- 无标题文档
查看论文信息

题名:

 复配钾盐细水雾抑制掺氢天然气射流火焰研究    

作者:

 刘利涛    

学号:

 19120089012    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘燃爆防控    

导师姓名:

 罗振敏    

导师单位:

 西安科技大学    

提交日期:

 2023-06-16    

答辩日期:

 2023-06-06    

外文题名:

 Suppression of hydrogen-enriched natural gas jet flame with water mist containing compounded potassium salt    

关键词:

 复配钾盐 ; 掺氢天然气 ; 射流火焰 ; 火焰燃烧行为 ; 灭火有效性 ; 流场结构 ; 抑制机理    

外文关键词:

 Compounded Potassium Salt ; Hydrogen-enriched natural gas ; Diffusion jet flame ; Flame characteristics ; Fire extinguishing effectiveness ; Flow field structure ; Fire extinguishing mechanism    

摘要:

在"双碳"战略背景下,掺氢天然气凭借其低碳特性、与现有基础设施兼容性及燃烧效率优势,成为传统天然气向纯氢转型的战略过渡燃料,已在多领域示范应用并加速推广。然而,伴随产业链延伸,在气体掺混、管网输配至终端应用的全产业链中,安全风险显著增加。本文改进、设计并展开了一系列含添加剂细水雾抑制气体射流火焰模拟实验,系统地研究了掺氢天然气扩散射流火焰燃烧行为特性,建立了掺氢天然气射流火焰几何特性与辐射参数的预测模型;确定了一种高效复配添加剂,量化了复配钾盐细水雾中阳离子与阴离子对掺氢天然气火焰抑制作用的贡献;研究了复配钾盐细水雾对掺氢天然气射流火焰的作用效能,结合气-雾相互作用流场特性,明晰了气-雾相互作用的竞争行为和定量关系;构建了含气态KOH的简化动力学机理,探明了复配钾盐细水雾抑制掺氢天然气射流火焰传播的关键反应路径。阐明了复配钾盐细水雾微观反应中断、介观涡旋剥离与宏观抑制火焰的协同抑制机理,以期在气体泄漏初始阶段有效抑制火灾、爆炸事故的发生。主要内容与成果如下:

利用自主搭建的气体射流火焰实验装置,获取了多因素下掺氢天然气射流火焰几何特征参数,研究了多因素下掺氢天然气射流火焰关键几何特征参数的变化规律。研究表明,对于垂直射流火焰,通过修正火焰弗洛德数,建立了掺氢天然气射流火焰高度的无量纲预测模型;对于倾斜向上射流火焰,掺氢天然气归一化火焰水平投影距离与无量纲热释放速率呈显著相关,提出了实验范围内掺氢天然气射流火焰水平投影距离的全局预测模型,且建立了掺氢天然气射流火焰迹线与火焰弗洛德数的无量纲预测模型;对于倾斜向下的射流火焰,掺氢天然气归一化火焰水平投影距离和向下延伸长度均与修正火焰弗洛德数呈显著相关性,建立了掺氢天然气火焰水平投影距离和向下延伸长度的无量纲预测模型。此外,获取了掺氢天然气射流火焰辐射分数,基于辐射分数与火焰弗洛德数的广义相关性,提出了掺氢天然气垂直与倾斜向上射流火焰辐射分数的半经验预测模型。

利用改进小尺度杯式燃烧器实验平台,获取了含碳酸钾、碳酸钠、草酸钾、醋酸钾、氯化钾和碳酸氢钾六种含碱金属盐细水雾的最小灭火浓度,确定了一种高效复配添加剂。采用机器学习预测了含复配钾盐细水雾的最小灭火浓度,对掺氢比例与不同阴、阳离子的重要性进行了研究。研究表明,碱金属盐的阳离子的灭火效能遵循K+>Na+的规律。在掺氢比例为4 %和8 %工况下,含CO32-阴离子的盐类表现出最优灭火性能;当掺氢比例提升为12 ~20 %时,CH3 COO-基盐类表现出更好的灭火效率。优选出K2CO3与CH3COOK两种钾盐并将其以不同质量比进行复配,结合其灭火效率、绿色环保、应用范围、经济性等原则,最终确定了一种高效的复配添加剂:1.5%K2CO3+0.5%CH3COOK。此外, XGBoost模型的预测效果最佳;掺氢比例对最小灭火浓度的影响最显著,k+重要性占比仅次于掺氢比例;CO3²⁻和CH3COO⁻重要性相对较弱;其他阴离子对最小灭火浓度的贡献较小,影响有限。

利用自主搭建的细水雾雾场特性实验装置和细水雾抑制气体射流火焰实验系统,获取了含复配钾盐细水雾雾特性参数,结合复配钾盐细水雾的灭火效率以及典型灭火过程图像,探究了复配钾盐细水雾与射流火焰的竞争行为。研究表明,喷雾压力与雾场特性参数显著相关,具体表现为雾锥角与喷雾压力呈负相关,雾通量随喷雾压力增大而增加;在实验范围内,雾滴粒径随着喷雾轴向距离增大呈现减小趋势;雾滴速度均沿径向距离先减小后增大,且随轴向距离增大呈下降趋势。此外,当雾动量大于火焰动量时,可有效抑制射流火焰;当雾动量小于火焰动量时,细水雾无法抑制射流火焰,反而产生助燃效应,增大了射流火焰的风险。

利用2D-PIV技术测量气-雾相互作用流场结构,当喷雾压力与喷口等效直径恒定时,气体射流火焰流量增大,导致气-雾相互作用界面抬升,并诱发涡旋结构,较大流量的气体射流火焰对细水雾流场仅有轻微扰动;当喷雾压力与火焰流量恒定时,喷口等效直径增大,气-雾相互作用界面呈上升趋势;当喷口等效直径与流量恒定时,气-雾相互作用界面与喷雾压力呈负相关。以复配钾盐细水雾抑制射流火焰过程中的火焰高度为评判标准,基于气-雾动量比揭示了气-雾相互作用的定量关系。采用CHEMKIN,构建了含气态KOH的简化反应动力学机理,探明了复配钾盐细水雾抑制掺氢天然气火焰传播的关键反应路径。研究表明,复配钾盐细水雾抑制下火焰高度与有效气-雾动量比呈显著相关性。复配钾盐细水雾抑制掺氢天然气射流火焰过程中,R4: H+CH3(+M) <=>CH4(+M)、 R5: H+CH4<=>CH3+H2 、R23: KOH+H<=> K+H2O促进OH的消耗,且降低了温度。抑制过程以动力学效应为主导,次要机制为吸热冷却效应、惰化效应、化学效应以及附加效应。

