- 无标题文档
查看论文信息

论文中文题名:

 声波扰动下木材燃烧及火焰熄灭特性研究    

姓名:

 张玉杰    

学号:

 19220089037    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与技术    

第一导师姓名:

 张玉杰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Combustion and Flame Extinguishing Characteristics of Wood by Acoustic Waves Interference    

论文中文关键词:

 声扰动 ; 固体可燃物 ; 木材 ; 火焰形态特征 ; 质量损失速率 ; 火焰熄灭特性    

论文外文关键词:

 Acoustic disturbance ; Combustive solid ; Wood sheets ; Flame morphological characteristics ; Mass loss rate ; Flame extinction    

论文中文摘要:

火灾是最普遍地威胁国民经济和人民生命财产安全的主要灾害之一,在火灾救援过程中常规灭火技术存在造成二次损失的缺点。近几年一种成本低、免充装且避免二次损失的声波灭火技术被广泛关注。目前,关于声波扰动下可燃物燃烧的研究较少,且大部分集中在预混火焰、燃料熔滴火焰或油池火焰,而声波对固体火焰的影响及扑救固体火的可行性和实验研究相对较少。因此,本文开展声波对可炭化固体燃烧特性和火焰熄灭特性的影响,有利于完善声学灭火技术的科学框架。

本文自主搭建声波灭火系统平台,并采用该系统研究声波扰动下的木材燃烧特性和火焰熄灭特性。基于多通道信号分析仪,测量了不同工况下声波灭火系统产生的声场压力分布;利用高精度电子天平,得到了声波作用下木材燃烧火焰的质量损失变化规律,为进一步探究声波扰动对木材燃烧特性的影响机制,通过摄像机记录了声波作用下木材燃烧火焰的形态特征、火焰传播特性和熄灭特性;通过对不同工况下声波对木材燃烧火焰的熄灭效果分析,确定了声波灭火系统熄灭木材火焰的临界参数。

研究表明,该声波灭火系统产生的声压随横向声源距离的增加呈指数型衰减,在竖直平面产生的声压分布并非呈现中心对称规律,同时声压随声源功率的增加而增大,其频率响应在30Hz~70Hz时相对稳定;在声波作用下,木材的质量损失速率相较于自然燃烧状态减少值高于50%时,火焰熄灭;随着声源距离的降低或声频率的降低,声波对木材火焰的熄灭效果显著,火焰对声波的响应包括驻留后熄灭、传播后熄灭和可持续传播三种行为;研究发现,高声源功率、低声波频率对声波熄灭木材火焰的效果显著,但受限于声源距离或倾斜角度,研究对优化声波灭火系统和完善声波灭火理论具有指导意义。

论文外文摘要:

Fire is one of the most common disasters that threaten the national economy and people's life and property safety. In recent years, an acoustic fire extinguishing technology with low cost, no charge and avoiding secondary loss has been widely concerned. Acoustic fire extinguishing technology combined with UAV technology has gradually become the evolution direction of fire fighting technology. At present, most of the research objects about the effect of acoustic wave on the combustion behavior of combustible are focused on the fuel droplet flame, oil pool flame or premixed flame, while the effect of acoustic wave on solid flame and the feasibility and experimental research of solid fire suppression are relatively few. Therefore, it is beneficial to perfect the scientific framework of acoustic fire extinguishing technology to study the influence of acoustic wave on wood combustion characteristics and flame spread and determine the parameters of acoustic fire extinguishing.

In this paper, a kind of acoustic fire extinguishing system is developed, which is used to study the wood burning and flame extinguishing characteristics under acoustic disturbance. The pressure distribution of sound field produced by acoustic fire extinguishing system under different working conditions is measured by using multi-channel signal analyzer. The mass loss of wood burning flame under acoustic wave was measured by high-precision electronic balance, and the influence mechanism of acoustic wave on wood burning characteristics was explored. The morphological characteristics, flame propagation characteristics and extinction characteristics of wood burning flame under acoustic wave were recorded by camera. The critical parameters of acoustic fire extinguishing system were determined by analyzing the extinguishing effect of acoustic wave on wood fire under different working conditions.

