- 无标题文档
查看论文信息

论文中文题名:

 MIL-101(Fe, Al)/MoS2复合材料的制备及其吸附和光催化性能研究    

姓名:

 李悦    

学号:

 20209226047    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0857    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 环境工程    

研究方向:

 水处理技术与材料    

第一导师姓名:

 刘转年    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Preparation of MIL-101(Fe, Al)/MoS2 composite materials and its adsorption and photocatalytic performance    

论文中文关键词:

 双金属MOFs ; MoS2 ; 吸附 ; 光催化 ; 盐酸四环素 ; 亚甲基蓝    

论文外文关键词:

 Bimetallic MOFs ; MoS2 ; adsorption ; photocatalytic ; tetracycline hydrochloride ; methylene blue    

论文中文摘要:

金属有机骨架材料(MOFs)是一种热门的新型多孔有机功能材料,高比表面积和孔隙率及结构稳定性等特点使其广泛应用于吸附、高级氧化等废水处理领域,MIL-101(Materials of Institute Lavoisier-101)是MOFs的一种,不仅具有良好的吸附能力,对可见光也有一定的响应能力,在吸附和光催化技术领域应用颇多。本文首先通过溶剂热法合成具有双金属中心的MOFs吸附材料MIL-101(Fe, Al),然后将其与具有吸附性能和半导体特性的片状过渡金属硫化物二硫化钼(Molybdenum disulfide, MoS2)复合,合成出了具有优异吸附性能和光催化性能的MIL-101(Fe, Al)/MoS2复合材料,并以MIL-101(Fe, Al)和MoS2作为对比,采用XRD、SEM、BET、Zeta电位、UV-Vis DRS、PL、EIS等手段分析材料的性质特征,以有机污染物盐酸四环素(TC)和亚甲基蓝(MB)作为目标污染物,分别探究MIL-101(Fe, Al)/MoS2的吸附性能和光催化性能,探讨了不同铁铝金属摩尔比、MoS2添加量及不同影响因素对材料吸附效果和光催化效果的影响,分析MIL-101(Fe, Al)/MoS2用于去除TC和MB的吸附机理和光催化机理。具体研究内容如下:

(1)通过溶剂热法成功合成了MIL-101(Fe, Al)/MoS2复合材料,MIL-101(Fe, Al)/MoS2保持了良好的晶体形态,MoS2生长在MOFs表面,排布均匀,结构清晰。Al的掺入使原始MIL-101(Fe)的晶体结构发生畸变;添加适量MoS2后,不会改变MIL-101(Fe, Al)的形貌,且MoS2能均匀分布在晶体表面,与MIL-101(Fe, Al)形成致密紧实的结构。

(2)在MIL-101(Fe, Al)/MoS2复合材料对TC和MB的吸附过程中,最佳的铁铝金属摩尔比为3:1,最佳的MoS2添加比例是10%。MIL-101(Fe, Al)/MoS2对TC和MB的吸附过程分别在180分钟和150分钟左右达到平衡,对TC和MB的最大吸附量分别为240.68 mg·g-1和606.72 mg·g-1。MIL-101(Fe, Al)/MoS2的吸附动力学数据与吸附二级动力学模型更为拟合,吸附等温线数据与Langmuir等温线模型较为符合,说明是单分子层吸附过程,吸附过程均自发吸热。在中性条件下MIL-101(Fe, Al)/MoS2对TC的吸附效果更佳,在碱性条件下MIL-101(Fe, Al)/MoS2对MB的吸附效果更佳。静电吸附和π-π堆积作用在吸附过程中发挥主要作用。

(3)在MIL-101(Fe, Al)/MoS2复合材料对TC和MB的光催化过程中,MIL-101(Fe, Al)/MoS2具有比单一组分更强的可见光响应能力和电子空穴对分离效率。当铁铝金属摩尔比为3:1、MoS2添加比例为10%时,复合材料对TC和MB的去除效果最佳,MIL-101(Fe, Al)/MoS2投加量为0.2 g·L-1时,对浓度为20 mg·L-1的TC的总去除率为90.06%,对浓度为40 mg·L-1的MB的总去除率为95.73%。MIL-101(Fe, Al)/MoS2对TC和MB的去除效果分别在pH=6和pH=8时较好。光催化过程符合一级动力学模型,•OH是光催化过程中主要的活性物质。吸附-光催化协同作用有利于缩短反应时间,提高去除率。

