- 无标题文档
查看论文信息

论文中文题名:

 冻融环境下“三段式”岩质边坡锁固段损伤破坏及灾变机制研究    

姓名:

 刘帅    

学号:

 20104053005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 岩土力学与工程    

第一导师姓名:

 杨更社    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-12-13    

论文答辩日期:

 2023-12-03    

论文外文题名:

 Study on the mechanism of damage and disaster of the locked section in “three-stage” rock slope under freeze-thaw environment    

论文中文关键词:

 冻融 ; 岩质边坡 ; 锁固段 ; 损伤破坏 ; 灾变机制    

论文外文关键词:

 freeze-thaw ; rock slope ; locking section ; damage ; disaster mechanism    

论文中文摘要:

随着“一带一路”倡议的推进,寒区基础设施建设迅猛发展,铁路、公路路基两侧岩质滑坡灾害频发。高陡岩质边坡在开挖卸荷作用下促使后缘张拉裂隙发育,与天然或蠕变作用形成的软弱剪切带结合,构成了“三段式”岩质边坡。张拉裂隙和剪切带间的锁固段是维持边坡稳定的关键。寒区裂隙水生成冻胀力劣化锁固段,导致锁固段损伤破坏及边坡灾变,防灾减灾需求迫切。本文以川藏铁路拉萨-林芝段桑日地区的“三段式”岩质边坡为例,聚焦锁固段在冻融-荷载作用下的损伤破坏及边坡灾变问题,采取现场调查、室内试验、模型试验、理论与数值计算相结合的方法,阐明了单向冻融单裂隙岩体的冻胀损伤劣化特性;明确了冻融环境下“三段式”岩质边坡锁固段的损伤破坏特性;揭示了冻融-荷载共同作用下“三段式”岩质边坡锁固段损伤破坏规律及灾变机制。主要研究内容与成果如下:

通过单裂隙岩样单向冻融试验,研究了温度场、冻胀力以及裂隙尖端变形的演化特征,明确了冻胀开裂的温度阈值,阐明了单裂隙尺寸对冻胀损伤破坏的影响规律。裂隙内不同位置的温度变化趋势相近,不同尺寸单裂隙水均经历冻结前降温阶段、快速冻结阶段、冻结后深度降温阶段、冻结冰升温阶段、裂隙冰表面融水向下迁移阶段和融化后升温阶段。在快速冻结阶段,单裂隙顶端的水最先冻结形成密封条件,冻结锋面由裂隙顶端向底部推进冻结,产生冻胀力。在冻结后深度降温阶段前期冻胀力增长最显著,裂隙尖端冻胀变形(开裂)主要发生在此阶段。冻胀力随单裂隙宽度、长度增大而增大,将不同单裂隙尺寸的破坏模式,划分为单次张拉开裂、疲劳损伤开裂和应力腐蚀开裂三种。

基于自主研制的双面冻融试验装置,研究了“三段式”岩质边坡锁固段在冻胀作用下的损伤破坏规律,揭示了锁固型边坡的损伤破坏机理。冻结期间冻结峰由坡肩、坡顶和坡面向坡体内部推进。冻胀力自裂隙水快速冻结阶段产生,在冻结后深度降温阶段前期快速达到峰值,冻胀张拉导致裂隙尖端锁固段开裂。以冻结峰为分界点,考虑冰楔效应,构建了裂隙冻胀开裂理论模型。40mm、60mm和80mm后缘张拉裂隙,依次在冻融14次、8次和4次后锁固段贯通破坏。冻胀力与后缘张拉裂隙长度正相关,裂隙的扩展受重力、水压力和冻胀力共同作用,其中裂隙冻胀张拉作用主导锁固段的损伤破坏过程,进而影响边坡破坏机理。

通过冻融-荷载作用下“三段式”岩质边坡缩尺模型试验,揭示了边坡不同倾角锁固段的损伤破坏规律,并研究了其破坏模式。冻融作用减弱了边坡的抗变形和承载能力。冻融环境下边坡锁固段长度和倾角均会减小,影响损伤破坏模式。边坡锁固段倾角增大,抗变形和承载能力下降,张拉作用增强,张拉破坏区主要分布在锁固段,并改变了破坏模式。破坏模式主要分为四类:锁固段张拉断裂破坏模式;锁固段下部剪切断裂破坏模式;沿前缘剪切裂隙竖直向上张拉断裂的破坏模式;两级破坏模式。根据裂纹扩展路径,确定不同工况下边坡的潜在滑移面以及起裂位置。大于60°的锁固段拉剪断裂可以作为“三段式”岩质边坡发生崩滑的前兆。

根据“三段式”岩质边坡冻胀数值模拟试验,研究了不同锁固段角度边坡的应力和位移变化场,揭示了锁固段角度对损伤开裂破坏的影响规律,阐明了“三段式”岩质边坡的灾变机制。冻结峰向坡体内部推进,冻胀力导致锁固段变形开裂,应力云图能够很好的再现应力集中区,与应变场相呼应。冻结深度增大导致拉应力集中区向下移动,锁固段变形区域、变形量和裂纹长度均增大。锁固段角度减小,前缘剪切裂隙压剪响应减弱,后缘张拉裂隙尖端的裂纹长度减小。锁固段决定了破坏的过程和时间,锁固段贯通可视为该类边坡发生崩滑的前兆。冻胀开裂主导了寒区“三段式”岩质边坡剪切滑移-拉裂-剪断的灾变机制。研究成果可为寒区裂隙岩质边坡工程建设提供技术支持。

论文外文摘要:

With the promotion of the “Belt and Road” Initiative, infrastructure construction in cold areas has developed rapidly, and rock landslide disasters on the roadbed of railway and highway have occurred frequently. The high-steep rock slope is formed by the development of tensile fissure at the back edge under the action of excavation and unloading, and which combines a “three-stage” rock slope formed by the weak shear zone. The locking section between tensile fracture and shear zone is the key to maintain slope stability. The frost heave of fissure water in cold area deteriorates the locking section, leading to the damage of the locking section and the disaster of the slope. So, the need of disaster prevention and mitigation is urgent. Taking the “three-stage” rock slope of the Lhasa - Nyingchi section of Sichuan-Tibet Railway as an example, this paper focuses on the problems of damage and slope disaster of the locked section under freeze-thaw load, and adopts the methods of field investigation, laboratory and model tests, theory and numerical calculation to illustrate the freeze-heave damage and failure characteristics of the unidirectional freeze-thaw single fracture rock mass. Firstly, the damage mechanism of “three-stage” rock slope locking section under freeze-thaw environment is defined. The damage mechanism and disaster mechanism of “three-stage” rock slope lock section under the combined action of freeze-thaw and load are revealed. The main research contents and achievements are as follows:

(1) The evolution characteristics of temperature field, frost heave force and crack tip deformation were studied through one-way freeze-thaw test of single crack rock sample. The temperature threshold of frost heave cracking was defined, and the influence of single crack size on frost heave damage was clarified. The trend of temperature change in different positions in the fracture is similar. The fissure water of different sizes goes through 6 stages. They are respectively rapid cooling stage; Freezing phase transformation; Deep cooling stage after freezing; Frozen ice heating phase; Downward migration stage of meltwater on fissure ice surface; Post-melt heating stage. During the freezing phase transition, the water at the top of a single crack first freezes to form a sealing condition, and the freezing front advances from the top of the crack to the bottom to freeze, resulting in frost heave force. The frost heave force increases most significantly in the early stage of deep cooling after freezing, and the frost heave deformation (cracking) of crack tip mainly occurs in this stage. The frost heave force increases with the increase of width and length of single crack. The failure modes of different single crack sizes can be divided into three types: single tensile cracking, fatigue damage cracking and stress corrosion cracking.

(2) Based on the self-developed double-sided freeze-thaw test device, the failure law of the locked section of the “three-stage” rock slope under the action of frost heave is studied, and the damage mechanism of the locked slope is revealed. During the freezing period, the frozen peak is pushed into the interior of the slope by the slope shoulder, the slope top and the slope side. The frost heave force starts from the phase of water freezing in the fissure, and reaches its peak rapidly in the early stage of deep cooling after freezing, and the frost heave tension causes cracking of the locking section of the crack tip. Taking the freezing peak as the boundary point and the ice wedge effect into account, a theoretical model of frost heave cracking was established. The 40mm, 60mm and 80mm tensile cracks at the back edge of the three-stage rock slope were cracked and destroyed after freezing and thawing 14, 8 and 4 times respectively. The frost heave force is positively correlated with the length of tensile crack at the back edge. The frost heave tension of slope crack leads the failure process of the locking section.

(3) Based on the “three-stage” slope scale model test under freeze-thaw and load, the damage law and failure mode of the locked section of the slope at different angles are revealed and studied. The freeze-thaw action weakens the deformation resistance and load bearing capacity of the slope. The length and Angle of lock section of slope in cold area will decrease gradually, which will affect the damage and failure mode. With the increase of the Angle of the locking section, the deformation resistance and load bearing capacity of the slope decrease. The tensile failure zone is mainly distributed in the locking section, and the strengthening of the tensile action changes the failure mode. The failure modes of slope can be divided into four categories: the failure modes of locking section tensile fracture; Shear fracture failure mode in the lower part of locking section; The failure mode of upward tension fracture along the leading edge fracture end; Two levels of destruction mode. According to the crack propagation path, the potential slip plane and crack initiation position of the slope under different working conditions are determined. When the locking section of “three-stage” slope is greater than 60°, the tensile shear fracture of the locking section can be used as the precursor of landslide.

(4) According to the numerical simulation test of frost heave of “three-stage” rock slope, the displacement and stress variation fields of slope with different locking section angles are studied, the influence law of locking section angles on crack propagation is revealed, and the disaster mechanism of “three-stage” rock slope is expounded. The frost heave force gradually increases as the frozen peak pushes into the interior of the slope. The stress nephogram can reproduce the stress concentration area well, corresponding to the strain field. With the increase of frost heave force, the tensile stress concentration area moves downward, and the deformation area, deformation amount and crack length of the locking section increase. As the locking Angle decreases, the compressive shear response of the leading edge shear fracture and the crack length of the trailing edge tensile fracture tip decrease. The penetrating of locking section can be regarded as the precursor of slope slide because the locking section determines the process and time of slide failure. Frost heave cracking in cold regions is the main mechanism of “three-stage” rock slope with creep-tension-shearing. The research results can provide technical support for the construction of fractured rock slope in cold area.

参考文献:

[1] 崔鹏. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展, 2014, 33(2): 145-52.

[2] 马巍, 王大雁. 中国冻土力学研究50a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-40.

[3] 习近平主持召开中央财经委员会第三次会议强调大力提高我国自然灾害防治能力 全面启动川藏铁路规划建设[J]. 中国减灾, 2018, (21): 5.

[4] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, (3): 433-454.

[5] 王闯, 董金玉, 刘汉东, 等. 三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究[J]. 地球科学, 2022, 47(12): 4428-4441.

[6] 程龙. “三段式”岩质边坡的动力响应试验研究[D]. 郑州:华北水利水电大学, 2019.

[7] 王伟. 考虑张拉-剪切渐进破坏的“三段式”边坡稳定性研究[D]. 成都:成都理工大学, 2020.

[8] 陈剑平, 石丙飞, 王清. 工程岩体随机结构面优势方向的表示法初探[J]. 岩石力学与工程学报, 2005, (2): 241-245.

[9] 孙广忠. 论“岩体结构控制论”[J]. 工程地质学报, 1993, (1): 14-18.

[10] 孙斌祥, 徐学祖, 赖远明, 等. 多年冻土区碎石路堤冬季自然对流降温效应的演化机理[J]. 科学通报, 2006, (2): 211-219.

