- 无标题文档
查看论文信息

论文中文题名:

 矿用截齿表面镍基激光熔覆层的制备、组织与耐磨性研究    

姓名:

 张佳豪    

学号:

 19211203026    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085204    

学科名称:

 工学 - 工程 - 材料工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 材料表面防护    

第一导师姓名:

 刘二勇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-05-26    

论文外文题名:

 Research on Preparation, Microstructure and Wear Resistance of Nickel-based Laser Cladding Layer on the Surface of Mining Pick    

论文中文关键词:

 矿用截齿 ; 激光熔覆 ; 镍基熔覆层 ; 复合强化 ; 耐磨性    

论文外文关键词:

 Mining pick ; Laser cladding ; Nickel-based cladding layer ; Compound reinforcement ; Wear resistance    

论文中文摘要:

矿用截齿是矿井开采损坏率最大的零件,在大冲击、高磨损的严苛工况,截齿的损坏现象尤为严重,失效截齿将直接影响整个采掘作业的效率和生产进程。随着激光熔覆技术的迅速发展,制备具有优异耐磨性的陶瓷相增强金属基耐磨层成为可能,在矿用截齿表面强化防护和修复等方面具有巨大的发展前景。本文在对市售典型矿用截齿的组织和力学性能进行综合评价基础上,利用激光熔覆技术在截齿齿体表面分别制备了WC、TiC、(TiC+WC)增强Ni基熔覆层,分析了熔覆层的微观组织结构以及在三体和冲击工况下磨损特性,探究了WC及TiC含量和配比对Ni基熔覆层组织和性能的影响规律。本文获得了如下主要结论:

(1)具有高致密的硬质合金、高抗剪强度的钎焊层、恰当的热处理制度和高体积分数硬质相的防护层是提升截齿服役性能的有效手段,尤以高硬质相含量熔覆防护层对改善低冲击工况下截齿的三体磨损性能更为突出。

(2)WC增强Ni基熔覆层主要由Ni基固溶体γ、WC、W2C和少量(Cr,Fe)7C3、Fe3C、Ni4B3组成,WC和γ基体界面结合良好。WC在基体中分布不均匀,熔覆层上部分布较少。由于WC颗粒的熔解在基体中熔融析出细小的三元共晶组织,而且共晶组织的形态与WC添加量以及熔覆层所处部位有关。

(3)WC增强Ni基熔覆层的磨损失重和磨损机制与所处工况有关。在三体磨料磨损工况下,磨损失重随着WC含量的增加呈现降低趋势;但在冲击磨料磨损工况下,磨损失重随WC含量的增加而增加。随着WC含量的增加三体磨损机制由低硬质相下的微切削磨料磨损转变为高硬质相下的多次塑变磨损;冲击磨损机制由低硬质相下的凿削式塑变疲劳磨损转变为高硬质相的破碎剥落机制。

(4)TiC增强Ni基熔覆层主要由TiC、γ(Ni,Fe)组成,TiC、WC复合增强Ni基激光熔覆层主要由WC、W2C、TiC、γ-Ni和少量的(Cr,Fe)7C3、(W,TiC)C1-x组成,其中复合增强Ni基熔覆层中的W元素在TiC周围发生了偏聚现象,原位生成新的固溶体。

(5)TiC、WC复合增强Ni基熔覆层的复合强化进一步提升了熔覆层的显微硬度,在三体磨料磨损工况下,磨损失重随硬质相含量的增加呈降低趋势;但在冲击磨料磨损工况下,高陶瓷相提高熔覆层本征脆性,磨损失重随硬质相含量增加而增加。

论文外文摘要:

