- 无标题文档
查看论文信息

论文中文题名:

 液态CO2驱替煤层CH4多相渗流规律及时效特征研究    

姓名:

 魏高明    

学号:

 18120089022    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 0837    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井灾害治理    

第一导师姓名:

 文虎    

第一导师单位:

 西安科技大学    

第二导师姓名:

 袁亮    

论文提交日期:

 2022-03-09    

论文答辩日期:

 2022-01-18    

论文外文题名:

 Study on multi-phase seepage evolution and efficiency characteristics of liquid CO2 injection to enhance coalbed methane recovery    

论文中文关键词:

 液态CO2 ; 煤层 ; 渗透率 ; 驱替 ; 渗流规律 ; 时效特征 ; 瓦斯抽采    

论文外文关键词:

 Liquid CO2 ; coalseam ; permeability ; displacement ; seepage law ; efficiency characteristic ; methane extraction.    

论文中文摘要:

我国多数煤层渗透率低、瓦斯含量高、吸附能力强等特点严重限制了瓦斯抽采效率,影响矿井安全生产。如何改善煤层渗透性,提高瓦斯抽采效率,是目前煤岩增渗与瓦斯促抽技术领域的热点研究内容之一。液态CO2作为一种低温、低黏、相变增压、强吸附性能的流体,将其注入煤层中在液态CO2冷冲击与相变压力作用下,对煤体微观结构产生损伤效应改变煤体渗透率,同时相变为气态的CO2气体分子在其气相渗流范围内能够驱替煤层CH4强化瓦斯抽采。然而,液态CO2注入煤层传热传质相态转化时,多相态CO2(液相、气液混合相、气相)在煤层中的渗流规律与作用过程时效特征存在差异性。因此,本文采用理论分析、实验测试、数值模拟、现场试验相结合的研究方法,对液态CO2损伤煤体孔裂隙结构演化规律与增渗特性进行量化表征,研究了相态转化后CO2气相渗流驱替煤层CH4时效性特征,揭示了液态CO2相变驱替煤层CH4多场耦合渗流作用过程及相互关系,开展了液态CO2驱替煤层瓦斯现场试验。获得以下主要成果:

(1)分析了注入煤层中的CO2液相渗流过程中冷冲击与相变压力对煤体微观结构损伤作用过程,采用低压氮吸附法、压汞法研究了液态CO2损伤煤体全孔径段孔隙结构演化规律。液态CO2损伤煤体孔隙结构二次发育,总孔隙占比增加,分形特征明显,大量吸附孔转化为渗流孔隙结构,煤体孔隙结构中气体渗流能力增强。

(2)采用X射线CT扫描技术,借助Avizo系统软件的图像处理、三维可视化及算法功能模块,构建了煤体裂隙网络展布与逾渗理论模型,量化表征了液态CO2损伤煤体裂隙网络变化规律与增渗特性。结果显示液态CO2损伤煤柱总体积(Vt)、裂隙网络体积(V0)以及裂隙网络占比( )均明显增大,煤体产生变形破坏,裂隙网络新生与空间展布特征明显。液态CO2损伤处理煤基质块体逾渗模型的单值函数映射区域变大,对应逾渗曲线更加密集,渗透率明显增大,表明注入煤层中的液态CO2在其液相渗流范围内对煤体渗透率具有明显的改善作用。

(3)搭建了CO2气相渗流驱替煤体CH4系统平台,开展了不同压力与温度条件下CO2驱替CH4时效特征的实验测试。结果显示驱替压力恒定,低温环境对CO2驱替CH4效率具有明显的迟滞效应,随着温度升高驱替效率逐渐提升。驱替温度恒定时,适当增加驱替压力,CO2驱替CH4效率增加,驱替时间减少,时效性明显。由CO2驱替CH4效率与驱替比可知,随驱替压力与温度的增加,ηmax由56.02%%增至92.87%,μmax由1.57:1变为1:2.5,相比回收单位体积CH4的CO2用量减少,驱替效率明显提高。分析得出CO2气流载携、CO2/CH4二元气体竞争吸附的高效驱替以及高浓度CO2气体分子稀释煤体残余CH4低效驱替的阶段性时效特征。