外文摘要:

Under the dual-carbon strategy, hydrogen-blended natural gas has emerged as a strategic transitional fuel from conventional natural gas to pure hydrogen, leveraging its low-carbon characteristics, compatibility with existing infrastructure, and enhanced combustion efficiency. It has achieved demonstration applications across multiple sectors with accelerating commercialization. However, safety risks have significantly increased throughout the entire industrial chain, spanning from gas blending, pipeline transportation/distribution to end-user applications, as the industry ecosystem expands. In this paper, we designed and conducted a series of simulated experiments on the suppression of hydrogen-enriched natural gas jet flames by water mist containing alkali metal salts to study the combustion characteristics of gas diffusion jet flames and establish prediction models. A high-efficiency compound additive has been identified, and the respective contributions of cations and anions in water mist containing compounded potassium salt to the suppression of hydrogen-enriched natural gas flames have been elucidated; We investigated and revealed the suppression efficacy and mechanism of the effect of water mist containing compounded potassium salt on the hydrogen-enriched natural gas jet flame by combining with the flow field characteristics of the gas–spray interaction; A reduced kinetics mechanism for hydrogen-enriched natural gas oxidation containing gaseous KOH was built,  and the key reaction pathways have been identified. The synergistic suppression mechanism involving microscopic reaction interruption, mesoscopic vortex stripping, and macroscopic flame stabilization has been elucidated, thereby providing a scientific basis for effectively suppressing fire and explosion accidents during the initial stages of gas leakage. The main contents and results are as follows:

The morphological parameters of hydrogen-enriched natural gas jet flames are obtained for different types of nozzle apertures, gas flow rates, and hydrogen ratios using a self-maded gas jet flame experimental setup. The geometrical parameters of hydrogen-enriched natural gas were quantified under different conditions. For vertical jet flames, by modifying the flame Froude number (Frf), a dimensionless prediction model is established for the flame height; For inclined upward jet flames, the normalized flame horizontal projection distance is well correlated with the dimensionless heat release rate. A global prediction model for an inclination angle of 0°≤θ≤60° and a range of 2000<Q<20,000 is proposed based on experiments data, a dimensionless prediction model is established for the flame trajectory; For the downward-tilted jet flame, the normalized flame horizontal projection distance and flame downward extension length correlate well with the dimensionless Frf. A dimensionless prediction model is established for the flame horizontal projection distance and flame downward extension length. In addition, the radiation characteristic parameters of hydrogen- enriched natural gas vertical  and inclined upward jet fires are investigated.  A semiempirical prediction model is proposed based on the generalized correlation between the radiation fraction calculated from the point source model and the Frf.

The minimum extinguishing concentrations(MEC) of six water mist containing alkali metal salts (potassium carbonate , sodium carbonate, potassium oxalate, potassium acetate , potassium chloride and potassium bicarbonate)were tested using an improved small-scale Cup-burner experimental device. A high-efficiency composite additive has been identified. Machine learning was employed to predict the MEC of water mist containing alkali metal salts, and the relative importance of hydrogen addition and different anions/cations was analyzed through feature importance ranking. Results that the suppression order of cations of alkali metal compounds for fire extinguishing was K+>Na+. The anion CO32- outperformed the other anions when 4 % and 8 % hydrogen were added. When the volume fraction of H2 was 12 %~20 %, the anion CH3COO- showed better fire extinguishing efficiency. Two potassium salt additives, K2CO3 and CH3COOK, were selected and compounded. By comparing the MEC of the two potassium salts in different ratios, and combining the principles of fire extinguishing efficiency, environmental protection, application scope and economy, an efficient additive was identified: 1.5 % K2CO3 + 0.5 % CH3COOK. XGBoost model has the best prediction effect. The hydrogen addition has the most significant effect on the minimum extinguishing concentrations , with K+ ranking second in importance proportion after hydrogen addition; CO32- and CH3COO- exhibit relatively weaker importance; other anions contribute minimally to the minimum extinguishing concentration, showing limited.

By using the experimental setup built to measure water mist field characteristics and water mist suppression gas jet flame test system to obtain the water mist containing compound potassium salt characteristics parameters. Based on the fire extinguishing efficiency and fire extinguishing process images, the competitive mechanisms of gas–spray were systematically investigated. Results that with the increase of spray pressure, the spray cone angle decreases and the spray flux increases; Within the experimental range, the droplet particle size shows a decreasing trend with the increase of spray axial distance; the droplet velocity decreases and then increases along the radial distance, and shows a decreasing trend with the increase of axial distance. When the spray momentum is greater than the flame momentum, it is effective in addressing the gas after the leak; when the spray momentum is less than the flame momentum, water mist cannot inhibit the jet flame, and it is fueled by gas combustion, increasing the gas jet flame combustion volume and the risk of jet flame.

The flow field structure of the interaction between the water mist and gas jet flame is measured by the 2D-PIV. The results show that for the same spray pressure of water mist, the same pipe nozzle with the flame flow rate increases, the height of the gas–spray interaction interface increases, and a vortex structure is formed at the gas–spray contact surface; however, the gas jet flame with a higher flow rate slightly perturbs the water mist flow field. At the same flow rate and spray pressure of water mist, the gas–spray contact surface rises as the diameter of the nozzle increases. The gas–spray contact surface decreases with increasing spray pressure for the same nozzle diameter and flow rate. The flame height during the suppression of the jet flame by the water mist containing potassium salt was used as a criterion to analyze the interaction mechanism based on the gas-spray momentum ratio.  In addition, A reduced kinetics mechanism for hydrogen-enriched natural gas oxidation containing gaseous KOH was built,  and the key reaction pathways through which water mist containing compounded potassium salt suppresses hydrogen-enriched natural gas jet flame propagation have been identified. The results show that there is a good correlation between the flame height under suppression and the effective gas-spray momentum ratio. During the suppression of hydrogen-enriched natural gas jet flames by water mist containing potassium salt, the following key reactions were identified to promote OH radical consumption and temperature reduction: R4: H+CH3(+M) <=>CH4(+M)、 R5: H+CH4<=>CH3+H2 、R23: KOH+H<=> K+H2O. The momentum of water mist has effect on gas jet flame. The secondary mechanisms are heat absorption and cooling, oxygen replacement, thermal radiation attenuation and chemical suppression.