论文外文摘要:

Metal organic framework materials (MOFs) is a new type of porous organic functional materials of MOFs, which are widely used in the fields of adsorption, advanced oxidation and other wastewater treatments due to their high specific surface area, high porosity and structural stability. MIL-101(Materials of Institute Lavoisier-101) is one type of MOFs, which not only has good adsorption capacity, but also a certain responsiveness to visible light, thus is widely applied in adsorption and photocatalysis technology. In this paper, an adsorption material MIL-101(Fe, Al) with two metal centers was synthesized through solvothermal method first, and compounded with the molybdenum disulfide (MoS2), a sheet-like transition metal sulfide with adsorption and semiconductor properties, to synthesize MIL-101(Fe, Al)/MoS2 composite material with adsorption and photocatalytic properties. Compared with MIL-101(Fe, Al) and MoS2, XRD, SEM, BET Zeta potential, UV-Vis DRS, PL and EIS analyses were used to analyze the properties and characteristics of the materials. Organic pollutants tetracycline hydrochloride (TC) and methylene blue (MB) were used as target pollutants to explore the adsorption and photocatalytic performance of MIL-101(Fe, Al)/MoS2, and the effects of different iron aluminum metal molar ratios, MoS2 addition amounts, and influencing factors on the adsorption and photocatalytic performance of the materials were explored. Then the adsorption mechanism and photocatalytic mechanism of MIL-101(Fe, Al)/MoS2 on tetracycline hydrochloride (TC) and methylene blue (MB) were discussed, respectively. The main contents of the research are as follows:

(1) MIL-101(Fe, Al)/MoS2 composite material was successfully synthesized by solvothermal method. MIL-101(Fe, Al)/MoS2 maintained good crystal morphology, and MoS2 grew on the surface of MOFs with uniform distribution and clear structure. The addition of Al caused distortion of the crystal structure of the original MIL-101(Fe). After adding an appropriate amount of MoS2, the morphology of MIL-101(Fe, Al) wasn’t changed, and MoS2 was uniformly distributed on the crystal surface, forming a dense and compact structure with MIL-101(Fe, Al).

(2) The adsorption experiment showed that the optimal iron aluminum metal molar ratio of Fe to Al was 3:1 and the optimal addition ratio of MoS2 was 10%. The adsorption processes of TC and MB by MIL-101(Fe, Al)/MoS2 reached equilibrium around 180min and 150min, respectively. The maximum adsorption capacity of MIL-101(Fe, Al)/MoS2 for TC and MB was 240.68 mg·g-1 and 606.72 mg·g-1, respectively. The adsorption kinetic data of MIL-101(Fe, Al)/MoS2 was more consistent with the adsorption second-order kinetic model, and the adsorption isotherm was more consistent with the Langmuir isotherm model, indicating that it was a single-layer adsorption process. The adsorption thermodynamic data showed that the adsorption process of MIL-101(Fe, Al)/MoS2 for TC and MB was spontaneous endothermic. The adsorption effect of MIL-101(Fe, Al)/MoS2 on TC was better under neutral condition, and the adsorption effect of MIL-101(Fe, Al)/MoS2 on MB was better under alkaline condition. Electrostatic adsorption and π - π stacking were the main adsorption mechanisms.

(3) The photocatalytic experiment showed that MIL-101(Fe, Al)/MoS2 had stronger visible light response ability and electron hole pair separation efficiency than single components. When the molar ratio of Fe to Al was 3:1 and the addition ratio of MoS2 was 10%, the composite material had the best removal effect on TC and MB. The total removal rate of TC at a concentration of 20 mg·L-1 was 90.06% with a dosage of 0.2 g·L-1 MIL-101(Fe, Al)/MoS2, and the total removal rate of MB at a concentration of 40 mg·L-1 was 95.73% with a dosage of 0.2 g·L-1 MIL-101(Fe, Al)/MoS2. The removal efficiency of MIL-101(Fe, Al)/MoS2 on TC and MB were better at pH=6 and pH=8, respectively. The photocatalytic process followed the first-order kinetic model, and •OH was the main active substance in the photocatalytic process. The synergistic effect of adsorption photocatalysis helped to improve the removal rate by shortening reaction time.