Mining pick is the part with the largest damage rate in mining. Under the severe working conditions of large impact and high wear, the damage of pick is particularly serious. The failure of pick will directly affect the efficiency and production process of the whole mining operation. With the rapid development of laser cladding technology, it is possible to prepare ceramic phase reinforced metal based wear-resistant layer with excellent wear resistance. It has great development prospects in strengthening protection and repair of mining pick surface. Based on the comprehensive evaluation of the microstructure and mechanical properties of typical commercial mining pick, WC, TiC and (TiC + WC) reinforced Ni based cladding layers were prepared on the surface of pick by laser cladding technology. The microstructure and wear characteristics of the cladding layer under three body and impact conditions were analyzed, and the effects of WC and TiC content and ratio on the microstructure and properties of Ni based cladding layer were explored. The main conclusions of this paper are as follows:

(1)High density cemented carbide, brazing layer with high shear strength, appropriate heat treatment system and protective layer with high volume fraction of hard phase are effective means to improve the service performance of the pick, especially the cladding protective layer with high content of hard phase is more prominent to improve the three body wear performance of the pick under low impact conditions.

(2)WC reinforced Ni based cladding layer is mainly composed of Ni based solid solution γ、 WC, W2C and a small amount of (Cr, Fe)7C3, Fe3C and Ni4B3, the interface between WC and γ-matrix is well bonded. WC is unevenly distributed in the matrix and less distributed in the upper part of the cladding layer. Due to the melting of WC particles, fine ternary eutectic structure is melted and precipitated in the matrix, and the morphology of eutectic structure is related to the amount of WC and the position of cladding layer.

(3)The wear weight loss and wear mechanism of WC particle reinforced Ni based cladding layer are related to the working conditions. Under the condition of three body abrasive wear, the wear weight loss decreases with the increase of WC content; However, under the condition of impact abrasive wear, the wear weight loss increases with the increase of WC content. With the increase of WC content, the three body wear mechanism changes from micro cutting abrasive wear in low hard phase to multiple plastic wear in high hard phase; The impact wear mechanism changes from chiseling plastic deformation fatigue wear under low hard phase to crushing and spalling mechanism of high hard phase.

(4)TiC reinforced Ni based cladding layer is mainly composed of TiC, γ (Ni, Fe). TiC and WC composite reinforced Ni based laser cladding layer is mainly composed of WC, W2C, TiC, γ - Ni and a small amount of (Cr, Fe)7C3, (W, TiC)C1-x composition. The W element in the composite reinforced Ni based cladding layer is biased around TiC and forms a new solid solution in situ.

(5)The composite strengthening of TiC and WC composite reinforced Ni based cladding layer further improved the microhardness of the cladding layer. Under the condition of three body abrasive wear, the wear weight loss decreases with the increase of hard phase content; However, under the condition of impact abrasive wear, the high ceramic phase improved the intrinsic brittleness of the cladding layer, and the wear weight loss increases with the increase of the content of hard phase.

参考文献:

[1] 吴达. 我国煤炭产业供给侧改革与发展路径研究[D]. 北京: 中国地质大学, 2016.

[2] 陈梓华. 煤矿安全隐患智能采集与智慧决策系统[D]. 淮南: 安徽理工大学, 2019.

[3] 刘先彬. 中国煤炭产能过剩成因机理和对策分析[D]. 开封: 河南大学, 2016.

[4] 何泠. 矿用截齿失效分析及工程应用研究[D]. 太原: 中北大学, 2016.

[5] 罗晨旭. 滚筒采煤机开采含煤岩界面煤层截割特性研究[D]. 北京: 中国矿业大学, 2015.

[6] 陆小龙, 刘秀波, 余鹏程, 等. 后热处理对304不锈钢激光熔覆Ni60/h-BN自润滑耐磨复合涂层组织和摩擦学性能的影响[J]. 摩擦学学报, 2016, 36(01): 48-54.

[7] 苏秀平. 采煤机自动调高控制及其关键技术研究[D]. 北京: 中国矿业大学, 2013.

[8] 张见全. 采煤机截齿耐磨堆焊研究[D]. 北京: 中国矿业大学, 2014.

[9] 白涛. 浅析中国煤矿巷道掘进技术和装备的现状与发展[J]. 能源与节能, 2022, (01): 136-137.