参考文献:

[1]刘永光, 李金华, 亢远飞. “双碳”目标下的北京市氢能应用场景研究 [J]. 节能与环保, 2022, (12): 32-34.

[2]时浩, 吕杨, 谭更彬. 天然气管道掺氢输送可行性探究 [J]. 天然气与石油, 2022, 40 (04): 23-31.

[3]谢萍, 伍奕, 李长俊, 等. 混氢天然气管道输送技术研究进展[J]. 油气储运, 2021, 40(04): 361-370.

[4]尚娟, 鲁仰辉, 郑津洋, 等. 掺氢天然气管道输送研究进展和挑战[J]. 化工进展, 2021, 40(10): 5499-5505.

[5]陈俊文, 汤晓勇, 陈情来, 等. 天然气掺氢对管输工艺安全影响的探讨 [J]. 天然气与石油, 2022, 40 (04): 16-22.

[6]Hawthorne W R, Weddell D S, Hottel H C, et al. Mixing and combustion in turbulent gas jets[J]. Third symposium on combustion, flame and explosion phenomena, 1939: 266–288.

[7]Shevyakov G G, Komov V F, et al. Effect of noncombustible admixtures on length of an axisymmetric on-portturbulent diffusion flame[J]. Kriogenmash Research-Production Association, 1978, 13: 667–670.

[8]Røkke N A, Hustad J E, Sønju O K, et al. Scaling of nitric oxide emissions from buoyancy-dominated hydrocarbon turbulent-jet diffusion flames[J]. Symposium (International) on Combustion. 1992, 24(1): 385–393.

[9]Kalghatgi G T, Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air[J]. Combustion Science and Technology, 1984, 41:37–41.

[10]Delichatsios M A, Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and flame, 1993, 92: 349–364.

[11]Blake T R, Mcdonald M, An examination of flame length data from vertical turbulent diffusion flames[J]. Combustion and flame, 1993, 94: 426–432.

[12]Mogi T, Horiguchi S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames[J]. Journal of Loss Prevention in the Process Industries, 2009, 22:45–51.

[13]Schefer R W, Houf W G, Williams T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32: 2081–2093.

[14]Lowesmith B J, Hankinson G. Large scale high pressure jet fires involving natural gas and natural gas/hydrogen mixtures[J]. Process Safety and Environmental Protection, 2012, 90: 108–120.

[15]Schefer R W, Houf W G, Bourne B, et al. Spatial and radiative properties of an open-flame hydrogen plume[J]. International Journal of Hydrogen Energy, 2006, 31: 1332

[16]Molkov V, Saffers J B. Hydrogen jet flames[J]. International Journal of Hydrogen Energy, 2013, 38: 8141–8158.

[17]Bradley D, Gaskell P H, Gu X, A, et al. Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates[J], Combust and Flame, 2016, 164: 400–409.

[18]Lu H Y, Liu S X, Lv J, et al. A physical model on the flame structure of vertical downward turbulent jet fires[J], Fuel 2023,334:126596.

[19]Hu L H, Zhang X C, Zhang X L, et al. A re-examination of entrainment constant and an explicit model for flame heights of rectangular jet fires[J]. Combust and Flame, 2014, 161: 3000–3002.

[20]Liu C C, Huang L Y, Deng T D, et al. On the influence of nozzle geometry on jet diffution flames under cross-wind[J]. Fuel, 2020, 263: 116549.

[21]Henriksen M, Gaathaug A V, J. Lundberg. Determination of under expanded hydrogen jet flame length with a complex nozzle geometry[J]. International Journal of Hydrogen Energy, 2019, 44: 8988-8996.

[22]Zhou K, Wang X, Liu M, et al. A theoretical framework for calculating full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage[J]. International Journal of Hydrogen Energy, 2018, 43: 22765–22775.

[23]Heskestad G. Extinction of gas and liquid pool fires with water sprays[J]. Fire Safety Journal, 2003, 38: 301-317.

[24] Heskestad G. Turbulent jet diffusion flames: Consolidation of flame height data[J]. Combustion and Flame, 1999, 118: (1-2), 51–60.

[25]Hu L H, Huang L L, Wang Q, et al. Experimental study and analysis on the interaction between two slot-burner buoyant turbulent diffusion flames at various burner pitches[J]. Combustion and Flame, 2017, 186: 105–113.

[26]Mogi T, Shiina H, Wada Y, et al. Experimental study on the hazards of the jet diffusion flame of liquefied dimethyl ether[J]. Fuel, 2011, 90(7): 2508–2513.

[27]Wang Z, Jiang J, Wang G, et al. Flame morphologic characteristics of horizontally oriented jet fires impinging on a vertical plate: experiments and theoretical analysis[J]. Energy, 2023, 264.

[28]Smith T, Periasamy C, Baird B, et al. Trajectory and characteristics of buoyancy and momentum dominated horizontal jet flames from circular and elliptic burners. 2006, 126: 300-309.

[29]Imamura T, Hamada S, Mogi T, et al. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region[J]. International Journal of Hydrogen Energy, 2008, 33: 3426–3435.

[30]Zhang X L, Hu L H, Zhang X C, et al. Flame projection distance of horizontally oriented buoyant turbulent rectangular jet fires, Combust and Flame, 2017, 176:370–376.

[31]Wang Q, Yan J, Wang B, et al. Experimental study on trajectory flame length and axial temperature distribution of inclined turbulent jet flames[J]. Fire safety Journal, 2022, 131 103623.

[32]Shen Y , Tao C, Zong R, et al. Axial temperature distribution of vertical jet flames from rectangular nozzles[J]. Fire safety journal, 2017, 26 (2): 87-92.

[33]Gao W, Liu N, Jiao Y, X, et al. Zhang, Flame trajectory of a non-vertical turbulent buoyant jet flame[J]. Applied Energy, 2021, 7 : 100039.

[34]Tao C, Shen Y, Zong R, et al. Experimental determination of flame length of buoyancy-controlled turbulent jet diffusion flames from inclined nozzles[J]. Applied Thermal Engineering 2016, 93: 884-887.