参考文献:

[1] SARAVANAN A, KUMAR P S, HEMAVATHY R V, et al. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives[J]. Chemosphere, 2022, 307: 135713.

[2] LIN X, SU M, FANG F, et al. Hierarchically Annular Mesoporous Carbon Derived from Phenolic Resin for Efficient Removal of Antibiotics in Wastewater[J]. Molecules, 2022, 27(19): 196735.

[3] 余关龙, 李培媛, 杨凯, 等. Fe3+掺杂BiOCl光催化剂降解盐酸四环素的性能研究[J]. 复合材料学报, 2023, 2: 1-13.

[4] WANG H, ZHANG J, WANG P, et al. Bifunctional copper modified graphitic carbon nitride catalysts for efficient tetracycline removal: Synergy of adsorption and photocatalytic degradation[J]. Chinese Chemical Letters, 2020, 31(10): 2789-2794.

[5] LIU J, LIN H, HE Y, et al. Novel CoS2/MoS2@Zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater[J]. Journal of Cleaner Production, 2020, 260: 121047.

[6] GUO J, LIU T, PENG H, et al. Efficient Adsorption-Photocatalytic Removal of Tetracycline Hydrochloride over Octahedral MnS[J]. International Journal of Molecular Sciences, 2022, 23(16): 119343.

[7] KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-4697.

[8] PEREIRA A G B, RODRIGUES F H A, PAULINO A T, et al. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review[J]. Journal of Cleaner Production, 2021, 284: 124703.

[9] 裴秀, 李亚明. 共价有机框架材料的制备及对染料吸附性能的研究[J]. 无机盐工业, 2023, 55(01): 106-111.

[10] YANG Z, ZHAO Z, YANG X, et al. Xanthate modified magnetic activated carbon for efficient removal of cationic dyes and tetracycline hydrochloride from aqueous solutions[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2021, 615: 126273.

[11] LV T, ZHAO Y, LI S, et al. One-pot synthesis of a CaBi2O4/graphene hybrid aerogel as a high-efficiency visible-light-driven photocatalyst[J]. Journal of Physics and Chemistry of Solids, 2023, 174: 111164.

[12] JAMAL M, AWADASSEID A, SU X. Exploring potential bacterial populations for enhanced anthraquinone dyes biodegradation: a critical review[J]. Biotechnology Letters, 2022, 44(9): 1011-1025.

[13] SUBRAHMANYA T M, WIDAKDO J, MANI S, et al. An eco-friendly and reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of graphene oxide and SBA-15/PDA[J]. Journal of Cleaner Production, 2022, 349: 131425.

[14] WAN H, WANG C, GONG L, et al. Potential Application of Discarded Natural Coal Gangue for the Removal of Tetracycline Hydrochloride (TC) from an Aqueous Solution[J]. Toxics, 2023, 11(1): 110120.

[15] PERUMAL K, SHANAVAS S, AHAMAD T, et al. Construction of Ag2CO3/BiOBr/CdS ternary composite photocatalyst with improved visible-light photocatalytic activity on tetracycline molecule degradation[J]. Journal of Environmental Sciences, 2023, 125: 47-60.

[16] ZORAINY M Y, GAR ALALM M, KALIAGUINE S, et al. Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications[J]. Journal of Materials Chemistry A, 2021, 9(39): 22159-22217.

[17] CHEN L, WANG H-F, LI C, et al. Bimetallic metal-organic frameworks and their derivatives[J]. Chemical Science, 2020, 11(21): 5369-5403.

[18] 曾辉, 周启星. 二硫化钼在水环境修复中的应用前景分析[J]. 地球科学进展, 2022, 37(05): 462-471.

[19] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature: International weekly journal of science[J]. 1999, 402: 6759-6771.

[20] SRIRAM G, BENDRE A, MARIAPPAN E, et al. Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review[J]. Sustainable Materials and Technologies, 2022, 31: 100378.

[21] MIAO Q, JIANG L, YANG J, et al. MOF/hydrogel composite-based adsorbents for water treatment: A review[J]. Journal of Water Process Engineering, 2022, 50: 103348.

[22] ZHAN W, SUN L, HAN X. Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal-Organic Frameworks[J]. Nano-micro letters, 2019, 11(1): 111215.