Studies have shown that the sound pressure of the acoustic extinguishing system decreases exponentially with the increase of the distance from the transverse sound source. The distribution of sound pressure generated in the vertical plane does not show the law of center-symmetry, and the sound pressure increases with the increase of sound source power, and its frequency response is relatively stable at 30Hz~70Hz. Under the action of acoustic wave, when the wood mass loss rate decreases by more than fifty percent compared with the natural combustion state, the flame goes out. With the increase of sound source distance or sound frequency, the extinguishing effect of acoustic wave on wood flame is weakened. The response of flame to acoustic wave includes three behaviors: quenching after residence, quenching after propagation and sustainable propagation. It is found that high acoustic source power and low acoustic frequency have a significant effect on wood flame suppression by acoustic wave, but are limited by acoustic source distance or tilt Angle. The research has a certain guiding significance for revealing acoustic fire extinguishing mechanism and optimizing acoustic fire extinguishing system.

参考文献:

[1] Adam K. Raymond. Watch Sound Extinguish Fire, New York Magazine, 2015.

[2] Reagan J., "Flying Saucer" Drone Use Sound Waves to Battle Blazes, Drone Life, 2016.

[3] Steinbacher T , Albayrak A , Ghani A , et al. Response of premixed flames to irrotational and vortical velocity fields generated by acoustic perturbations[J]. Proceedings of the Combustion Institute, 2019, 37( 4):5367-5375.

[4] Kim K T , Lee J G , Quay B D , et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J]. Combustion & Flame, 2010, 157(9):1731-1744.

[5] Li-Wei Chen, Qian Wang, Yang Zhang. Flow characterisation of diffusion flame under non-resonant acoustic excitation[J]. Experimental Thermal and Fluid Science,2013,45.

[6] Hou Shuhn Shyurng, Chung De Hua, Lin Ta Hui. Experimental and numerical investigation of jet flow and flames with acoustic modulation[J]. International Journal of Heat and Mass Transfer,2015,83.

[7] 彭飞. 顶棚辐射与对流对PMMA热解及火蔓延的影响规律研究[D]. 中国科学技术大学, 2016.

[8] 王伟刚, 孔文俊, 张培元. 低压环境下热薄固体燃料表面火焰传播实验研究[J]. 工程热物理学报,2004(05):887-890.

[9] 朱凤, 王双峰. 环境压力对热厚固体材料表面火焰传播的影响[J]. 燃烧科学与技术,2019,25(05):401-407.

[10] Lau P, Van Zeeland I, White R. Modelling the char behaviour of structural timber[C]. Proceedings of the Fire and Materials’98 Conference, San Antonio, USA, 1998.

[11] 胡小锋. 胶合木结构构件火灾性能试验研究[D]. 东南大学, 2018.

[12] Spearpoint M, Quintiere J. Predicting the burning of wood using an integral model[J]. Combustion and Flame, 2000(123):308-324.

[13] Koning J. Structural fire design according to Eurocode 5-design rules and their background[J]. Fire and materials,2005(29):147-163.

[14] Buchanan A. Fire resistance of solid timber structures. Uinversity of Canterbury,New Zealand,2005.

[15] 张晋, 许清风, 李维滨, 等. 木梁四面受火炭化速度及剩余受弯承载力试验研究[J]. 土木工程学报, 2013, 46(02):24-33.

[16] Frangi A, Fontana M. Charring rates and temperature profile of wood sections[J]. Fire and Materials, 2003,27(2):91-102.

[17] Rogowski. Charing of timber in fire tests. In: Fire and structural use of timber in buildings [C]. Fire Research Station,London:HMSO,1970.

[18] NF P21-712-1-2005,Eurocode 5: Design of timber structures,Part 1-2: general—structural fire design.

[19] Richard Emberley, Tam Do, Jessica Yim, et al. Critical heat flux and mass loss rate for extinction of flaming combustion of timber[J]. Fire Safety Journal,2017,91.

[20] Njankouo J,Dotreppe J,Franssen J. Experimental study of the charring rate of tropical hardwoods[J]. Fire and Materials,2004(28) :15-24.

[21] Njankouo J,Dotreppe J,Franssen J. Fire resistance of timbers from tropical countries and comparison of experimental charring rates with various models[J]. Construction and building materials,2005(19) : 376-386.

[22] 刘杰. 基于锥形量热仪的家具常用木材有无助燃剂添加的燃烧特性的研究[D]. 中国科学技术大学, 2016.

[23] 刘杰, 陆守香, 陈潇. 常用木板材料的燃烧特性研究[J]. 消防科学与技术, 2016, 35(09):1197-1200.

[24] 邢东, 李坚, 王思群. 基于CONE法的热处理杨木燃烧特性研究[J]. 林产工业, 2020, 57(03):15-18+24.