[35]Wang Z R, Jiang K W, Zhao K, et al. Macroscopic characteristics and prediction model of horizontal extension length for syngas jet flame under inclined conditions[J]. International Journal of Hydrogen Energy, 2021, 46: 23091 -23099.

[36]Liu J H, Zhang X C, Xie Q M. Flame geometrical characteristics of downward sloping buoyant turbulent jet fires[J]. Fuel, 2019, 257: 116112.

[37]Liu S X, Hu L H. An experimental study on flame envelope morphologic characteristics of downward-orientated buoyant turbulent jet fires[J]. Proceedings of the Combustion Institute, 2019, 37: 3935–3942.

[38]Hwang J. Sohn K, Bouvet N, et al. NOx scaling of syngas H2/CO turbulent non-premixed jet flames[J]. Combustion Science and Technology. 2013, 185:1715–1734.

[39]Guiberti T F , Boyette W R, Roberts W L. Height of turbulent non-premixed jet flames at elevated pressure[J]. Combustion and Flame, 2020, 220: 407–409.

[40]Tao C, Liu B, Dou Y, et al. The experimental study of flame height and lift-off height of propane diffusion flames diluted by carbon dioxide[J]. Fuel, 2021, 290: 119958.

[41]Zhao C, Li X, Wang X, et al. An experimental study of the characteristics of blended hydrogen-methane non-premixed jet flames. Process Safety and Environmental Protection, 2023, 174: 838–847.

[42]Tang F, Hu P, Shi C. Ceiling thermal impingement spread characteristics induced by wall-attached fires under various sub-atmospheric pressures[J]. Energy, 2021, 215: 119127.

[43] Hu L, Zhang X, Zhang X, et al. Flame heights and fraction of stoichiometric air entrained for rectangular turbulent jet fires in a sub-atmospheric pressure[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2995–3002.

[44]Wang Q, Tang F, Liu H, et al. Experimental investigation on the effect of a reduced pressure on the combustion characteristics and flame height of gaseous fuel Jets in parallel sidewalls[J]. Energy and Fuels, 2018;32(2):2490–2496.

[45]Fang J, Wang J W, Guan J F, et al. Momentum- and buoyancy- driven laminar methane diffusion flame shapes and radiation characteristics at sub-atmospheric pressures[J]. Fuel, 2016, 163: 295-303.

[46]Yang M J, He Y p, Li H H, et al. Combustion of laminar non-premixed acetylene jet at two different altitudes[J]. Combustion Science and Technology. 2012, 184: 1050–1969.

[47]Hu L H, Wang Q, et al. Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere[J]. Fuel, 2013, 109: 234–240.

[48]Hu L H, Zhang X C, Zhang X L, et al. Flame heights and fraction of stochiometric air entrained for rectangular turbulent jet fires in a subatmospheric pressure[J]. Proceedings of the Combustion Institute, 2016, 1–8.

[49]Hu L H, Wang Q, Tang F, et al. Axial temperature profile in vertical buoyant turbulent jet fires in a reduced pressure atmosphere[J]. Fuel, 2013, 106: 779–786.

[50]Hu L H, Zhang X, Wang Q, et al. Flame size and volumetric heat release rate of turbulent buoyant jet diffusion flames in normal- and a sub-atmospheric pressure[J]. Fuel, 2015, 150: 278–287.

[51]Wang Q, Wang S, Li H, et al. Experimental investigation on jet fires hazards in a reduced pressure: Assessment of the main width features[J]. Journal of Loss Prevention in the Process Industries 2019, 62:103984.

[52]Wang Q, Hu L H, Zhang M, et al. Lift-off of jet diffusion flame in subatmospheric pressures: an experimental investigation and interpretation based on laminar flame speed[J]. Combustion and flame, 2014, 161(4):1125–1130.

[53]Zhang X, Hu L H, Zhu W, et al. Axial temperature profile in buoyant plume of rectangular source fuel jet fire in normal- and a sub-atmospheric pressure[J]. Fuel, 2014, 134: 455–459.

[54]Hu L H, Wang Q, Delichatsios M A, et al. Flame radiation fraction behaviors of sooty turbulent buoyant diffusive jet flames in reduced- and normal atmospheric pressures and a global correlation with Reynolds number[J]. Fuel, 2014, 116: 781–786.

[55]Wang Q, Hu L H, Chung S H. Blow-out of nonpremixed turbulent jet flames at subatmospheric pressures[J]. Combustion and flame, 2017;176:358–360.

[56]Xie K, Cui Y J, Qiu X Q, et al. Experimental investigation on horizontal jet spray flame characteristics with a constant air-fuel ratio in different subatmospheric pressures[J]. Applied Thermal Engineering, 2020, 165.

[57]Zhao J F, Liu J H, Li H H, et al. Flame projection lengths of horizontally oriented buoyant jet fires under different air pressures[J]. Case Studies in Thermal Engineering, 2021, 27: 101327.

[58]Rengela B, Àguedaa A, Pastora E, et al. Experimental and computational analysis of vertical jet fires of methane in normal and sub-atmospheric pressures[J]. Fuel, 2020, 265: 116878.

[59]Lv J, Zhang X L, Liu S X, et al. Flame morphology of horizontal jets under sub-atmospheric pressures: Experiment, dimensional analysis and an integral model[J]. Fuel, 2022, 307: 121891.

[60]Johnson A, Brightwell H, Carsley A. A model for predicting the thermal radiation hazards from large-scale horizontally released natural gas jet fires[J]. Process Safety and Environmental Protection, 1994, 72: 157-166.

[61]Derek B, Philip H. G, Gu X J, et al. Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates[J]. Combustion and Flame, 2016, 164: 400–409.

[62]Zhou K B, Liu J, Jiang J. Prediction of radiant heat flux from horizontal propane jet fire[J]. Applied Thermal Engineering, 2016, 106: 634-639.

[63]Zhou K B, Qin X, Wang Z, et al. Generalization of the radiative fraction correlation for hydrogen and hydrocarbon jet fires in subsonic and chocked flow regimes[J]. International Journal of Hydrogen Energy, 2018, 43: 9870–9876.

[64]Braidech M M, Neale J A, Matson A F, et al. The mechanism of extinguishment of fire by finely divided water[C]. Underwriters LaboratoriesInc. For the National Board of Fire Underwriters, 1955, 73.