[23] ZHE T, SHEN S, LI F, et al. Bimetallic-MOF-derived crystalline-amorphous interfacial sites for highly efficient nitrite sensing[J]. Food Chemistry, 2023, 402: 134228.

[24] XU S, QI X, GAO S, et al. The strategy of cell extract based metal organic frameworks (CE-MOF) for improved enzyme characteristics[J]. Enzyme and Microbial Technology, 2023, 162: 111034.

[25] CAI M, CHEN G, QIN L, et al. Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancer[J]. Pharmaceutics, 2020, 12(3): 203023.

[26] PALAKOLLU V N, CHEN D, TANG J-N, et al. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors[J]. Microchimica Acta, 2022, 189(4): 133661.

[27] MEHTAB T, YASIN G, ARIF M, et al. Metal-organic frameworks for energy storage devices: Batteries and supercapacitors[J]. Journal of Energy Storage, 2019, 21: 632-646.

[28] LIU J, CHEN M, CUI H. Recent progress in environmental applications of metal-organic frameworks[J]. Water Science and Technology, 2021, 83(1): 26-38.

[29] ZHAO F, LIU Y, BEN HAMMOUDA S, et al. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media[J]. Applied Catalysis B-Environmental, 2020, 272: 119033.

[30] MAI Z, LIU D. Synthesis and Applications of Isoreticular Metal-Organic Frameworks IRMOFs-n (n=1, 3, 6, 8)[J]. Crystal Growth & Design, 2019, 19(12): 7439-7462.

[31] SUN Y, ZHANG N, YUE Y, et al. Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review[J]. Environmental Science-Nano, 2022, 9(11): 4069-4092.

[32] KOUSER S, HEZAM A, KHADRI M J N, et al. A review on zeolite imidazole frameworks: synthesis, properties, and applications[J]. Journal of Porous Materials, 2022, 29(3): 663-681.

[33] ZHANG H, HU X, LI T, et al. MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review[J]. Journal of Hazardous Materials, 2022, 429: 128271.

[34] RU J, WANG X, WANG F, et al. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111577.

[35] REGO R M, KURKURI M D, KIGGA M. A comprehensive review on water remediation using UiO-66 MOFs and their derivatives[J]. Chemosphere, 2022, 302: 134845.

[36] XIANG H, AMEEN A, SHANG J, et al. Synthesis and modification of moisture-stable coordination pillared-layer metal-organic framework (CPL-MOF) CPL-2 for ethylene/ethane separation[J]. Microporous and Mesoporous Materials, 2020, 293: 109784.

[37] LI C, LI N, CHANG L, et al. Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations[J]. Acta Chimica Sinica, 2022, 80(3): 340-358.

[38] LIU M, PENG M, DONG B, et al. Explicating the Role of Metal Centers in Porphyrin-based MOFs of PCN-222(M) for Electrochemical Reduction of CO2[J]. Chinese Journal of Structural Chemistry, 2022, 41(7): 7046-7052.

[39] VAKILI R, XU S, AL-JANABI N, et al. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption[J]. Microporous and Mesoporous Materials, 2018, 260: 45-53.

[40] WANG F-X, WANG C-C, WANG P, et al. Syntheses and Applications of UiO Series of MOFs[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(5): 713-737.

[41] DAI J, XIAO X, DUAN S, et al. Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water[J]. Chemical Engineering Journal, 2018, 331: 64-74.

[42] SINGH N K, GUPTA S, PECHARSKY V K, et al. Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks[J]. Journal of Alloys and Compounds, 2017, 696: 118-122.

[43] DU C, ZHANG Z, YU G, et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis[J]. Chemosphere, 2021, 272: 129501.

[44] CHEN X, LIU X, ZHU L, et al. One-step fabrication of novel MIL-53(Fe, Al) for synergistic adsorption-photocatalytic degradation of tetracycline[J]. Chemosphere, 2022, 291: 133032.

[45] GUO Q, LI Y, ZHENG L-W, et al. Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability[J]. Journal of Environmental Sciences, 2023, 128: 213-223.

[46] LI S. Preparation and characterization of Bimetal MOF-74-Co/Cu and its toluene adsorption performances[J]. Journal of Porous Materials, 2022, 30: 421-432.

