论文中文题名: | MIL-101(Fe, Al)/MoS2复合材料的制备及其吸附和光催化性能研究 |
姓名: | |
学号: | 20209226047 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0857 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 水处理技术与材料 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-16 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Preparation of MIL-101(Fe, Al)/MoS2 composite materials and its adsorption and photocatalytic performance |
论文中文关键词: | |
论文外文关键词: | Bimetallic MOFs ; MoS2 ; adsorption ; photocatalytic ; tetracycline hydrochloride ; methylene blue |
论文中文摘要: |
金属有机骨架材料(MOFs)是一种热门的新型多孔有机功能材料,高比表面积和孔隙率及结构稳定性等特点使其广泛应用于吸附、高级氧化等废水处理领域,MIL-101(Materials of Institute Lavoisier-101)是MOFs的一种,不仅具有良好的吸附能力,对可见光也有一定的响应能力,在吸附和光催化技术领域应用颇多。本文首先通过溶剂热法合成具有双金属中心的MOFs吸附材料MIL-101(Fe, Al),然后将其与具有吸附性能和半导体特性的片状过渡金属硫化物二硫化钼(Molybdenum disulfide, MoS2)复合,合成出了具有优异吸附性能和光催化性能的MIL-101(Fe, Al)/MoS2复合材料,并以MIL-101(Fe, Al)和MoS2作为对比,采用XRD、SEM、BET、Zeta电位、UV-Vis DRS、PL、EIS等手段分析材料的性质特征,以有机污染物盐酸四环素(TC)和亚甲基蓝(MB)作为目标污染物,分别探究MIL-101(Fe, Al)/MoS2的吸附性能和光催化性能,探讨了不同铁铝金属摩尔比、MoS2添加量及不同影响因素对材料吸附效果和光催化效果的影响,分析MIL-101(Fe, Al)/MoS2用于去除TC和MB的吸附机理和光催化机理。具体研究内容如下: (1)通过溶剂热法成功合成了MIL-101(Fe, Al)/MoS2复合材料,MIL-101(Fe, Al)/MoS2保持了良好的晶体形态,MoS2生长在MOFs表面,排布均匀,结构清晰。Al的掺入使原始MIL-101(Fe)的晶体结构发生畸变;添加适量MoS2后,不会改变MIL-101(Fe, Al)的形貌,且MoS2能均匀分布在晶体表面,与MIL-101(Fe, Al)形成致密紧实的结构。 (2)在MIL-101(Fe, Al)/MoS2复合材料对TC和MB的吸附过程中,最佳的铁铝金属摩尔比为3:1,最佳的MoS2添加比例是10%。MIL-101(Fe, Al)/MoS2对TC和MB的吸附过程分别在180分钟和150分钟左右达到平衡,对TC和MB的最大吸附量分别为240.68 mg·g-1和606.72 mg·g-1。MIL-101(Fe, Al)/MoS2的吸附动力学数据与吸附二级动力学模型更为拟合,吸附等温线数据与Langmuir等温线模型较为符合,说明是单分子层吸附过程,吸附过程均自发吸热。在中性条件下MIL-101(Fe, Al)/MoS2对TC的吸附效果更佳,在碱性条件下MIL-101(Fe, Al)/MoS2对MB的吸附效果更佳。静电吸附和π-π堆积作用在吸附过程中发挥主要作用。 (3)在MIL-101(Fe, Al)/MoS2复合材料对TC和MB的光催化过程中,MIL-101(Fe, Al)/MoS2具有比单一组分更强的可见光响应能力和电子空穴对分离效率。当铁铝金属摩尔比为3:1、MoS2添加比例为10%时,复合材料对TC和MB的去除效果最佳,MIL-101(Fe, Al)/MoS2投加量为0.2 g·L-1时,对浓度为20 mg·L-1的TC的总去除率为90.06%,对浓度为40 mg·L-1的MB的总去除率为95.73%。MIL-101(Fe, Al)/MoS2对TC和MB的去除效果分别在pH=6和pH=8时较好。光催化过程符合一级动力学模型,•OH是光催化过程中主要的活性物质。吸附-光催化协同作用有利于缩短反应时间,提高去除率。 |
论文外文摘要: |
Metal organic framework materials (MOFs) is a new type of porous organic functional materials of MOFs, which are widely used in the fields of adsorption, advanced oxidation and other wastewater treatments due to their high specific surface area, high porosity and structural stability. MIL-101(Materials of Institute Lavoisier-101) is one type of MOFs, which not only has good adsorption capacity, but also a certain responsiveness to visible light, thus is widely applied in adsorption and photocatalysis technology. In this paper, an adsorption material MIL-101(Fe, Al) with two metal centers was synthesized through solvothermal method first, and compounded with the molybdenum disulfide (MoS2), a sheet-like transition metal sulfide with adsorption and semiconductor properties, to synthesize MIL-101(Fe, Al)/MoS2 composite material with adsorption and photocatalytic properties. Compared with MIL-101(Fe, Al) and MoS2, XRD, SEM, BET Zeta potential, UV-Vis DRS, PL and EIS analyses were used to analyze the properties and characteristics of the materials. Organic pollutants tetracycline hydrochloride (TC) and methylene blue (MB) were used as target pollutants to explore the adsorption and photocatalytic performance of MIL-101(Fe, Al)/MoS2, and the effects of different iron aluminum metal molar ratios, MoS2 addition amounts, and influencing factors on the adsorption and photocatalytic performance of the materials were explored. Then the adsorption mechanism and photocatalytic mechanism of MIL-101(Fe, Al)/MoS2 