[11] 谢和平. 灾害环境下重大工程安全性的基础研究进展[C]. 中国岩石力学与工程学会.第八次全国岩石力学与工程学术大会论文集. 中国岩石力学与工程学会: 中国岩石力学与工程学会, 2004: 79-84.

[12] Murton J B, Peterson R, Ozouf J C. Bedrock fracture by ice segregation in cold regions[J]. Science, 2006, 314(5802): 1127-1129.

[13] 伍法权. 中国21世纪若干重大工程地质与环境问题[J]. 工程地质学报, 2001, (2): 115-120.

[14] Marcia P, Andrea W, Rachel L, et al. Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014[J]. Earth Surface Processes and Landforms, 2017, 42(3): 426-438.

[15] Zhou J W, Cui P, Hao M H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 2016, 13(1): 39-54.

[16] 邱鹏. 高海拔地区岩质高边坡的温差效应机制研究[D]. 成都:西南石油大学, 2018.

[17] 陈天城, 魏炳乾. 冻结融解作用对岩石边坡稳定的影响[J]. 西北水力发电, 2003, (3): 5-7+21.

[18] 于琳琳, 徐学燕. 季节冻土区铁路边坡冻融破坏分析[J]. 低温建筑技术, 2009, 31(4): 81-82.

[19] 王刚. 冻融作用对寒区岩堆边坡稳定性影响研究[D]. 成都:西南石油大学, 2016.

[20] 徐拴海, 李宁, 袁克阔, 等. 融化作用下含冰裂隙冻岩强度特性及寒区边坡失稳研究现状[J]. 冰川冻土, 2016, 38(4): 1106-1120.

[21] 吴永, 何思明, 李新坡, 等. 裂缝冰胀力作用下高寒危岩体失稳破坏机理[J]. 四川大学学报(工程科学版), 2015, 47(6): 32-39.

[22] 许强, 王士天, 柴贺军, 等. 西藏易贡特大山体崩塌滑坡事件[C]. 中国岩石力学与工程学会工程实例专业委员会. 中国岩石力学与工程实例第一届学术会议论文集. 中国岩石力学与工程学会工程实例专业委员会: 中国岩石力学与工程学会, 2007: 53-58.

[23] 沈小轲. 边坡岩体冻融循环特性及劣化损伤机制研究[D]. 武汉:长江科学院, 2020.

[24] 乔国文, 王运生, 储飞, 等. 冻融风化边坡岩体破坏机理研究[J]. 工程地质学报, 2015, 23(3): 469-476.

[25] 贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报, 2016, 35(5): 879-895.

[26] 贾海梁, 项伟, 申艳军, 等. 冻融循环作用下岩石疲劳损伤计算中关键问题的讨论[J]. 岩石力学与工程学报, 2017, 36(2): 335-346.

[27] 保瑞, 朱辉, 刘享华, 等. 冻融循环作用下岩桥变形破裂及能量转化特征研究[J]. 中国安全生产科学技术, 2023, 19(1): 103-108.

[28] 黄诗冰, 刘泉声, 程爱平, 等. 低温岩体裂隙冻胀力与冻胀扩展试验初探[J]. 岩土力学, 2018, 39(1): 78-84.

[29] 乔趁, 王宇, 宋正阳, 等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(8): 2141-2150.

[30] 张慧梅, 王焕, 张嘉凡, 等. CT尺度下冻融岩石细观损伤特性分析[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(1): 51-56.

[31] Liu Q S, Huang S B, Kang Y S, et al. A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze-thaw[J]. Cold Regions Science and Technology, 2015, 120: 96-107.

[32] 杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 2018, 37(3): 545-563.

[33] 贾海梁, 刘清秉, 项伟, 等. 冻融循环作用下饱和砂岩损伤扩展模型研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3049-3055.

[34] 申艳军, 魏欣, 杨更社, 等. 岩石-混凝土界面黏结强度冻融劣化模型及试验分析[J]. 岩石力学与工程学报, 2020, 39(3): 480-490.

[35] 张慧梅, 孟祥振, 彭川, 等. 岩石变形全过程冻融损伤模型及其参数[J]. 西安科技大学学报, 2018, 38(2): 260-265.

[36] 刘慧, 杨更社, 贾海梁, 等. 裂隙(孔隙)水冻结过程中岩石细观结构变化的实验研究[J]. 岩石力学与工程学报, 2016, 35(12): 2516-2524.

[37] 刘慧, 杨更社, 叶万军, 等. 基于CT图像三值分割的冻结岩石水冰含量及损伤特性分析[J]. 采矿与安全工程学报, 2016, 33(6): 1130-1137.

[38] 申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10): 1775-1782.

[39] Kodama J I, Mitsui Y, Hara S, et al. Time-dependence of mechanical behavior of Shikotsu welded tuff at subzero temperatures(Article)[J]. Cold Regions Science and Technology, 2019, 102868.

[40] Satoshi A. Experimental study of frozen fringe characteristics[J]. Cold Regions Science and Technology, 1988, 15(3): 209-223.

[41] Walder J, Hallet B. A theoretical model of the fracture of rock during freezing[J]. Geological Society of America Bulletin, 1985, 96(3): 336-346.

[42] Konrad J M, Duquennoi C. A model for water transport and ice lensing in freezing soils[J]. Water Resources Research, 1993, 29(9): 3109-3124.

[43] Huang S B, Liu Q S, Cheng A P, et al. A fully coupled thermo-hydro-mechanical model including the determination of coupling parameters for freezing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103, 205-214.

[44] 李杰林, 周科平, 张亚民, 等. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1208-1214.

[45] Li J L, Kaunda R B, Zhou K P. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology, 2018, 154: 133-141.

[46] Tan X J, Chen W Z, Yang J P, et al. Laboratory investigations on the mechanical properties degradation of granite under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2011, 68(3): 130-138.

[47] Fatih B. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J]. Cold Regions Science and Technology, 2012, 83-84, 98-102.

[48] Liu C J, Deng H W, Zhao H T, et al. Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test[J]. Cold Regions Science and Technology, 2018, 155: 327-332.