[47] LIU F, CAO J, YANG Z, et al. Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53 (Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions[J]. Journal of Colloid and Interface Science, 2021, 581: 195-204.

[48] NGUYEN M B, SY D T, THOA V T K, et al. Bimetallic Co-Fe-BTC/CN nanocomposite synthesised via a microwave-assisted hydrothermal method for highly efficient Reactive Yellow 145 dye photodegradation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140: 104543.

[49] CHEN B, LI Y, LI M, et al. Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite[J]. Microporous and Mesoporous Materials, 2021, 328: 111457.

[50] KARAMI K, NOORI F, BAYAT P, et al. Study on MoS2/Fe-MIL-88NH(2) Transition metal dichalcogenide/Metal-organic framework as a novel composite for highly adsorption of methylene blue dye from aqueous solutions[J]. Applied Organometallic Chemistry, 2023, 37(4): 7044.

[51] 赵方彪, 宋乃忠, 宁维坤, 等. 磁性金属有机骨架材料Fe3O4@NH2-MIL-53(Al)的制备及对铅的吸附研究[J]. 光谱学与光谱分析, 2015, 35(09): 2439-2443.

[52] CHEN A, ZHANG J, ZHOU Y, et al. Preparation of a zinc-based metal-organic framework (MOF-5)/BiOBr heterojunction for photodegradation of Rhodamine B[J]. Reaction Kinetics Mechanisms and Catalysis, 2021, 134(2): 1003-1015.

[53] SIRATI M M, HUSSAIN D, MAHMOOD K, et al. Single-step hydrothermal synthesis of amine functionalized Ce-MOF for electrochemical water splitting[J]. Journal of Taibah University for Science, 2022, 16(1): 525-534.

[54] GAO Y, PAN Y, ZHOU Z, et al. The Carboxyl Functionalized UiO-66-(COOH)2 for Selective Adsorption of Sr2+[J]. Molecules, 2022, 27(4): 1208.

[55] XUE C, ZHANG F, CHANG Q, et al. MIL-125 and NH2-MIL-125 Modified TiO2 Nanotube Array as Efficient Photocatalysts for Pollute Degradation[J]. Chemistry Letters, 2018, 47(6): 711-714.

[56] SOSA J D, BENNETT T F, NELMS K J, et al. Metal-Organic Framework Hybrid Materials and Their Applications[J]. Crystals, 2018, 8(8): 325.

[57] CHANG P-H, MUKHOPADHYAY R, ZHONG B, et al. Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water[J]. Journal of Colloid and Interface Science, 2023, 636: 459-469.

[58] KARAMI K, BAYAT P, JAVADIAN S, et al. A novel TMD/MOF (Transition Metal Dichalcogenide/Metalorganic frameworks) composite for highly and selective adsorption of methylene blue dye from aqueous mixture of MB and MO[J]. Journal of Molecular Liquids, 2021, 342: 117520.

[59] CHAKHTOUNA H, BENZEID H, ZARI N, et al. Microwave-assisted synthesis of MIL-53(Fe)/biochar composite from date palm for ciprofloxacin and ofloxacin antibiotics removal[J]. Separation and Purification Technology, 2023, 308: 122850.

[60] KHAN M M, RAHMAN A, MATUSSIN S N. Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts[J]. Nanomaterials, 2022, 12(16): 122820.

[61] LIU N, HUANG W, TANG M, et al. In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen[J]. Chemical Engineering Journal, 2019, 359: 254-264.

[62] SEPEHRMANSOURIE H, ALAMGHOLILOO H, PESYAN N N, et al. A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation[J]. Applied Catalysis B-Environmental, 2023, 321: 122082.

[63] WU M, HUANG M, ZHANG B, et al. Construction of 3D porous BiOBr/MIL-101(Cr) Z-scheme heterostructure for boosted photocatalytic degradation of tetracycline hydrochloride[J]. Separation and Purification Technology, 2023, 307: 122744.

[64] LIU Z, HE W, ZHANG Q, et al. Preparation of a GO/MIL-101(Fe) Composite for the Removal of Methyl Orange from Aqueous Solution[J]. Acs Omega, 2021, 6(7): 4597-4608.

[65] LI X, GUO W, LIU Z, et al. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A[J]. Journal of Hazardous Materials, 2017, 324: 665-672.