[65]Rabash D J, Rogowski Z W, Stark G W V. Mechanisms of Extinction of Lkluid Fires with Water Sprays, Combustion and flame, 1960, 4: 223–234.

[66]李勇. 细水雾灭火机理及应用探讨[J]. 化工安全与环境, 2022, 35(18): 13-16+20.

[67]Richard J, Garo J P, Chemical and physical effects of water vapor addition on diffusion flames[J]. Fire Safety Journal, 2003, 38: 569–587.

[68]李涛,谢玮,张玉春,等. 水雾强化隧道火灾火焰现象试验研究[J]. 中国安全科学学报, 2017, 27(3): 37-41.

[69]Grant G, Brenton J, Drysdale D, et al. Fire suppression by water sprays[J]. Progress in Energy and combustion science, 2000, 26: 79-130.

[70]Hirst R, Booth K. Measurement of Flame-extinguishing concentrations[J]. Fire Technology, 1977, 13: 4, 296-315.

[71]Senecal J. A. Flame extinguishing in the cup-burner by inert gases[J]. Fire Safety Journal, 2005, 40(6): 579–591.

[72]Moore T A, Weitz C A, Tapscott R E. An update on nmeri cup-burner test results[J]. 1982.551-564.

[73]Takahashi F, Linteris G T, Katta V R. Extinguishment mechanisms of cup-burner flames[C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, Jan9-12, 2006: 8979–9001.

[74]Saso Y, Ogawa Y, Saito N, et al. Binary CF3 Br-and CHF3-inert flame suppressants: effect of temperature on the flame inhibition effectiveness of CF3Br and CHF3[J]. Combustion and flame, 1999, 118: 489-499.

[75]Wang X, Wu R, Cheng L, et al. Suppression of propane cup-burner flame with HFO-1336 mzz(Z) and its thermal stability study[J]. Thermochimica Acta, 2020, 683,178463.

[76]Cong B H, Liao G X. Mechanisms of suppressing cup-burner flame with water vapor[J]. Series E: Technological Sciences, 2008, 51: 1222–1131.

[77]Liu J, Liao G. Experimental study of the effect of water mist on CH4/air non-premixed flames[J]. Procedia Engineering, 2011, 26: 1279–1286.

[78]Saito N S, Liao C H. Suppression effect of water vapor on flammability limits of hydrocarbon fuels[C]. In: 6th Asia-Oceania Symposium on Fire Science and Technology. Daego: IAFSS, 2004. 958―964

[79]罗振敏, 王欣, 王涛, 等. 细水雾-惰性气体协同灭火性能试验研究[J]. 中国安全科学学报, 2022, 32(10): 63-68.

[80]Brian T F, Andrew R A, Ronald S S, et al. Flow behavior impact on the suppression effectiveness of sub-10-lm water drops in propane/air co-flow non-premixed flames[J]. Proceedings of the Combustion Institute, 2007, 31:2731-2739

[81]Ni X, Zhang S, Zhao M, et al. Experimental studies on the extinction of methane/air cup-burner flames with gas-solid composite particles[J]. Fire Safety Journal, 2015, 76: 1–8.

[82]Shrigondekar H, Chowdhury A, Prabhu S. Characterization of a simplex water mist nozzle and its performance in extinguishing liquid pool fire[J]. Experimental Thermal and Fluid Science, 2018, 93: 441-455.

[83]Novozhilov V. Fire suppression studies[J]. Thermal Science, 2007, 11: 161–180.

[84]Balner D, Barcova K. Attenuation of thermal radiation through water mist[J]. Process Safety Progress, 2018, 37(1): 18-24.

[85]Koshiba Y, Hasegawa T, Kim B, et al. Flammability limits, explosion pressures, and applicability of Le Chatelier’s rule to binary alkane–nitrous oxide mixtures[J]. Journal of Loss Prevention in the Process Industries, 2017, 45:1–8.

[86]刘志斌, 仝艳时, 姚斌, 等. 工作压力对细水雾雾场特性参数影响的实验研究[J]. 火灾科学,2014,23(01):50-55.

[87]麻峻彰, 梁强, 李玉. 高压细水雾喷头设计及雾滴粒径分布影响因素研究[J]. 武警学院学报,2020,36(04):5-10.

[88]伍毅, 陆林, 凤四海, 等.高压细水雾喷头流量系数与雾场特性的关系[J]. 科学技术与工程, 2018, 18(01): 348-352.

[89]陈鹏, 郭实龙. 表面活性剂对防尘细水雾雾场特性影响的研究[J]. 矿业安全与环保,2014,41(05):5-8.

[90]陈桢, 肖鹏. 含NaCl添加剂细水雾特性的实验测试研究[J]. 中小企业管理与科技, 2010(09): 299-300.

[91]贺元骅, 陶波, 伍毅, 等. 低压环境对高压细水雾雾滴粒径影响的实验分析[J]. 科学技术与工程, 2020, 20(04): 1711-1715.

[92]Wang Z, Wang W, Wang Q. Optimization of water mist droplet size by using CFD modeling for fire suppressions[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 626–632.

[93]Santangelo P E. Characterization of high-pressure water-mist sprays: Experimental analysis of droplet size and dispersion[J]. Experimental Thermal and Fluid Science, 2010, 34: 1353–1366.

[94]Paulsen B, Petersson P, Lund I. Comparison of PIV and PDA droplet velocity measurement techniques on two high-pressure water mist nozzles[J]. Fire Safety Journal, 2009, 44: 1030–1045.

[95]柳承徽, 陈先锋, 张威, 等. 基于PIV的气动式细水雾流场研究[J]. 中国安全科学学报, 2020, 30(07): 120-126.

[96]陈庆, 魏旭, 陈光, 等. 不同压力下细水雾雾场特征参量模拟研究[J]. 消防科学与技术, 2020, 39(06): 803-806.

[97]吕志豪. 民机货舱细水雾雾场特性及抑制灭火有效性研究[D].中国民用航空飞行学院, 2020.

[98]Chin J S. Effervescent atomization and internal mixing air assist atomization[J]. International Journal of Turbo and Jet Engines, 1995, 12:119–128.

[99]Santangelo P E, Tartarini P. Fire Control and Suppression by Water-Mist Systems[J]. The Open Thermodynamics Journal, 2014, 4:167–184.

[100]马砺, 杨元博, 刘长春, 等. 细水雾作用下柴油与酒精火火焰强化对比研究[J].消防科学与技术, 2018, 37(03): 337-341.