[49] 母剑桥, 裴向军, 黄勇, 等. 冻融岩体力学特性实验研究[J]. 工程地质学报, 2013, 21(1): 103-108.

[50] Fang X Y, Xu J Y, Wang P X. Compressive failure characteristics of yellow sandstone subjected to the coupling effects of chemical corrosion and repeated freezing and thawing[J]. Engineering Geology, 2018, 233: 160-171.

[51] Chen T C, Yeung M R, Mori N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(43499): 127-136.

[52] 张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476.

[53] Chang S, Xu J Y, Bai E L, et al. Static and dynamic mechanical properties and deterioration of bedding sandstone subjected to freeze-thaw cycles: considering bedding structure effect[J]. Scientific Reports, 2020, 10(1): 1-14.

[54] Kang Y S, Liu Q S, Huang S B. A fully coupled thermo-hydro-mechanical model for rock mass under freezing/thawing condition[J]. Cold Regions Science and Technology, 2013, 95, 19-26.

[55] 康永水, 刘泉声, 赵军, 等. 岩石冻胀变形特征及寒区隧道冻胀变形模拟[J]. 岩石力学与工程学报, 2012, 31(12): 2518-2526.

[56] 刘慧, 蔺江昊, 杨更社, 等. 冻融循环作用下砂岩受拉损伤特性的声发射试验[J]. 采矿与安全工程学报, 2021, 38(4): 830-839.

[57] 张慧梅, 杨更社. 水分及冻融环境下岩石抗拉力学特性[J]. 湖南科技大学学报(自然科学版), 2013, 28(3): 35-40.

[58] 姜德义, 张水林, 陈结, 等. 砂岩循环冻融损伤的低场核磁共振与声发射概率密度研究[J]. 岩土力学, 2019, 40(2): 436-444.

[59] 苏占东, 孙进忠, 夏京, 等. 冻融循环对花岗岩声发射特性影响的试验研究[J]. 岩石力学与工程学报, 2019, 38(5): 865-874.

[60] 李长洪, 肖永刚, 王宇, 等. 高海拔寒区岩质边坡变形破坏机制研究现状及趋势[J]. 工程科学学报, 2019, 41(11): 1374-1386.

[61] 贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[D]. 武汉:中国地质大学, 2016.

[62] 申艳军, 杨更社, 王铭, 等. 冻融-周期荷载下单裂隙类砂岩损伤及断裂演化试验分析[J]. 岩石力学与工程学报, 2018, 37(3): 709-717.

[63] 刘艳章, 郭赟林, 黄诗冰, 等. 冻融作用下裂隙类砂岩断裂特征与强度损失研究[J]. 岩土力学, 2018, 39(S2): 62-71.

[64] 赵建军, 解明礼, 余建乐, 等. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究[J]. 工程地质学报, 2019, 27(6): 1199-1207.

[65] 王永岩, 张金龙, 张余标. 单裂隙类岩石强度特性及蠕变模型的实验研究[J]. 科学技术与工程, 2018, 18(18): 94-100.

[66] 张平, 李宁, 贺若兰, 等. 动载下3条断续裂隙岩样的裂缝贯通机制[J]. 岩土力学, 2006(9): 1457-1464.

[67] Wong R H C, Law C M, Chau K T, et al. Crack propagation from 3-D surface fractures in PMMA and marble specimens under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(Suppl 1): 1-6.

[68] Li Y P, Chen L Z, Wang Y H. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures, 2005, 42(9-10): 2505-2516.

[69] Park C H, Bobet A. Crack coalescence in specimens with open and closed flaws: A comparison[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 819-829.

[70] Mondal S, Olsen K L, Gross L. Simulating damage evolution and fracture propagation in sandstone containing a preexisting 3-D surface flaw under uniaxial compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(7): 1448-1466.

[71] Gratchev I, Kim D, Yeung C. Strength of rock-like specimens with pre-existing cracks of different length and width[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4491-4496.

[72] Shi H, Song L, Zhang H Q, et al. Numerical study on mechanical and failure properties of sandstone based on the power-law distribution of pre-crack length[J]. Geomechanics and Engineering, 2019, 19(5): 421-434.

[73] Wong R H C, Lin P, Tang C A. Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression[J]. Mechanics of Materials, 2006, 38(1-2): 142-159.

[74] Bastola S, Cai M. Investigation of mechanical properties and crack propagation in pre-cracked marbles using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach[J]. Computers and Geotechnics, 2019, 110: 28-43.

[75] Zhu Q Q, Li D Y, Han Z Y, et al. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 33-47.

[76] Lu Z D, Chen C X, Feng X T, et al. Strength failure and crack coalescence behavior of sandstone containing single pre-cut fissure under coupled stress, fluid flow and changing chemical environment(Article)[J]. Journal of Central South University, 2014, 21(3): 1176-1183.

[77] Chen B, Xia Z G, Xu Y D, et al. Failure characteristics and mechanical mechanism of study on red sandstone with combined defects[J]. Geomechanics and Engineering, 2021, 24(2): 179-191.

[78] Chen S J, Xia Z G, Feng F, et al. Numerical study on strength and failure characteristics of rock samples with different hole defects[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1523-1540.

[79] Li H Q, Wong L N Y. Numerical study on coalescence of pre-existing flaw pairs in rock-like material[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2087-2105.

[80] Yang S Q, Yang D S, Jing H W, et al. An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures[J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 563-582.

[81] Haeri H, Khaloo A, Marji M F. Fracture analyses of different pre-holed concrete specimens under compression[J]. Acta Mechanica Sinica, 2015, 31(6): 855-870.

[82] Asadizadeh M, Moosavi M, Hossaini M F. Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression[J]. Geomechanics and Engineering, 2018, 14(1): 29-42.

[83] Mirsalimov V M. Optimal design of shape of a working in cracked rock mass[J]. Geomechanics and Engineering, 2021, 24(3): 227-235.

