创新的驱动因素——基于哈肯模型的动态分析[J].科技管理研究,2020,40(22):85-93. [34] 赵文力,谢宜章,向平安.城市群生态绿心建设的实践研究[J].湖南社会科学,2019(06):157-162. [35] 崔馨月,方雷,王祥荣,康俊锋.基于DPSIR模型的长三角城市群生态安全评价研究[J].生态学报,2021,41(01):302-319. [37] 向书坚,郑瑞坤.中国绿色经济发展指数研究 [J].统计研究,2013,30(3):72-77. [38] 管永林,周宏春,马光文.中国经济绿色发展综合评价研究[J].生态经济,2020,36(12):40-49. [39] 任相伟,孙丽文.绿色经济的内涵、演化逻辑及推进路径——基于经济—生态—社会复杂系统视角[J].技术经济与管理研究,2020(02):88-93. [40] 刘金全,魏阙.创新、产业结构升级与绿色经济发展的关联效应研究[J].工业技术经济,2020,39(11):28-34. [41] 李林汉,田卫民.金融深化、科技创新与绿色经济[J].金融与经济,2020(03):68-75. [42] 冯志军,杨朝均,康鑫.绿色创新与工业企业绿色增长——基于广东的实证研究[J].科技管理研究,2017,37(20):230-235. [43] 武建新,胡建辉.环境规制、产业结构调整与绿色经济增长——基于中国省级面板数据的实证检验[J].经济问题探索,2018,(3):7-17. [44] 刘赢时,田银华,罗迎.产业结构升级、能源效率与绿色全要素生产率[J].财经理论与实践,2018,39 (1): 118-126. [45] 赵领娣,张磊,徐乐,胡明照.人力资本、产业结构调整与绿色发展效率的作用机制[J].中国人口·资源与环境,2016,26(11):106-114. [46] 周少甫,王伟,董登新.人力资本与产业结构转化对经济增长的效应分析——来自中国省级面板数据的经验证据[J].数量经济技术经济研究,2013,30(08):65-77+123. [47] 蔡文伯,黄晋生,袁雪.教育人力资本对绿色经济发展的贡献有多大?——基于产业结构变迁的门槛特征分析[J].华东师范大学学报(教育科学版),2020,38(10):34-47. [48] 沈清基.智慧生态城市规划建设基本理论探讨[J].城市规划学刊,2013(5):14-22. [49] 庞博,方创琳.智慧低碳城镇研究进展[J].地理科学进展,2015(9):1135-1147. [50] 石大千,丁海,卫平,刘建江.智慧城市建设能否降低环境污染[J].中国工业经济,2018(06):117-135. [51] 黄建,冯升波,牛彦涛.智慧城市对绿色低碳发展的促进作用研究[J].经济问题,2019(05):122-129. [52] 辜胜阻,王敏.智慧城市建设的理论思考与战略选择[J].中国人口·资源与环境,2012,22(5):74 -80. [53] 杜建国,王玥,赵爱武.智慧城市建设对城市绿色发展的影响及作用机制研究[J].软科学,2020,34(09):59-64. [54] 刘津,李平.智慧城市建设对工业生态效率影响的实证研究——以中国地级市为例[J].生态经济,2020,36(10):92-97. [55] 商迪,李华晶,姚珺.绿色经济、绿色增长和绿色发展:概念内涵与研究评析[J].外国经济与管理,2020,42(12):134-151. [56] 戴洁. 长江中游城市群新型城镇化质量评价研究[D].江西财经大学,2021. [57] 李朋林,王小丹.能源互联网建设对高耗能行业能源效率的影响研究——基于2014—2018年的省际面板数据[J].科技管理研究,2022,42(01):186-192. [58] 李贝贝. 基于投影寻踪法的股权激励对公司绩效的影响研究[D].中国矿业大学,2019. [59] 邓聚龙. 社会经济灰色系统的理论与方法[J]. 中国社会科学,1984(6):47-60. [60] 张梓妍,徐晓林,明承瀚.智慧城市建设准备度评估指标体系研究[J].电子政务,2019(02):82-95. [61] 张楠,陈雪燕,宋刚.中国智慧城市发展关键问题的实证研究[J].城市发展研究,2015,22(06):27-33+39. [62] 宫攀,张令新.国内外智慧城市评价指标体系对比分析及启示[J].规划师,2018,34(11):96-100+107. [63] 张梓妍,徐晓林,明承瀚.智慧城市建设准备度评估指标体系研究[J].电子政务,2019(02):82-95. [64] 何琴.基于AHP的智慧城市建设水平评价模型及实证[J].统计与决策,2019,35(19):64-67. [65] 孙玉桃,孙志斌.智慧社会评价指标体系构建[J].中国电信业,2020(05):67-69. [66] 张乃明,张丽,卢维宏,张敏,李洋,秦太峰.区域绿色发展评价指标体系研究与应用[J].生态经济,2019,35(12):185-189. [67] 朱帮助,张梦凡.绿色发展评价指标体系构建与实证[J].统计与决策,2019,35(17):36-39. [68] 庞丹靛.城市绿色发展指标体系及评价方法研究[D].南京师范大学,2017. [69] 李朋林,唐珺.基于投影寻踪的“新一线”城市人才环境评价研究[J].科技管理研究,2019,39(09):69-75. [70] 谢爱良,陆相林.旅游创新竞争力评价指标体系的构建与影响因素分析[J].统计与决策,2020,36(18):65-68 |
中图分类号: | F292 |
开放日期: | 2022-06-14 |