[10] 董文敏, 贾新国, 崔永杰. 镐型截齿与刀型截齿优劣之比较[J]. 煤炭工程, 2001, (11): 13-15.

[11] 王春华, 李博识. 新型组合式镐型截齿结构改进与仿真分析[J]. 现代制造工程, 2015, (06): 93-97.

[12] 阎振东. 采煤机镐型截齿与刀型截齿的开采实践研究[J]. 山西煤炭, 1996, (04): 31-32.

[13] 王立平. 采掘机械镐型截齿截割破岩机理研究[D]: 北京: 中国矿业大学, 2017.

[14] 王海鹏. 矿用截齿结构材料分析及其齿头性能研究[D]: 太原: 中北大学, 2016.

[15] Calderon RD, Edtmaier C, Schubert WD. Novel binders for WC-based cemented carbides with high Cr contents[J]. International Journal of Refractory Metals & Hard Materials, 2019, 85: 105063.

[16] 韩小冰. 采煤机截齿齿体材料及工艺研究[J]. 当代化工研究, 2020, (09): 127-128.

[17] 姬玉媛. 怎样选好矿用截齿的刀体材料及热处理方式?[J]. 现代零部件, 2007, (02): 64-65.

[18] 徐美玲. 高强度截齿钢组织与性能的研究[D].西安: 西安工业大学, 2012.

[19] 赵运才, 唐果宁. 采煤机截齿齿体材料及工艺分析[J]. 矿山机械, 1999, (12): 22-23.

[20] 程巨强. 采煤机截齿的选材与制造工艺[J]. 凿岩机械气动工具, 2013, (01): 25-30.

[21] Liu S, Ji H, Liu X, et al. Experimental research on wear of conical pick interacting with coal-rock[J]. Engineering Failure Analysis, 2017, 74: 172-187.

[22] Eswaramoorthy SK, Sakthivel NA, Dass A. Core Size Conversion of Au-329(SCH2CH2Ph)(84) to Au-279(SPh-tBu)(84) Nanomolecules[J]. Journal of Physical Chemistry C, 2019, 123(14): 9634-9639.

[23] Liu X, Geng Q. Effect of contact characteristics on the self-rotation performance of conical picks based on impact dynamics modelling[J]. Royal Society Open Science, 2020, 7(5): 200362.

[24] Liu X, Tang P, Li X, et al. Self-rotatory performance of conical cutter interacted with rock material[J]. Engineering Failure Analysis, 2017, 80: 197-209.

[25] Shao W, Li X, Sun Y, et al. Parametric study of rock cutting with SMART(*)CUT picks[J]. Tunnelling and Underground Space Technology, 2017, 61: 134-144.

[26] Wang X, Wang QF, Liang YP, et al. Dominant Cutting Parameters Affecting the Specific Energy of Selected Sandstones when Using Conical Picks and the Development of Empirical Prediction Models[J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3111-3128.

[27] Dewangan S, Chattopadhyaya S. Characterization of Wear Mechanisms in Distorted Conical Picks After Coal Cutting[J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 225-242.

[28] 陈华辉. 耐磨材料应用手册[M]. 北京: 机械工业出版社, 2007: 645.

[29] 薛瑞. 采煤用WC-Co硬质合金截齿的失效分析[J]. 科技创新导报, 2012, (28): 1-3.

[30] Hu D, Liu Y, Chen H, et al. Microstructure and wear resistance of Ni-based tungsten carbide coating by laser cladding on tunnel boring machine cutter ring[J]. Surface & Coatings Technology, 2020, 404: 126432.

[31] Beste U, Jacobson S. A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons[J]. Wear, 2008, 264(11-12): 1129-1141.

[32] 张春红, 张宁, 强颖怀. 采煤机截齿齿体40Cr的热处理及耐磨性能研究[J]. 煤矿机械, 2014, 35(01): 90-92.

[33] 王保国. 矿用截齿节能热处理工艺[J]. 金属加工(热加工), 2014, (S2): 132-133.