[66] HUANG C, WANG J, LI M, et al. Construction of a novel Z-scheme V2O5/NH2-MIL-101(Fe) composite photocatalyst with enhanced photocatalytic degradation of tetracycline[J]. Solid State Sciences, 2021, 117: 106611.

[67] KROMAH V, ZHANG G. Aqueous Adsorption of Heavy Metals on Metal Sulfide Nanomaterials: Synthesis and Application[J]. Water, 2021, 13(13): 1843.

[68] 崔炎龙. 不同形貌纳米二硫化钼的制备、微结构调控及性能研究[D]. 河北大学, 2019.

[69] 李美娟, 沈舒宜, 罗国强, 等. 水热法合成球花状二硫化钼及其电化学性能[J]. 无机化学学报, 2017, 33(09): 1521-1526.

[70] ZHAO Z-Y, LIU Q-L. Study of the layer-dependent properties of MoS2 nanosheets with different crystal structures by DFT calculations[J]. Catalysis Science & Technology, 2018, 8(7): 1867-1879.

[71] ZHU W, CHENG Y, WANG C, et al. Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications[J]. Nanoscale, 2021, 13(20): 9112-9146.

[72] WANG Z, MI B. Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.

[73] CHEN M, GUO Q, CUI J, et al. Enhanced sorption and reduction of Cr(VI) by the flowerlike nanocomposites combined with molybdenum disulphide and polypyrrole[J]. Environmental Technology, 2022, 43(18): 2796-2808.

[74] LI S, HUANG W, YANG P, et al. One-pot synthesis of N-doped carbon intercalated molybdenum disulfide nanohybrid for enhanced adsorption of tetracycline from aqueous solutions[J]. Science of the Total Environment, 2021, 754: 141925.

[75] LIANG D, LIANG C, MENG L, et al. Polyoxometalate@MIL-101/MoS2: a composite material based on the MIL-101 platform with enhanced performances[J]. New Journal of Chemistry, 2019, 43(8): 3432-3438.

[76] KHAN Z H, GAO M, WU J, et al. Mechanism of As(III) removal properties of biochar-supported molybdenum-disulfide/iron-oxide system[J]. Environmental Pollution, 2021, 287: 117600.

[77] CAO W, ZHANG Y, SHI Z, et al. Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles[J]. Chemical Engineering Journal, 2021, 417: 128112.

[78] ROY D, NEOGI S, DE S. Degradative removal of Sulfamethoxazole through visible light driven peroxymonosulfate activation by direct Z-scheme MIL-53(Co/Fe)/MoS2 heterojunction composite: Role of dual redox mechanism and efficient charge separation[J]. Process Safety and Environmental Protection, 2022, 161: 723-738.

[79] ZHANG Y, CAO W, ZHU B, et al. Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance[J]. Journal of Colloid and Interface Science, 2022, 611: 706-717.

[80] GISELA QUINTERO-ALVAREZ F, KARINA ROJAS-MAYORGA C, ILEANA MENDOZA-CASTILLO D, et al. Physicochemical Modeling of the Adsorption of Pharmaceuticals on MIL-100-Fe and MIL-101-Fe MOFs[J]. Adsorption Science & Technology, 2022, 2022: 1-14.

[81] ZHU L, CHEN Y, LIU X, et al. MoS2-modified MIL-53(Fe) for synergistic adsorption-photocatalytic degradation of tetracycline[J]. Environmental Science and Pollution Research, 2022, 30: 86-95.

[82] ROY D, NEOGI S, DE S. Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A(Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 428: 131028.

[83] YANG Z, ZHU T, XIONG M, et al. Tuning adsorption capacity of metal-organic frameworks with Al3+ for phosphorus removal: Kinetics, isotherm and regeneration[J]. Inorganic Chemistry Communications, 2021, 132: 108834.

[84] WANG D, JIA F, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid and Interface Science, 2018, 519: 273-284.

[85] WU Y, LIU Z, BAKHTARI M F, et al. Preparation of GO/MIL-101(Fe,Cu) composite and its adsorption mechanisms for phosphate in aqueous solution[J]. Environmental Science and Pollution Research, 2021, 28(37): 51391-51403.

[86] BEYDAGHDARI M, SABOOR F H, BABAPOOR A, et al. Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment[J]. Energies, 2022, 15(6): 1-34.