[101]Gupta M, Pasi A, Ray A, et al. An experimental study of the effects of water mist characteristics on pool fire suppression[J]. Experimental Thermal and Fluid Science, 2013, 44: 768–778.

[102]Qin J, Chow W K. Experimental Data on Water Mist Suppression[J]. Procedia Engineering 2013, 62: 868–877.

[103]Zhou Y, Bu R W, Zhang X N, et al. Performance evaluation of water mist fire suppression: A clean and sustainable fire-fighting technique in mechanically-ventilated place[J]. Journal of Cleaner Production, 2019, 209: 1319-1331.

[104]Zhou Y, Bu R, Gong J, et al. Assessment of a clean and efficient fire-extinguishing technique: Continuous and cycling discharge water mist system[J]. Journal of Cleaner Production, 2018, 182: 682-693.

[105]Shirvill L C. Efficacy of water spray protection against propane and butane jet fires impinging on LPG storage tanks[J]. Journal of Loss Prevention in the Process Industries, 2004, 17: 111–118.

[106]Li H T, Chen X Q, Shu C M, et al. Experimental and numerical investigation of the influence of laterally sprayed water mist on a methane-air jet flame[J]. Chemical Engineering Journal, 2019, 356: 554–569.

[107]Zhang Z H, Li Q, Liu Y, et al. Experimental study on the effect of fan-shaped water mist on horizontal under-expanded hydrogen jet flames[J]. International Journal of Hydrogen Energy, 2022, 47(29): 14008-14016.

[108]Noda S, Merci Bart, Tanaka F, et al. Experimental and numerical study on the interaction of a water mist spray with a turbulent buoyant flame [J]. Fire Safety Journal, 2021, 120: 103033.

[109]Liang T X, Liu M J, Wei X L, et al. An experimental study on the interaction of water mist with vertical/horizontal spray flame[J]. Procedia Engineering. 2014, 84: 543–552.

[110]Palis S, Strubig F, Voigt S, et al. Experimental investigation of the impact of water mist on high-speed non-premixed horizontal methane jet fires[J]. Fire Safety Journal, 2020, 114, 103005

[111]陆嘉, 廖光煊, 陶常法. 甲烷射流扩散火焰结构试验研究[J]. 安全与环境学报, 2010, 10(06): 164-168.

[112]陆嘉, 廖光煊, 黄咸家,等. 细水雾作用下气体射流火焰熄灭的临界条件[J]. 燃烧科学与技术, 2011, 17(05): 414-418.

[113]黄咸家, 王喜世, 杨天培, 等. 受限空间内细水雾抑制熄灭火焰过程中一氧化碳的生成率[J]. 燃烧科学与技术, 2012, 18(02): 175-180.

[114]刘长春, 马砺, 邓军, 等. 细水雾底部喷射对甲烷射流火焰影响实验研究[J]. 科技通报, 2018, 34(10): 205-209.

[115]刘长春, 马砺, 王伟峰, 等.细水雾作用下CH4/空气总包机理对比与改进[J]. 消防科学与技术, 2017, 36(02): 196-200.

[116]Liu L M, Liu Y P, Sun H Z, et al. Experimental study on the interaction of water mist spray with two buoyant non-premixed flames[J]. Process Safety and Environmental Protection, 2019, 51(2): 410-423.

[117]Mahmud H M I, Moinuddin K A M, Thorpe, G.R. Experimental and numerical study of high-pressure water-mist nozzle sprays[J]. Fire Safety Journal, 2016, 81: 109–117.

[118]Jenft A, Collin A, Boulet P, et al. Experimental and numerical study of pool fire suppression using water mist[J]. Fire Safety Journal, 2014, 67: 1–12.

[119]Lee J H. Numerical analysis on the rapid fire suppression using a water mist nozzle in a fire compartment with a door opening[J]. Nuclear Engineering and Technology. 2019, 51(2): 410–423.

[120]Shan K, Shuai J, Yang G, et al. Numerical study on the impact distance of a jet fre following the rupture of a natural gas pipeline[J]. International Journal of Pressure Vessels and piping. 2020, 187: 104159.

[121]Coriton B, Frank J H. High-speed tomographic PIV measurements of strain rate intermittency and clustering in turbulent partially-premixed jet flames[J]. Proceedings of the Combustion Institute 2015, 35: 1243–1250.

[122]Schwille J A, Ã RML. The reaction of a fire plume to a droplet spray[J]. Fire Safety Journal, 2006, 41(5): 390-398.

[123]Oswaldo A, Ccacya R, Fernando L. Characterization of multi-jet turbulent flames in cross flow using stereo-PIV and OH-PLIF[J]. Fire Safety Journal, 2015, 78: 44–54.

[124]Liu Y P, Wang X S, Zhu P, et al. Experimental study on gas jet suppressed by water mist: A clean control technique in natural gas leakage incidents[J]. Journal of Cleaner Production, 2019, 223:163–175.

[125]Zhou B, Li T, Frank J H, et al. Simultaneous 10 kHz three-dimensional CH2O and tomographic PIV measurements in a lifted partially-premixed jet flame[J]. Proceedings of the Combustion Institute, 2021, 38(1):1675-1683.

[126]Zhu P, Wang X S, Li G C, et al. Experimental study on interaction of water mist spray with high-velocity gas jet[J]. Fire Safety Journal, 2017, 93: 60–73.

[127]倪小敏, 刘洋鹏, 王喜世. 耦合激光流场诊断系统的细水雾灭遮挡火实验装置[J]. 实验技术与管理, 2022, 39(05): 185-188.

[128]Liu Y P, Wang X S, Zhu p. Experimental study on gas jet suppressed by water mist: A clean control technique in natural gas leakage incidents[J]. Journal of Cleaner Production, 2019, 223: 163-175.

[129]Liu Y P, Shen J X, Ma J, et, al. Laser-based measurement and numerical simulation of methane-air jet flame suppression with water mist[J]. Process Safety and Environmental Protection, 2021, 148: 1033-1047.

[130]Zhang T, Han Z, Du Z, et, al. Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4/air cup-burner flame by water mist with additives[J]. International Journal of Hydrogen Energy, 2016, 41:15078–15088.

[131]Zhang T W, Liu H, Han Z Y, et, al. Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics[J]. Applied Thermal Engineering, 2017, 122: 429–438.