[84] Yang S Q, Jing H W. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression[J]. International Journal of Fracture, 2011, 168(2): 227-250.

[85] Lei X L, Masuda K, Nishizawa O, et al. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock[J]. Journal of Structural Geology, 2004, 26(2): 247-258.

[86] Li Y H, Liu J P, Zhao X D, et al. Experimental studies of the change of spatial correlation length of acoustic emission events during rock fracture process[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(8): 1254-1262.

[87] 赵兴东, 李元辉, 袁瑞甫, 等. 基于声发射定位的岩石裂纹动态演化过程研究[J]. 岩石力学与工程学报, 2007, (5): 944-950.

[88] Thompson B D, Young R P, Lockner D A. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite[J]. Journal of Geophysical Research Solid Earth: JGR, 2009, 114(b2): B02205-B02218.

[89] 赵振. 不同预制裂隙破坏岩石力学性质及声发射特征分析[D]. 泰安:山东农业大学, 2020.

[90] 王自起. 基于声发射技术的二维应力作用下双裂隙扩展演化规律研究[D]. 青岛:山东科技大学, 2019.

[91] Moradian Z A, Ballivy G, Rivard P, et al. Evaluating damage during shear tests of rock joints using acoustic emissions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 590-598.

[92] Karaca Z, Hamdi D A, Elci H, et al. Effect of freeze-thaw process on the abrasion loss value of stones[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1207-1211.

[93] Liu S, Yang G S, Liu H, et al. Study on the acoustic emission characteristics and failure precursors of water-rich frozen sandstone under different lateral unloading rates[J]. Water, 2023, 15, 2297.

[94] 闻名, 许金余, 王鹏, 等. 水分与冻融环境下岩石动态拉伸试验及细观分析[J]. 振动与冲击, 2017, 36(20): 6-11+36.

[95] 李平, 唐旭海, 刘泉声, 等. 双裂隙类砂岩冻胀断裂特征与强度损失研究[J]. 岩石力学与工程学报, 2020, 39(1): 115-125.

[96] 申艳军, 杨更社, 王铭, 等. 冻融循环过程中岩石热传导规律试验及理论分析[J]. 岩石力学与工程学报, 2016, 35(12): 2417-2425.

[97] 张慧梅, 谢祥妙, 彭川, 等. 三向应力状态下冻融岩石损伤本构模型[J]. 岩土工程学报, 2017, 39(8): 1444-1452.

[98] 张慧梅, 彭川, 杨更社, 等. 考虑冻融效应的岩石损伤统计强度准则研究[J]. 中国矿业大学学报, 2017, 46(5): 1066-1072.

[99] 孟祥振, 张慧梅, 康晓革. 含孔隙冻融岩石的损伤本构模型[J]. 西安科技大学学报, 2019, 39(4): 688-692.

[100] 张慧梅, 夏浩峻, 杨更社, 等. 冻融循环和围压对岩石物理力学性质影响的试验研究[J]. 煤炭学报, 2018, 43(2): 441-448.

[101] 张慧梅, 彭川, 杨更社, 等. 冻融损伤岩石的强度准则研究[J]. 西安科技大学学报, 2017, 37(2): 154-158.

[102] Khanlari G, Sahamieh R, Abdilor Y. The effect of freeze-thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran[J]. Arabian Journal of Geosciences, 2015, 8(8): 5991-6001.

[103] 申艳军, 杨更社, 荣腾龙, 等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析[J]. 岩石力学与工程学报, 2017, 36(3): 562-570.

[104] 申艳军, 杨更社, 荣腾龙, 等. 低温环境下含表面裂隙硬岩温度场及冻胀演化过程分析[J]. 岩土力学, 2016, 37(S1): 521-529.

[105] Lu Y N, Li X P, Chan A. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 2019, 159: 20-28.

[106] Han T L, Shi J P, Cao X S. Fracturing and damage to sandstone under coupling effects of chemical corrosion and freeze-thaw cycles[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4245-4255.

[107] Niu Y, Zhou X P, Zhang J Z, et al. Experimental study on crack coalescence behavior of double unparallel fissure-contained sandstone specimens subjected to freeze-thaw cycles under uniaxial compression[J]. Cold Regions Science and Technology, 2019, 158: 166-181.

[108] Wang Y, Li C H. Investigation on crack coalescence behaviors for granite containing two flaws induced by cyclic freeze-thaw and uniaxial deformation in Beizhan Iron Mining, Xinjing, China[J]. Geofluids, 2020, 2020: 1-19.

[109] Zhou X P, Niu Y, Zhang J Z, et al. Experimental study on effects of freeze-thaw fatigue damage on the cracking behaviors of sandstone containing two unparallel fissures[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(6): 1322-1340.

[110] Zhao Y L, Zhang L Y, Wang W J, et al. Cracking and stress-strain behavior of rock-like material containing two flaws under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2665-2687.

[111] Chang X, Deng Y, Li Z H, et al. Crack propagation from a filled flaw in rocks considering the infill influences[J]. Journal of Applied Geophysics, 2018, 152: 137-149.

[112] Park J, Hyun C U, Park H D. Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 555-565.

[113] Xia C C, Lv Z T, Li Q, et al. Transversely isotropic frost heave of saturated rock under unidirectional freezing condition and induced frost heaving force in cold region tunnels[J]. Cold Regions Science and Technology, 2018, 152: 48-58.

[114] Liu H Y, Yuan X P, Xie T C. A damage model for frost heaving pressure in circular rock tunnel under freezing-thawing cycles[J]. Tunneling and Underground Space Technology, 2019, 83: 401-408.

[115] Huang S B, Liu Q S, Cheng A P, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology, 2018, 145: 142-150.

[116] Yang X R, Jiang A N, Li M X. Experimental investigation of the time-dependent behavior of quartz sandstone and quartzite under the combined effects of chemical erosion and freeze-thaw cycles(Article)[J]. Cold Regions Science and Technology, 2019, 161: 51-62.