[25] 周强, 方梦祥. 木材在热解与燃烧中几何特性的变化[J]. 燃烧科学与技术, 2015, 21(01):54-59.

[26] 沈德魁,余春江,方梦祥,等. 热辐射下常用木材热解的动力学与燃烧特性[J]. 燃烧科学与技术, 2008(05):446-452.

[27] 纪杰, 李杰, 孙金华, 等. 不同宽度和角度下木材表面火蔓延特性的实验研究[J]. 工程热物理学报, 2010, 31(02):351-354.

[28] 王伟刚, 孔文俊, 张培元. 低压环境下热薄固体燃料表面火焰传播实验研究[J]. 工程热物理学报, 2004(05):887-890.

[29] Zhang Y, Ji J, Huang X J, et al. Effects of sample width on flame spread over horizontal charring solid surfaces on a plateau[J]. Chinese Science Bulletin, 2011, 56(9):919-924.

[30] 陈鹏. 典型木材表面火蔓延行为及传热机理研究[D]. 中国科学技术大学, 2006.

[31] 郭贤. 多参数耦合作用下典型木材表面火蔓延特性研究[D]. 武汉理工大学, 2019.

[32] 张英, 孙金华, 纪杰, 等. 高原环境下木材表面火蔓延特性的实验研究[J]. 燃烧科学与技术, 2011, 17(03):274-279.

[33] 徐青峰. 胡桃木板材下表面火蔓延过程研究[D]. 西安科技大学, 2018.

[34] 陈鹏, 孙金华. 木材在不同放置角度下火蔓延特性的实验研究[J]. 安全与环境学报, 2006(03):27-31.

[35] Djebar B. A discrete dynamical model for flame spread over com-bustible flat solid surfaces subject to pyrolysis with charring-an applica-tion example to upward flame spread[J]. Fire Safety Journal, 2003, 38(1):53-84.

[36] Quintiere J. The effects of angular orientation on flame spread over thin materials[J]. Fire Safety Journal,2001, 36(3): 291-312.

[37] 邓瑞英, 李永超, 杨茉, 等. 重力对火焰闪烁的影响及非线性分析[J]. 热能动力工程, 2020, 35(09):71-79.

[38] 邓瑞英, 李永超, 杨茉, 等. 不同伴流速度下压力对火焰闪烁的影响[J]. 动力工程学报, 2020, 40(11):906-914.

[39] Fujisawa N, Okuda T. Effects of co-flow and equivalence ratio on flickering in partially premixed flame[J]. International Journal of Heat and Mass Transfer,2018,121:1089-1098.

[40] Cao Su, Ma Bin, Bennett B A V, et al .A computational and experimental study of coflow laminar methane/air diffusion flames: effects of fuel dilution, inlet velocity, and gravity[J].Proceedings of the Combustion Institute,2015,35(1):897-903.

[41] 潘文轩, 杨茉. 同轴射流非预混火焰闪烁特性及非线性分析[J]. 动力工程学报, 2020, 40(07):571-579.

[42] 李永超, 杨茉, 李钰冰. 伴流速度和当量比对部分预混火焰闪烁频率的影响[J]. 燃烧科学与技术, 2019, 25(04):372-377.

[43] Nogenmyr K J, Kiefer J, LI Zhongshan, et al. Numerical computations and optical diagnostics of unsteady partially premixed methane/air flames[J]. Combustion and Flame,2010,157(5):915-924.

[44] Buckmaster J, Peters N. The infinite candle and its stability—a paradigm for flickering diffusion flames[J].Symposium (International) on Combustion,1988,21(1):1829-1836.

[45] 安志伟, 袁宏永, 屈玉贵. 火焰闪烁频率的测量研究. 计算机应用, 2000, 20(5):66-68.

[46] 安志伟, 袁宏永, 屈玉贵.数据采集在火焰闪烁频率的测量研究及分析中的应用. 火灾科学, 2000, 9(2):43-47.

[47] Chen Liwei, Zhang Yang. Experimental observation of the nonlinear coupling of flame flow and acoustic wave[J]. Flow Measurement and Instrumentation,2015,46:12-17.

[48] 李海航. 低压条件下气体射流的燃烧特性与火焰形态研究[D]. 中国科学技术大学,2014.

[49] 熊国良, 苏兆熙, 刘举平, 等. 火焰特性识别的Matlab实现方法[J]. 计算机工程与科学, 2013, 35(07):131-136.