[132]Zhang T W, Du Z.M, Han Z.Y., et, al. Performance evaluation of water mist with additives in suppressing cooking oil fires based on temperature analysis[J]. Applied Thermal Engineering, 2016, 102: 1069–1074.

[133]Joseph P, Nichols E, Novozhilov V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist[J]. Fire Safety Journal, 2013, 58:221–225.

[134]Liu J, Cong B. Experimental evaluation of water mist with metal chloride additives for suppressing CH4/air cup-burner flames[J]. Journal of Thermal Science 2013, 22: 269–274.

[135]Feng M H, Tao J J, Qin J, et, al. Extinguishment of counter-flow diffusion flame by water mist derived from aqueous solutions containing chemical additives[J]. Journal of Fire Science. 2016, 34: 51–68.

[136]Pei B, Li J, Wang Y, et, al. Synergistic inhibition effect on methane/air explosions by N2-twin-fluid water mist containing sodium chloride additive[J]. Fuel, 2019, 253: 361–368.

[137]Cao X Y, Ren J J, Bi M S, et, al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360.

[138]Cao X Y, Ren J J, Zhou Y, et, al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive[J]. Journal of Hazardous Materials, 2015, 285: 311–318.

[139]Cao X Y, Bi M S, Ren J J, et, al. Experimental research on explosion suppression affected by ultrafine water mist containing different additives[J]. Journal of Hazardous Materials 2019, 368: 613–620.

[140]Yang L, Zhao J. Fire extinct experiments with water mist by adding additives[J]. Journal of Thermal Science, 2011, 20: 563–569.

[141]Chow W K, Jiang Z, Li S F, et, al. Improving fire suppression of water mist by chemical additives[J]. Polymer - Plastics Technology and Engineering, 2007, 46: 51–60.

[142]Liu Y J, Duan Q L, Xu J J, et, al. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling[J]. Journal of Energy Storage, 2020, 28: 101185.

[143]Wei S, Yu M, Pei B, et, al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3[J]. Fuel, 2022; 328:125235.

[144]梁天水, 李润婉, 张单单,等.含添加剂细水雾熄灭醇类火焰的有效性实验研究[J]. 郑州大学学报(工学版), 2018, 39(03): 5-9.

[145]刘中麟, 范秀山. KHCO3作为细水雾添加剂灭火有效性研究[J]. 化工管理, 2014(24): 32.

[146]彭伟, 柯陈, 俞晨, 等.含添加剂高压细水雾抑灭乙醇池火性能研究[J]. 消防科学与技术, 2022, 41(08): 1088-1093.

[147]位少坤. 含钾盐添加剂细水雾灭酒精池火有效性研究[D].北京理工大学,2018.

[148]Fleming J W, Jaffa N A, Ananth R. Assessment of the Fire Suppression Properties of Mists of Aqueous Potassium Acetate[C]. Suppression and Detection Research and Applications. Orlando, FL: A Technical Working Conference, 2010:247-252.

[149]Back G G, Beyler C L, Hansen R. The Capabilities and Limitations of Total Flooding, Water Mist Fire Suppression Systems in Machinery Space Applications[J]. Fire Technology, 2000, 36(1):8-23.

[150]Lazzarini A K, Krauss R H, Chelliah H K, et al. Extinction conditions of non-premixed flames with fine droplets of water and water/NaOH solutions[J]. Proceedings of the Combustion Institute, 2000, 28(2):2939-2945.

[151]Chelliah H K, Lazzarini A K, Wanigarathne P C, et al. Inhibition of premixed and non-premixed flames with fine droplets of water and solutions[J]. Proceedings of the Combustion Institute, 2002, 29 (1): 369–376.

[152]彭伟, 柯陈, 俞晨, 等. 含添加剂高压细水雾抑灭乙醇池火性能研究[J]. 消防科学与技术, 2022, 41(08): 1088-1093.

[153]Shmakova A G, Korobeinicheva O P, Shvartsberga V M, et al. Inhibition of premixed and nonpremixed flames with phosphorus-containing compounds[J]. Proceedings of the Combustion Institute, 2005, 30(2):2345-2352.

[154]朱鹏, 刘惠平, 徐凡席, 等. 含添加剂细水雾熄灭K类火灾的实验研究[J]. 消防科学与技术, 2013, 31(5): 559-569.

[155]刘凯. 含添加剂细水雾扑灭食用油火试验研究[D].北京理工大学,2016.

[156]Shou P H, Kee C C. The effect of additive on the fire extinguishing improvement of water mist spray[J]. Journal of applied fire science, 2005, 14(1): 1-11.

[157]Zhou X, Liao G, Cai B. Improvement of water mist's fire-extinguishing efficiency with MC additive[J]. Fire Safety Journal, 2006, 41(1):39-45.

[158]李晓丽, 程远平, 魏东. 细水雾灭火添加剂的研究现状与性能分析[J].消防技术与产品信息, 2006, (9): 7-9.

[159]丛北华, 周晓猛, 廖光煊. 复合型添加剂增强细水雾灭火性能研究[J]. 中国科学技术大学学报, 2006, 36(1): 20-25.

[160]余明高, 徐俊, 于水军,等. 含复合添加剂细水雾熄灭煤油池火实验[J]. 煤炭学报, 2007, 32(3): 288-291.

[161]于水军, 余明高, 郝强,等. 含复合化学添加剂细水雾抑制煤油池火的机理[J]. 煤炭学报, 2008, 33(3): 303-309.

[162]余明高, 安安, 游浩. 细水雾抑制管道瓦斯爆炸的实验研究[J]. 煤炭学报, 2011, 36(3): 417-422.

[163]Chang W, Fu P, Chen C, et al. Evaluating the performance of a portable water–mist fire extinguishing system with additives[J]. Fire & Materials, 2008, 32(7): 383–397.

[164]Cong B, Liao G. Experimental studies on water mist suppression of liquid fires with and without additives[J]. Journal of Fire Sciences, 2009, 27(2):101-123.

[165]张青松, 程相静, 白伟.含复合添加剂细水雾抑制锂电池火灾效果分析[J]. 消防科学与技术, 2018, 37(9): 1211-1214.

[166]Wu B B, Liao G X. Experimental study on fire extinguishing of water mist with a newly prepared multi-component additive[C]. Anhui: The 9th Asia-Oceania Symposium on Fire Science and Technology, 2013, 62: 317–323.