[117] Li X P, Qu D X, Luo Y, et al. Damage evolution model of sandstone under coupled chemical solution and freeze-thaw process[J]. Cold Regions Science and Technology, 2019, 162: 88-95.

[118] Momeni A, Abdilor Y, Khanlari G, et al. The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4): 1649-1656.

[119] Shi G C, Yang X J, Yu H C, et al. Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression[J]. Engineering Fracture Mechanics, 2019, 210: 13-28.

[120] 曾寅, 刘建锋, 周志威, 等. 盐岩单轴蠕变声发射特征及损伤演化研究[J]. 岩土力学, 2019, 40(1): 207-215.

[121]陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报, 2011, 30(7): 1318-1336.

[122] 张慧梅, 杨更社. 冻融荷载耦合作用下岩石损伤力学特性[J]. 工程力学, 2011, 28(5): 161-165.

[123] 杨秀荣, 姜谙男, 王善勇, 等. 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40(11): 4331-4340.

[124] 陈国庆, 万亿, 孙祥, 等. 不同温差冻融后砂岩蠕变特性及分数阶损伤模型研究[J]. 岩石力学与工程学报, 2021: 1-14.

[125] 杨秀荣, 姜谙男, 江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. 岩土力学, 2018, 39(S1): 167-174.

[126] 刘家顺, 靖洪文, 孟波, 等. 含水条件下弱胶结软岩蠕变特性及分数阶蠕变模型研究[J]. 岩土力学, 2020, 41(8): 2609-2618.

[127] 姚强岭, 朱柳, 黄庆享, 等. 含水率对细粒长石岩屑砂岩蠕变特征影响试验研究[J]. 采矿与安全工程学报, 2019, 36(5): 1034-1042+1051.

[128] 唐建新, 腾俊洋, 张闯, 等. 层状含水页岩蠕变特性试验研究[J]. 岩土力学, 2018, 39(S1): 33-41.

[129] Yu C Y, Tang S B, Tang C A, et al. The effect of water on the creep behavior of red sandstone(Article)[J]. Engineering Geology, 2019, 253: 64-74.

[130] Xiong L X, Li T B, Yang L D. Biaxial compression creep test on green-schist considering the effects of water content and anisotropy(Article)[J]. KSCE Journal of Civil Engineering, 2014, 18(1): 103-112.

[131] 孙钧. 岩石非线性流变的数值方法及其工程应用研究[C]. 中国岩石力学与工程学会数值计算与模型试验专业委员会.岩土力学数值方法的工程应用—第二届全国岩石力学数值计算与模型实验学术研讨会论文集. 中国岩石力学与工程学会数值计算与模型试验专业委员会: 中国岩石力学与工程学会, 1990: 63-68.

[132] 穆成林, 裴向军, 裴钻, 等. 基于岩体结构特征和未确知测度评价模型的岩质开挖边坡稳定性研究[J]. 水文地质工程地质, 2019, 46(4): 150-158.

[133] 黎立云, 许凤光, 高峰, 等. 岩桥贯通机理的断裂力学分析[J]. 岩石力学与工程学报, 2005, 24(23): 4328-4334.

[134] 陈国庆, 刘辉, 秦昌安, 等. 中部锁固岩桥三轴加卸荷力学特性及裂纹扩展研究[J]. 岩石力学与工程学报, 2017, 36(5): 1162-1173.

[135] 袁新华. 单轴压缩下中部锁固岩桥变形破坏模式及演化机制研究[J]. 中国安全生产科学技术, 2020, 16(9): 116-121.

[136] 乔趁, 李长洪, 王宇, 等. 冻融循环作用下中部锁固岩桥破坏试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1094-1103.

[137] 黄达, 黄润秋, 周江平, 等. 雅砻江锦屏一级水电站坝区右岸高位边坡危岩体稳定性研究[J]. 岩石力学与工程学报, 2007(1): 175-181.

[138] 陈从新, 黄平路, 卢增木. 岩层倾角影响顺层岩石边坡稳定性的模型试验研究[J]. 岩土力学, 2007(3): 476-481+486.

[139] 黄润秋, 陈国庆, 唐鹏. 基于动态演化特征的锁固段型岩质滑坡前兆信息研究[J]. 岩石力学与工程学报, 2017, 36(3): 521-533.

[140] 唐鹏, 陈国庆, 黄润秋, 等. 基于物理模拟试验的岩质滑坡地表位移分析[J]. 水文地质工程地质, 2017, 44(4): 105-110.

[141] 陈国庆, 赵聪, 刘辉, 等. 不同应力路径下岩桥试验的声发射特征研究[J]. 岩石力学与工程学报, 2016, 35(9): 1792-1804.

[142] 钟助. 裂隙岩体边坡岩桥破坏机制及稳定性研究[D]. 重庆:重庆大学, 2019.

[143] 黄达, 张晓景, 顾东明. “三段式”岩石滑坡的锁固段破坏模式及演化机制[J]. 岩土工程学报, 2018, 40(9): 1601-1609.

[144] 薛雷, 秦四清, 泮晓华, 等. 锁固型斜坡失稳机理及其物理预测模型[J]. 工程地质学报, 2018, 26(1): 179-192.

[145] 李正胜. 锁固型边坡破坏演化机理及预警模型研究[D]. 北京:北京科技大学, 2016.

[146]郑光, 许强, 杜宇本. 高陡岩质桥隧工程边坡稳定性评价及工程支护措施[J]. 成都理工大学学报(自然科学版), 2011, 38(4): 430-437.

[147] 杨何, 汤明高, 许强, 等. 三峡库区消落带岸坡岩体劣化特性测试及质量评价[J]. 水利学报, 2020, 51(11): 1360-1371.

[148] 罗路广, 裴向军, 黄润秋, 等. 冰缘地区岩质斜坡冻融侵蚀时空分异特征与产屑率研究[J]. 工程地质学报, 2020, 28(6): 1319-1328.

[149] 张全胜. 寒区隧道围岩损伤试验研究和水热迁移分析[D]. 上海:同济大学, 2006.