[34] 陈天佐, 李泽高. 金属堆焊技术[M]. 北京: 机械工业出版社, 1991: 107.

[35] 陈平, 张厚安, 唐果宁, 等. MoSi2/CrWMn钢干摩擦磨损特性及磨损机理的研究[J]. 矿冶工程, 2002, (04): 103-105.

[36] 高英. 煤矿用截齿失效研究现状及发展趋势[J]. 装备制造技术, 2010, (09): 107-109.

[37] 梁华, 董良, 韩光普, 等. 42CrMo表面等离子熔覆层组织与性能研究[J]. 煤矿机械, 2014, 35(03): 39-41.

[38] 杨盼, 王琪, 马丹丹, 等. 截齿镍基钴包碳化钨激光熔覆涂层磨损性能研究[J]. 矿冶工程, 2015, 35(01): 116-119.

[39] Cheniti B, Miroud D, Hvizdos P, et al. Investigation of WC decarburization effect on the microstructure and wear behavior of WC-Ni hardfacing under dry and alkaline wet conditions[J]. Materials Chemistry and Physics, 2018, 208: 237-247.

[40] Torgerson TB, Harris MD, Alidokht SA, et al. Room and elevated temperature sliding wear behavior of cold sprayed Ni-WC composite coatings[J]. Surface & Coatings Technology, 2018, 350: 136-145.

[41] 李志忠. 激光表面强化[M]. 北京: 机械工业出版社, 1992: 97.

[42] 关振中. 激光加工工艺手册[M]. 北京: 中国计量出版社, 1998: 223.

[43] 闫毓禾, 钟敏霖. 高功率激光加工及其应用[M]. 天津:天津科学技术出版社, 1994:156.

[44] Lei J, Shi C, Zhou S, et al. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding[J]. Surface & Coatings Technology, 2018, 334: 274-285.

[45] Wirth F, Wegener K. A physical modeling and predictive simulation of the laser cladding process[J]. Additive Manufacturing, 2018, 22: 307-319.

[46] Siddiquli AA, Dubey AK. Recent trends in laser cladding and surface alloying[J]. Optics and Laser Technology, 2021, 134: 106619.

[47] Chai L, Chen B, Wang S, et al. Microstructural characteristics of a commercially pure Zr treated by pulsed laser at different powers[J]. Materials Characterization, 2015, 110: 25-32.

[48] Fesharaki MN, Shoja-Razavi R, Mansouri HA, et al. Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods[J]. Surface & Coatings Technology, 2018, 353: 25-31.

[49] Dai JH, Wang TT, Chai LJ, et al. Characterization and correlation of microstructure and hardness of Ti–6Al–4V sheet surface-treated by pulsed laser - ScienceDirect[J]. Journal of Alloys and Compounds, 2020, 826: 154243.

[50] Meng L, Zhao W, Hou K, et al. A comparison of microstructure and mechanical properties of laser cladding and laser-induction hybrid cladding coatings on full-scale rail[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019, 748: 1-15.

[51] Wu ZP, Li T, Li Q, et al. Process optimization of laser cladding Ni60A alloy coating in remanufacturing[J]. Optics and Laser Technology, 2019, 120: 105718.

[52] 王开明, 雷永平, 符寒光, 等. 功率对激光熔覆Ni基WC涂层组织与硬度的影响[J]. 稀有金属材料与工程, 2017, 46(11): 3474-3478.

[53] 张魁武. 国外激光熔覆材料、工艺和组织性能的研究[J]. 金属热处理, 2002, (06): 1-8.

[54] Debroy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components - Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.

[55] Frazier WE. Metal Additive Manufacturing: A Review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928.

[56] Khodabakhshi F, Gerlich AP. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review[J]. Journal of Manufacturing Processes, 2018, 36: 77-92.

[57] Stavroulakis PI, Leach RK. Invited Review Article: Review of post-process optical form metrology for industrial-grade metal additive manufactured parts[J]. Review of Scientific Instruments, 2016, 87(4): 041101.