[167]Wu B B, Liao G X. Comparision tests determine the ratio between in the constituent the compound additive and experimental study on fire extinguishing of water mist with this multi-component additive[J]. Procedia Engineering, 2013, (52): 428–434.

[168]刘全义, 伊笑莹, 吕志豪, 等. 细水雾灭火有效性研究进展[J]. 科学技术与工程, 2019, 19(22): 11-19.

[169]Lv D, Tan W, Zhu G, et al. Gasoline fire extinguishing by 0.7 MPa water mist with multicomponent additives driven by CO2[J]. Process Safety and Environmental Protection, 2019, 129:168–175.

[170]裴蓓, 杨双杰, 陆丁连, 等. 含复合添加剂N2-双流体细水雾抑制乙醇火焰强化研究[J].工程热物理学报, 2021, 42(1): 260–267.

[171]刘洋鹏, 王喜世, 沈佳杏, 等. 细水雾抑制障碍物遮挡气体池火的缩尺度实验研究[J].燃烧科学与技术, 2022, 28(05): 489-497.

[172]Husted B P, Petersson P, Lund I. Comparison of PIV and PDA droplet velocity measurement techniques on two high-pressure water mist nozzles[J]. Fire Safety Journal, 2009, 44 (8): 1030–1045.

[173]Adrian R J, Westerweel J. Particle Image Velocimetry [M]. Cambridge University Press, 2011.

[174]Sheinson R S, Penner-Hahn J E, Doren I. The physical and chemical action of fire suppressants[J]. Fire Safety Journal, 1989, 15(6): 437-450.

[175]Fisher B T, Awtry A R, Sheinson R S, et al. Flow behavior impact on the suppression effectiveness of sub-10-μm water drops in propane/air co-flow non-premixed flames[J]. Proceedings of the Combustion Institute, 2007, 31:2731–2739.

[176]刘皓, 张天巍, 夏登友, 等. 水与K2CO3的协同灭火作用[J]. 燃烧科学与技术,2018, 24(1): 9–14.

[177]Otsu N. A. Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62–66.

[178]Palacios A, Muñoz M, Darbra R M, et al. Thermal radiation from vertical jet fires[J]. Fire Safety Journal, 2012, 51, 93–101.

[179]Zhang B, Liu Y, Laboureur D, et al. Experimental study on propane jet fire hazards: thermal radiation[J]. Industrial & Engineering Chemistry Research, 2015, 54: 9251–9256.

[180]Wang Y D, Zhou K B, Ma X Z. Inhibition effect of NaHCO3 on the flame geometry and thermal properties of jet diffusion fire[J]. Thermal Science and Engineering Progress, 2023, 38(4):101660.

[181]Broumand M, Birouk M. Liquid jet in a subsonic gaseous crossflow: Recent progress and remaining challenges[J]. Progress in Energy and Combustion Science, 2016, 57, 1–29.

[182]马承飚, 林其钊. 利用敏感性分析方法简化的贫燃甲烷氧化反应机理[J].国防科技大学学报,2017,39(2):164–170.

[183]Toshimitsu K,Matsuo A,Kamel M R,et al. Numerical simulations and planar laser-induced fluorescene imaging results of hypersonic reactive flows [J]. Journal of Propulsion &Power, 2015, 16(1) : 16–21.

[184]吴悠, 林圣强, 周伟星, 等. 基于组分半全局敏感性的燃烧反应动力学模型简化方法[J].燃烧科学与技术, 2022, 28(06): 715-721.

[185]赵雪林, 张力, 杨仲卿, 等.低浓度甲烷均相燃烧动力学反应机理简化与分析[J]. 工程热物理学报, 2015, (4): 901–906.

[186]Wang J, Matsuno F, Okuyama M, et al. Flame front characteristics of turbulent premixed flames diluted with COn, and H2O at high pressure and high temperature[J]. Proceedings of the Combustion Institute, 2013, 34 (1):1429–1436.

[187]Jager B D, Kok J B W, Skevis G. The effects of water addition on pollutant fommation from LPG gas turbine combustors[J]. Proceedings of the Combustion Institute, 2007, 31 (2): 3123–3130.

[188]Mazas A N, Fiorina B, Lacoste D A, et al. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames[J]. Combustion and Flame, 2011, 158 (12): 2428–2440.

[189]Mazas A, Lacoste D, Schuller T. Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O, Mixtures Diluted with CO2 and H2 O[C]. ASMETurbo Expo 2010: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2010: 411–421.

[190]Richard J, Garo J P, Souil J M, et al. Chemical and physical effects of water vapor addition on diffusion flames[J]. Fire Safety Journal, 2003, 38 (6): 569–587.

[191]Jensen D E, Jones G A. Kinetics of flame inhibition by sodium[J]. Journal of the Chemical Society, Faraday Transactions, 1982, 9, 2843–2850.

[192]Slack M, Cox J W, Grillo A. Potassium kinetics in heavily seeded atmospheric pressure laminar methane flames[J]. Combustion and Flame, 1989, 3, 311–320.

[193]Hynes A J, Steinberg M, Schofield K. The chemical kinetics and thermodynamics of sodium species in oxygen-rich hydrogen flames[J]. Journal of Chemical Physics, 1984, 6, 2585–2597.

[194]Zhou Y X, Wang Z R, Gao H P, et al. Inhibitory effect of water mist containing composite additives on thermally induced jet fire in lithiumion batteries[J]. Journal of Thermal Analysis and Calorimetry, 2021, 147: 2171–2185.

[195]Zhang T W, Liu H, Han Z Y, et al. Numerical model for the chemical kinetics of potassium species in methane/air cup-burner flames[J]. Energy and fuels, 2017, 31, 4520-4530.

[196]何明礼, 章光, 胡少华, 等. 火焰羽流区细水雾利用效率及控制研究[J].中国安全科学学报, 2019, 29(11): 39–44.

[197]Liao G, Liu J, Qin J, et al. Experimental study on the interaction of fine water spray with liquid pool fires[J]. Journal of Thermal Science, 2001 (4): 377–384.

[198]Schwille J A, Lueptow R M. Effect of a fire plume on suppression spray droplet motion[J] Atomization Sprays, 2006, 16, 563–557.

中图分类号:

 X932    

开放日期:

 2027-07-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式