[150] 刘泉声, 康永水, 刘小燕. 冻结岩体单裂隙应力场分析及热-力耦合模拟[J]. 岩石力学与工程学报, 2011, 30(2): 217-223.

[151] 刘泉声, 黄诗冰, 康永水, 等. 裂隙冻胀压力及对岩体造成的劣化机制初步研究[J]. 岩土力学, 2016, 37(6): 1530-1542.

[152] 申艳军, 杨更社, 王婷, 等. 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土, 2019, 41(1): 117-128.

[153] 高阳, 周辉, 张传庆, 等. 硬脆性岩石时效强度理论研究[J]. 岩石力学与工程学报, 2018, 37(3): 671-678.

[154] 许强, 黄润秋. 重庆市建筑开挖边坡稳定性评价及支护措施探讨[J]. 成都理工学院学报, 1996(1): 32-38.

[155] 贾海梁, 赵思琪, 丁顺, 等. 含水裂隙冻融过程中冻胀力演化及影响因素研究[J]. 岩石力学与工程学报, 2022, 41(9): 1832-1845.

[156]黄润秋, 许强. 2008. 中国典型灾难性滑坡[M]. 北京: 科学出版社.

[157]中华人民共和国行业标准编写组. MT/T 593.1—2011 人工冻土物理力学性能试验[S]. 北京: 煤炭工业出版社, 2011.

[158]Blaber J, Adair B, Antoniou A. Ncorr: open-source 2D digital image correlation matlab software[J]. Experimental Mechanics, 2015, 55: 1105-1122.

[159]Pan B, Qian K M, Xie H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 2009, 20(062001): 1-17.

[160]Li J L, Zhao G F. Further development of digital image correlation (DIC) to measure the discontinuous deformation of rock on small-scale tests[J]. Rock Mechanics and Rock Engineering, 2023, 56: 1163-1183.

[161]Liu L W, Li H B, Li X F, et al. Underlying mechanisms of crack initiation for granitic rocks containing a single pre-existing flaw: insights from digital image correlation (DIC) analysis[J]. Rock Mechanics and Rock Engineering, 2021, 54: 857-873.

[162]邓华锋, 齐豫, 李建林, 等. 水-岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报, 2021, 43(4): 634-643.

[163]蒙明辉. 循环冻融条件下岩质边坡破裂机制及变形监测研究[D]. 成都:成都理工大学, 2015.

[164]Rodriguez P, Celestino T B. Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks. Engineering Fracture Mechanics, 2019, 210: 54-69.

[165]Zaki A, Chai H K, Aggelis D G. Non-Destructive evaluation for corrosion monitoring in concrete: a review and capability of acoustic emission technique[J]. Sensors, 2015, 15(8): 19069-19101.

[166]刘昊, 王宇, 王华建, 等. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J]. 工程地质学报, 2022, 30(4): 1122-1131.

[167]李盛南, 肖俊, 李玉, 等. 基于细观裂纹扩展演化的岩石损伤本构模型研究[J]. 岩石力学与工程学报, 2023, 42(3): 640-648.

[168]Li J R, Duan K, Meng H, et al. On the mechanical properties and failure mechanism of conglomerate specimens subjected to triaxial compression tests[J]. Rock Mechanics and Rock Engineering, 2023, 56: 973-995.

[169]乔国文. 天山山区边坡冻融成灾机理及岩体质量评价体系研究[D]. 成都:成都理工大学, 2019.

[170]张欣欣, 范宣梅, 王文松, 等. 高寒地区楔形体滑坡启动机制离心模型试验研究[J].岩石力学与工程学报, 2023, 42(5): 1202-1213.

[171]Gunzburger Y, Merrien-Soukatchoff V, Guglielmi Y. Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France)[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42: 331-349.

[172]Van A L J. Laboratory experiments in cold temperature rock deformation[D]. Oregon: University of Oregon, 2011.

[173]William A C. Freezing and thawing of concrete mechanisms and control[J]. American Concrete Institute, 1967: 29-30.

[174]Liu S, Yang G S, Shen Y J, et al. Experimental study on acoustic emission response and damage evolution characteristics of frozen sandstone under lateral unloading[J]. Journal of Cold Regions Engineering, 2023, 37(4): 04023017.

[175]Hallet B. Why do freezing rocks break?[J]. Science, 2006, 314: 1092-1093.

[176]Mellor M. Phase composition of pore water in cold rocks[J]. US Army Cold Regions Research and Engineering Laboratory, Research Report, 1970, 292.

[177]Fagerlund G. Studies of the destruction mechanism at freezing of porous materials. In Problems Raised by Frost Action[J]. Fundamental and Applied Researches (Rocks and Artificial Building Materials), Aguirre-Puente J (ed). Fondation Fran, caise d’Etudes Nordiques: Paris, 1979: 167-196.

[178]Matsuoka N. Mechanisms of rock breakdown by frost action: an experimental approach[J]. Cold Regions Science and Technology, 1990, 17(3): 253-270.

[179]Prick A. Critical degree of saturation as a threshold moisture level in frost weathering of limestones[J]. Permafrost and Periglacial Processes, 1997, 8(1): 91-99.

[180]Lautridou J P, Ozouf J C. Experimental frost shattering: 15 years of research at the Centre de Géomorphologie du CNRS[J]. Progress in Physical Geography-Earth and Environment, 1982, 6(2): 215-232.

[181]Chen T C, Mori N, Suzuki T, et al. The processes of crack development in saturated welded tuff specimen by freezing and thawing cycles[J]. Shigen to sozai, Japan, 2000, 116(1): 7-12.

[182]Young M E, McLean C. Stone cleaning in Scotland—a literature review. Research commission investigating the effects of cleaning sandstone[J]. Robert Gordon University, 1992: 38-39.

[183]Wettlaufer J S, Worster M G. Premelting dynamics[J]. Annual Review of Fluid Mechanics, 2006, 38: 427-452.