[58] Zhang S, Han B, Li M, et al. Microstructure and high temperature erosion behavior of laser cladded CoCrFeNiSi high entropy alloy coating[J]. Surface & Coatings Technology, 2021, 417: 127218.

[59] Zhao Y, Yu T, Guan C, et al. Microstructure and friction coefficient of ceramic (TiC, TiN and B4C) reinforced Ni-based coating by laser cladding[J]. Ceramics International, 2019, 45(16): 20824-20836.

[60] Chen L, Zhao Y, Chen X, et al. Repair of spline shaft by laser-cladding coarse TiC reinforced Ni-based coating: Process, microstructure and properties[J]. Ceramics International, 2021, 47(21): 30113-30128.

[61] Cao S, Liang J, Wang L, et al. Effects of NiCr intermediate layer on microstructure and tribological property of laser cladding Cr3C2 reinforced Ni60A-Ag composite coating on copper alloy[J]. Optics and Laser Technology, 2021, 142: 106963.

[62] Xiao Q, Sun WL, Yang KX, et al. Wear mechanisms and micro-evaluation on WC particles investigation of WC-Fe composite coatings fabricated by laser cladding[J]. Surface & Coatings Technology, 2021, 420(9): 127341.

[63] Xu P, Zhu L, Xue P, et al. Microstructure and properties of IN718/WC-12Co composite coating by laser cladding[J]. 2021, 48(7): 9218-9228.

[64] 崔陆军, 于计划, 郭士锐, 等. 基于镍基合金的截齿激光熔覆工艺与实验研究[J]. 应用激光, 2018, 38(05): 720-725.

[65] 田玉芹, 刘纪新, 姜宝华. 掘进机截齿表面合金熔覆强化研究[J]. 煤矿机械, 2021, 42(02): 93-96.

[66] 湘子. 硬质合金晶粒度分级标准 [J]. 硬质合金, 2006, (02): 68.

[67] Pirso J, Letunovit S, Viljus M. Friction and wear behaviour of cemented carbides[J]. Wear, 2004, 257(3-4): 257-265.

[68] 张岩, 王洪福, 何泠, 等. WC-Co截齿的材料成分及硬度分析[J]. 热加工工艺, 2017, 46(02): 109-112.

[69] Gore GJ, Gates JD. Effect of hardness on three very different forms of wear[J]. Wear, 1997, 203-204: 544-563.

[70] Hutchings IM. Tribology: friction and wear of engineering of materials. Edward Arnold[M]. English: Butterworth-Heinemann, 1992.

[71] Chen Z, Zhu Q, Wang J, et al. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear[J]. Optics and Laser Technology, 2018, 103: 118-125.

[72] 刘亚楠, 孙荣禄, 张天刚, 等. Ti811合金表面激光熔覆涂层微观组织及性能研究[J]. 表面技术, 2019, 48(02): 123-132.

[73] Kwon H, Suh CY, Kim W. Preparation of a highly toughened (Ti,W)C-20Ni cermet through in situ formation of solid solution and WC whiskers[J]. Ceramics International, 2015, 41(3): 4223-4226.

[74] Farahmand P, Liu S, Zhang Z, et al. Laser cladding assisted by induction heating of Ni-WC composite enhanced by nano-WC and La2O3[J]. Ceramics International, 2014, 40(10): 15421-15438.

[75] Liu Z, Liu ER, Du SM, et al. Effect of Heat Treatment on Microstructure and Tribocorrosion Performance of Laser Cladding Ni-65 WC Coating[J]. Scanning, 2020, 2020: 4843175.

[76] Liu Y, Xu TH, Liu Y, et al. Wear and heat shock resistance of Ni-WC coating on mould copper plate fabricated by laser[J]. Journal of Materials Research and Technology-Jmr&T, 2020, 9(4): 8283-8288.

中图分类号:

 TG174.4    

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式