(4)构建了液态CO2驱替煤层CH4多相渗流作用过程数值解算模型,数值模拟研究了液态CO2驱替煤层CH4多相渗流作用过程中温度、压力、气体渗流速率、浓度的分布规律,得出基于几何模型中CO2液相渗流损伤煤体半径在5 m以内,气相渗流驱替煤层CH4半径达到15 m。由模拟抽采过程中CO2/CH4浓度随时间的变化规律,分析了液态CO2驱替煤层CH4效率衰减的临界时间节点。

(5)开展了煤层顺层钻孔注液态CO2驱替瓦斯现场试验,分析了注入煤层液态CO2多相渗流作用过程与压力、温度、流量等参数之间的对应关系,明确了注入本煤层的CO2液相、气相运移范围大小,验证了液态CO2驱替煤层瓦斯的高效性。

论文外文摘要:

The low permeability, high gas content and strong adsorption capacity of most coalbed in our country severely restrict the efficiency of methane extraction and negatively affect the mine safety production, how to improve the coalbed permeability and enhance the efficiency of CBM recovery is one of the hotspots research contents in the field of gas disaster manage in coal mine. Liquid CO2 as a fluid with low temperature, low viscosity and easy seepage, phase-transition pressurization, and strong adsorption potential energy features, injecting it into coalbed will change the permeability in the process of coal microstructure damaged under the action of liquid CO2 cold impact and phase-transition pressure, and then the gaseous CO2 will enhance CH4 recovery in the coalbed. However, as an extremely unstable fluid, liquid CO2 has different seepage evolution law and efficiency characteristic in the respective migration range with a liquid, gas and liquid mixture or gas phase states when it is injected into the coalbed. Therefore, this paper adopts the combined methods of theoretical analysis, experimental test, numerical simulation and field test, the evolution law of pore fracture structure and permeability increasing characteristics of coal damaged by liquid CO2 are quantitatively characterized, the efficiency of CO2 with a gaseous seepage state to displace CH4 in the coal are analyzed. Then, the multi-field coupling seepage characteristics and their relations of liquid CO2 injection to enhance CH4 recovery in the coalbed are studied. Finally, a field application test of liquid CO2 injection to enhance CBM recovery is carried out and the process effect is verified. The main results are as follows:

(1) The damage effect of coal microstructure caused by the frost-heaving fore and phase-transition force in the process of liquid CO2 injected into coalbed are analyzed. Adopting the methods of LP-N2-Ad and MIP to study the evolution law of coal pore structure in the full aperture section that damaged by liquid CO2 injection into coal, resulting the liquid stress damage effect induced the secondary development of coal pore structure, the proportion of total pores increased and the fractal characteristics are obvious, in addition, a large number of adsorption pores are transformed into seepage pore structure, it indicates the gas seepage capability in the coal microstructure is increased.

(2) Using X-ray CT scanning technology, with the help of image processing, three-dimensional visualization and algorithm function modules by Avizo system software, the theoretical model of coal fracture network distribution and percolation is constructed, and the variation law of fracture network and permeability enhancement of coal damaged by liquid CO2 injection are quantitatively analyzed. The results show that under the damaged effects by liquid CO2 injection, the total volume of coal pillar (Vt), the volume of fracture network (V0) and the proportion of fracture network ( ) are significantly increased, resulting the stress damaged effect caused the coal is deformed and the characteristics of fracture network regeneration and spatial distribution are obvious. Furthermore, the single value function coverage region in the percolation model becomes larger with coal block treated by liquid CO2, it shows that the liquid CO2 injected into coalbed can significantly improve the coal permeability within the range of CO2 seepage as a liquid state.

(3) A system platform is conducted to test the efficiency characteristics of CO2 injection to displace CH4 recovery in the coal under different pressure and temperature conditions. The test results shown that as the displacement pressure is constant, resulting the low-temperature circumstance has a distinct delaying effect on the efficiency of CO2 injection to displace CH4, However, with the increase of temperature, the displacement efficiency increases gradually. Additionally, as the displacement temperature is constant and the displacement pressure is appropriately increased, the efficiency of CO2 injection to displace CH4 is improved, meanwhile the displacement time is reduced, displaying an obviously efficiency for a given period time. According to the efficiency and replacement ratio of CO2 injection to displace CH4 recovery in the coal, with the increase of displacement pressure and temperature, ηmax increased from 56.02%% to 92.87%, μmax changed from 1.57:1 to 1:2.5. Comparing with the recovery of CH4 per unit volume, the amount of CO2 usage is reduced and the efficiency is significantly enhanced. The mechanism of CO2 injection to displace CH4 is obtained, which divided into the high-efficiency displacement stage of CO2 gas flow carrying effect and CO2/CH4 mixed gas competitive adsorption effect, and the low-efficiency displacement stage of residual CH4 diluted by the high-concentration CO2 gas molecules.