[184]Huang S B, Liu Q S, Liu Y Z, et al. Freezing strain model for estimating the unfrozen water content of saturated rock under low temperature[J]. International Journal of Geomechanics, 2018, 18(2): 3-14.

[185]Casini F, Gens A, Olivella S, et al. Artificial ground freezing of a volcanic ash: Laboratory tests and modelling[J]. Environmental Geotechnics, 2016, 3(3): 141-154.

[186]Walder J, Hallet B. A theoretical model of the fractureof rock during freezing[J]. Geological Society of America Bulletin, 1985, 96(3): 336346.

[187]Nakamura D, Goto T, Ito Y, et al. Basic study on the frost heave pressure of rocks-dependence of the location of frost heave on the strength of the rock[J]. Journal of MMIJ, 2012, 127(9): 558-564.

[188]Pigeon M, Pleau R. Durability of concrete in cold climates[D]. New York: E and FN Spon, 1995.

[189]贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[D]. 武汉:中国地质大学, 2016.

[190]Hallet B, Walder J S, Stubbs C W. Weathering by segregation ice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using acoustic emissions[J]. Permafrost and Periglacial Processes, 1991, 2: 283-300.

[191]贾蓬, 王晓帅, 王德超. 饱水裂隙岩石冻融变形特性研究[J]. 岩土力学, 2023, 44(2): 345-354.

[192]Tharp T M. Conditions for crack propagation by frost wedging[J]. Geological Society of America Bulletin, 1987, 99(1): 94-102.

[193]Akagawa S, Fukuda M. Frost heave mechanism in welded tuff[J]. Permafrost and Periglacial Processes, 1991, 2(4): 301-309.

[194]Pissart A, Prick A, Ozouf J C. Dilatometry of porous limestones undergoing freezing and thawing[J]. South China University of Technology Press: Wushan, 1993, 1: 523-528.

[195]Murton J B, Coutard J P, Lautridou J P, et al. Experimental design for a pilot study on bedrock weathering near the permafrost table[J]. Earth Surface Processes and Landforms, 2000, 25(12): 1281-1294.

[196]Gilpin R R. A model for the prediction of ice lensing and frost heave in soils[J]. Water Resources Research, 1980, 16(5): 918-930.

[197]Weiss J, Schulson E M. Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice[J]. Journal of Physics D: Applied Physics, 2009, 42(214017): 1-18.

[198]Amitrano D, Gruber S, Girard L. Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall[J]. Earth and Planetary Science Letters, 2012, 341-344: 86-93.

[199]Davidson G P, Nye J F. A photoelastic study of ice pressure in rock cracks[J]. Cold Regions Science and Technology, 1985, 11(2): 141-153.

[200]Matsuoka N. Direct observation of frost wedging in alpine bedrock[J]. Earth Surface Processes and Landforms, 2001, 26(6): 601-614.

[201]Matsuoka N. Microgelivation versus macrogelivation: towards bridging the gap between laboratory and field frost weathering[J]. Permafrost and Periglacial Processes, 2001, 12(3): 299-313.

[202]Liu S, Yang G S, Dong X H, et al. Energy characteristics and damage constitutive model of frozen sandstone under triaxial compression[J]. Journal of Cold Regions Engineering, 2022, 36(1): 1-12.

[203]Matsuoka N, Murton J. Frost weathering: Recent advances and future directions[J]. Permafrost and Periglacial Processes, 2008, 19(2): 195-210.

[204]Christiansen H H. Thermal regime of ice-wedge cracking in Adventdalen, Svalbard[J]. Permafrost and Periglacial Processes, 2005, 16(1): 87-98.

[205]Matsuoka N. Direct observation of frost wedging in alpine bedrock[J]. Earth Surface Processes and Landforms, 2001, 26(6): 601-614.

[206]Nicholson D T, Nicholson F H. Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering[J]. Earth Surface Processes and Landforms, 2000, 25(12): 1295-1307.

[207]Gruber S, Haeberli W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change[J]. Journal of Geophysical Research, 2007, 112(F02S18): 1-10.

[208]Coutard J P, Francou B. Rock temperature measurements in two alpine environments: Implications for frost shattering[J]. Arctic and Alpine Research, 1989, 21(4): 399-416.

[209]Li D D, Liu H D, Duan S Z, et al. Physical and numerical modeling on the failure mechanism of landslides with a wall-like locking section[J]. Bulletin of Engineering Geology and the Environment, 2023, 82: 56.

[210]陈洪凯, 鲜学福, 唐红梅. 危岩稳定性断裂力学计算方法[J]. 重庆大学学报, 2009, 32(4): 434-437.

[211]贾艳昌, 谢谟文, 昌圣翔, 等. 基于固有振动频率的滑移式和坠落式危岩块体稳定性评价模型研究[J]. 岩土力学, 2017, 38(7): 2149-2156.

[212]Karlekar B V, Desmond R M. Heat Transfer: Solutions Manual, 2nd ed. West Publishing Co. (May 1982).

[213]Sun L, Tao S J, Liu Q S. Frost crack propagation and interaction in fissured rocks subjected to freeze-thaw cycles: Experimental and numerical studies[J]. Rock Mechanics and Rock Engineering, 2023, (56): 1077-1097.

[214]Sun L J, Li C J, Shen F M, et al. Reactivation mechanism and evolution characteristics of water softening-induced reservoir-reactivated landslides: a case study for the Three Gorges Reservoir Area, China[J]. Bulletin of Engineering Geology and the Environment, 2023, 82: 66.

[215]He Y Y, Cai Z Y, Wang F M, et al. Numerical investigation on slope stability influenced by seismic load and discontinuity with a continuous-discontinuous method[J]. Bulletin of Engineering Geology and the Environment, 2023, (82): 70.

[216]张晓勇, 谢谟文, 张磊, 等. 基于固有频率的坠落危岩体稳定系数计算模型研究[J]. 2023, 42(3): 585-593.

中图分类号:

 TU457    

开放日期:

 2023-12-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式