[50] 邹婷, 王慧琴, 胡燕, 等. 基于小波变换和支持向量机的火灾识别算法[J]. 计算机工程与应用, 2013,49(14):250-253+270.

[51] 张兴坤. 基于视频的火焰检测算法研究[D]. 沈阳工业大学, 2017.

[52] 杨晨, 赵惠平. 火灾视频探测中火焰识别算法研究[J]. 船海工程, 2013, 42(04):25-27.

[53] 席廷宇, 邱选兵, 孙冬远, 等. 多特征量对数回归的火焰快速识别算法[J]. 计算机应用, 2017, 37(07):1989-1993.

[54] 熊才溢. 非预混火焰声学响应特性的直接数值模拟研究[D]. 中国科学技术大学, 2019.

[55] Li-Wei Chen. Application of PIV measurement techniques to study the characteristics of flame–acoustic wave interactions[J]. Flow Measurement and Instrumentation, 2015, 45:308-317.

[56] Aktas, M. K., & Farouk, B. Numerical simulation of acoustic streaming generated by finite-amplitude resonant oscillations in an enclosure[J]. The Journal of the Acoustical Society of America, 2004,116(5): 2822–2831.

[57] Fujisawa, N., Iwasaki, K., Fujisawa, K., et al. Flow visualization study of a diffusion flame under acoustic excitation[J]. Fuel, 2019,251:506–513.

[58] Hertzberg, J. R. Conditions for a split diffusion flame[J]. Combustion and Flame, 1997,109(3):314–322.

[59] Cristhian I. Sevilla-Esparza, Jeffrey L. Wegener, Sophonias Teshome, et al. Droplet combustion in the presence of acoustic excitation[J]. Combustion and Flame, 2014, 161:1604-1619.

[60] Jingxuan Li, Aimee S. Morgans, Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach[J]. Journal of Sound and Vibration, 2015, 346:345-360.

[61] Li-Wei Chen, Qian Wang, Yang Zhang. Flow characterisation of diffusion flame under non-resonant acoustic excitation[J]. Experimental Thermal and Fluid Science, 2013, 45:227-233.

[62] 汤冰, 朱旻明, 刘明侯, 等. 声激励对圆射流流场结构控制的大涡模拟[J]. 中国科学技术大学学报, 2015, 45(02):159-167.

[63] 沈忠良. 声作用下涡与火焰耦合影响NOx生成的实验与模型研究[D]. 浙江工业大学, 2015.

[64] 曹红加. 预混火焰燃烧不稳定性及其主动控制[D]. 中国科学院研究生院(工程热物理研究所), 2004.

[65] 曹红加, 王岳, 吕清刚, 等. 声波对V形预混火焰锋面皱褶的影响[J]. 燃烧科学与技术, 2010, 16(01):40-44.

[66] 邓凯, 李华, 杨臧健, 等. 基于红外和纹影技术研究声作用下火焰锋面运动及热量演化[J]. 实验流体力学, 2016, 30(06):26-31.

[67] Kim, K. T., Lee, J. G., Quay, B. D., et al. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors[J]. Combustion and Flame, 2010,157(9), 1718–1730.

[68] Deng Kai, Zhong Yi, Wang Mingxiao, et al. Effects of Acoustic Excitation on the Combustion Instability of Hydrogen-Methane Lean Premixed Swirling Flames.[J]. ACS omega,2020,5(15).

[69] Li-Wei Chen, Yang Zhang. Experimental observation of the nonlinear coupling of flame flow and acoustic wave[J]. Flow Measurement and Instrumentation,2015,46.

[70] 魏珠萍. 声波影响燃烧及燃烧火焰特性的研究[D]. 华北电力大学, 2019.

[71] Caiyi Xiong, Yanhui Liu, Cangsu Xu, et al. Extinguishing the dripping flame by acoustic wave[J]. Elsevier Ltd,2020.

[72] 甄丽. 封闭空间内的声场分布及其对燃烧的影响[D]. 华北电力大学, 2013.

[73] 陈克安. 声学测量[M]. 北京:机械工业出版社, 2004.

[74] 田琪. 基于有限元法的手机扬声器仿真研究[D]. 武汉大学, 2019.

[75] 詹姆士 G.昆棣瑞. 火灾学基础[M]. 北京:化学工业出版社, 2010:148.

中图分类号:

 TU998.1    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式