[87] CAO J, YANG Z-H, XIONG W-P, et al. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis[J]. Chemical Engineering Journal, 2018, 353: 126-137.

[88] SUN Y, CHEN M, LIU H, et al. Adsorptive removal of dye and antibiotic from water with functionalized zirconium-based metal organic framework and graphene oxide composite nanomaterial Uio-66-(OH)2/GO[J]. Applied Surface Science, 2020, 525: 146614.

[89] LI Z, LIU X, JIN W, et al. Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures[J]. Journal of Colloid and Interface Science, 2019, 554: 692-704.

[90] GAO D, ZHANG Y, YAN H, et al. Construction of UiO-66@MoS2 flower-like hybrids through electrostatically induced self-assembly with enhanced photodegradation activity towards lomefloxacin[J]. Separation and Purification Technology, 2021, 265: 118486.

[91] LI Y, LAI Z, HUANG Z, et al. Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics[J]. Applied Surface Science, 2021, 550: 149342.

[92] AHMADI S, RAHDAR A, IGWEGBE C A, et al. Praseodymium-doped cadmium tungstate (CdWO4) nanoparticles for dye degradation with sonocatalytic process[J]. Polyhedron, 2020, 190: 114792.

[93] TAHIR N, ZAHID M, BHATTI I A, et al. Fabrication of visible light active Mn-doped Bi2WO6-GO/MoS2 heterostructure for enhanced photocatalytic degradation of methylene blue[J]. Environmental Science and Pollution Research, 2022, 29(5): 6552-6567.

[94] 陈煜, 朱雷, 刘显, 等. MIL-53(Fe)金属有机骨架的改性及降解四环素性能研究[J]. 环境科学与技术, 2023, 46(01): 1-6.

[95] 胡怀生, 张鹏会. S-scheme ZnO/MoS2异质结构筑与对盐酸四环素降解性能[J]. 兰州理工大学学报, 2022, 48(06): 28-33.

[96] LU H, JU T, SHE H, et al. Microwave-assisted synthesis and characterization of BiOI/BiF(3)p-n heterojunctions and its enhanced photocatalytic properties[J]. Journal of Materials Science-Materials in Electronics, 2020, 31(16): 13787-13795.

[97] YIN Z, QI S, DENG S, et al. Bi2MoO6/TiO2 heterojunction modified with Ag quantum dots: a novel photocatalyst for the efficient degradation of tetracycline hydrochloride[J]. Journal of Alloys and Compounds, 2021, 888: 161582.

[98] CHEN W-Q, LI L-Y, LI L, et al. MoS2/ZIF-8 Hybrid Materials for Environmental Catalysis: Solar-Driven Antibiotic-Degradation Engineering[J]. Engineering, 2019, 5(4): 755-767.

[99] 许洋, 蒲生彦, 季雯雯, 等. Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究[J]. 环境科学研究, 2021, 34(12): 2841-2849.

[100] 马雄, 陈凯怡, 牛斌, 等. BiOCl0.9I0.1/β–Bi2O3复合材料在模拟太阳光下光催化降解盐酸四环素性能(英文)[J]. Chinese Journal of Catalysis, 2020, 41(10): 1535-1543.

[101] BOUIDER B, HAFFAD S, BOUAKAZ B S, et al. MOF-5/Graphene Oxide Composite Photocatalyst for Enhanced Photocatalytic Activity of Methylene Blue Degradation Under Solar Light[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2023.

[102] MA S, XIA X, SONG Q, et al. Heterogeneous junction Ni-MOF@BiOBr composites: Photocatalytic degradation of methylene blue and ciprofloxacin[J]. Solid State Sciences, 2023, 138: 107135.

[103] NGUYEN TIEN T, KIM D, YOO K S, et al. Synthesis of Cu-doped MOF-235 for the Degradation of Methylene Blue under Visible Light Irradiation[J]. Bulletin of the Korean Chemical Society, 2019, 40(2): 112-117.

[104] 张小芳, 王盼, 郭世巧, 等. g-C3N4/Ag3PO4复合催化剂的制备及其可见光降解罗丹明B和亚甲基蓝[J]. 化工新型材料, 2021, 49(09): 271-275.

[105] 谢锋, 郭建峰, 王海涛, 等. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(01): 10-20.

中图分类号:

 X703    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式