on tetracycline hydrochloride (TC) and methylene blue (MB) were discussed, respectively. The main contents of the research are as follows: (1) MIL-101(Fe, Al)/MoS2 composite material was successfully synthesized by solvothermal method. MIL-101(Fe, Al)/MoS2 maintained good crystal morphology, and MoS2 grew on the surface of MOFs with uniform distribution and clear structure. The addition of Al caused distortion of the crystal structure of the original MIL-101(Fe). After adding an appropriate amount of MoS2, the morphology of MIL-101(Fe, Al) wasn’t changed, and MoS2 was uniformly distributed on the crystal surface, forming a dense and compact structure with MIL-101(Fe, Al). (2) The adsorption experiment showed that the optimal iron aluminum metal molar ratio of Fe to Al was 3:1 and the optimal addition ratio of MoS2 was 10%. The adsorption processes of TC and MB by MIL-101(Fe, Al)/MoS2 reached equilibrium around 180min and 150min, respectively. The maximum adsorption capacity of MIL-101(Fe, Al)/MoS2 for TC and MB was 240.68 mg·g-1 and 606.72 mg·g-1, respectively. The adsorption kinetic data of MIL-101(Fe, Al)/MoS2 was more consistent with the adsorption second-order kinetic model, and the adsorption isotherm was more consistent with the Langmuir isotherm model, indicating that it was a single-layer adsorption process. The adsorption thermodynamic data showed that the adsorption process of MIL-101(Fe, Al)/MoS2 for TC and MB was spontaneous endothermic. The adsorption effect of MIL-101(Fe, Al)/MoS2 on TC was better under neutral condition, and the adsorption effect of MIL-101(Fe, Al)/MoS2 on MB was better under alkaline condition. Electrostatic adsorption and π - π stacking were the main adsorption mechanisms. (3) The photocatalytic experiment showed that MIL-101(Fe, Al)/MoS2 had stronger visible light response ability and electron hole pair separation efficiency than single components. When the molar ratio of Fe to Al was 3:1 and the addition ratio of MoS2 was 10%, the composite material had the best removal effect on TC and MB. The total removal rate of TC at a concentration of 20 mg·L-1 was 90.06% with a dosage of 0.2 g·L-1 MIL-101(Fe, Al)/MoS2, and the total removal rate of MB at a concentration of 40 mg·L-1 was 95.73% with a dosage of 0.2 g·L-1 MIL-101(Fe, Al)/MoS2. The removal efficiency of MIL-101(Fe, Al)/MoS2 on TC and MB were better at pH=6 and pH=8, respectively. The photocatalytic process followed the first-order kinetic model, and •OH was the main active substance in the photocatalytic process. The synergistic effect of adsorption photocatalysis helped to improve the removal rate by shortening reaction time. |
参考文献: |
[3] 余关龙, 李培媛, 杨凯, 等. Fe3+掺杂BiOCl光催化剂降解盐酸四环素的性能研究[J]. 复合材料学报, 2023, 2: 1-13. [9] 裴秀, 李亚明. 共价有机框架材料的制备及对染料吸附性能的研究[J]. 无机盐工业, 2023, 55(01): 106-111. [18] 曾辉, 周启星. 二硫化钼在水环境修复中的应用前景分析[J]. 地球科学进展, 2022, 37(05): 462-471. [68] 崔炎龙. 不同形貌纳米二硫化钼的制备、微结构调控及性能研究[D]. 河北大学, 2019. [69] 李美娟, 沈舒宜, 罗国强, 等. 水热法合成球花状二硫化钼及其电化学性能[J]. 无机化学学报, 2017, 33(09): 1521-1526. [94] 陈煜, 朱雷, 刘显, 等. MIL-53(Fe)金属有机骨架的改性及降解四环素性能研究[J]. 环境科学与技术, 2023, 46(01): 1-6. [95] 胡怀生, 张鹏会. S-scheme ZnO/MoS2异质结构筑与对盐酸四环素降解性能[J]. 兰州理工大学学报, 2022, 48(06): 28-33. [99] 许洋, 蒲生彦, 季雯雯, 等. Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究[J]. 环境科学研究, 2021, 34(12): 2841-2849. [104] 张小芳, 王盼, 郭世巧, 等. g-C3N4/Ag3PO4复合催化剂的制备及其可见光降解罗丹明B和亚甲基蓝[J]. 化工新型材料, 2021, 49(09): 271-275. [105] 谢锋, 郭建峰, 王海涛, 等. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(01): 10-20. |
中图分类号: | X703 |
开放日期: | 2023-06-16 |