(4) A thermal-fluid-solid coupled numerical solution model of CH4 displacement by liquid CO2 injection in coalbed is established. Through the numerical analysis, the evolution laws and multi-phases seepage process of temperature field, pressure field, gas migration field in the process of liquid CO2 injection to displace CH4 recovery in the coalbed are studied. It is determined that the range of CO2 seepage as a liquid state is within 5 m and the range of CO2 seepage as a gaseous state is up to 15 m based on the geometric model. According to the variation law of CO2/CH4 concentration with time in the simulated extraction process, the critical time node of CH4 efficiency attenuation of liquid CO2 displacement coalbed is obtained.

(5) The in-situ application test of liquid CO2 injection to displace CH4 recovery in coalbed is carried out. Analyzing the corresponding relationship between the parameters such as pressure, temperature and flow and the CO2 seepage rate in the coalbed during liquid CO2 injected into coalbed. The effective influence radius of CO2 seepage as a liquid state or gas state in the coalbed is defined, and the high-efficiency of liquid CO2 injection to enhance CH4 recovery is verified.

参考文献:

[1] 袁亮, 董书宁. “煤炭安全高效绿色智能开采地质保障”专辑特邀主编致读者[J]. 煤炭学报, 2020, 45(07): 2329-2330.

[2] 彭苏萍. 建设“煤炭资源强国”的战略思考[J]. 煤炭经济研究, 2017, 37(11): 1.

[3] 谢和平, 周宏伟, 薛东杰, 等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报,2012,37(04):535-542.

[4] 袁亮, 张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报, 2020, 45(07): 2346-2356.

[5] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(08): 2277-2284.

[6] 何学秋, 窦林名, 牟宗龙,等. 煤岩冲击动力灾害连续监测预警理论与技术[J]. 煤炭学报, 2014, 39(8): 1485-1491.

[7] 周福宝. 瓦斯与煤自燃共存研究(I):致灾机理[J]. 煤炭学报, 2012, 37(5): 843-849.

[8] 袁亮. 松软低透煤层群瓦斯抽采理论与技术[M]. 北京: 煤炭工业出版社, 2004.

[9] 李树刚, 钱鸣高. 我国煤层与甲烷安全共采技术的可行性[J]. 科技导报, 2000, 18(06): 39-41.

[10] 李树刚, 成小雨, 刘超, 等. 低透煤层采空区覆岩高位瓦斯富集区微震探测及应用[J]. 煤炭科学技术, 2017, 45(06): 61-66.

[11] 程远平, 王海锋, 王亮, 等. 煤矿瓦斯防治理论与工程应用[M]. 徐州: 中国矿业大学出版社, 2012.

[12] 窦林名, 何学秋, REN Ting, 等. 动静载叠加诱发煤岩瓦斯动力灾害原理及防治技术[J].中国矿业大学学报, 2018, 47(01): 48-59.

[13] Xia T, Zhou F, Liu J, et al. Evaluation of the pre-drained coal seam gas quality[J]. Fuel, 2014, 130: 296-305.

[14] Wu Y, Liu J, Chen Z, et al. A dual poroelastic model for CO2 enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2011, 86: 177-189.

[15] Wang H, Cheng Y, Wang W, et al. Research on comprehensive CBM extraction technology and its applications in China’s coal mines[J]. Journal of Natural Gas Science and Engineering, 2014, 20: 200-207.

[16] 李辛子, 王运海, 姜昭琛, 等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报, 2016, 41(1): 24-31.

[17] 秦勇. “煤系天然气聚集理论与勘探开发技术”专题特邀主编致读者[J]. 煤炭学报, 2021, 46(08): 2385-2386.

[18] 文虎, 李珍宝, 王振平, 等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报, 2016, 41(11): 2793-2799.

[19] 卢义玉, 李瑞, 鲜学福, 等. 地面定向井+水力割缝卸压方法高效开发深部煤层气探讨[J]. 煤炭学报, 2021, 46(03): 876-884.

[20] 林柏泉, 李子文, 翟成, 等. 高压脉动水力压裂卸压增透技术及应用[J]. 采矿与安全工程学报, 2011, 28(03): 452-455.

[21] 翟成, 李贤忠, 李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报, 2011, 36(12): 1996-2001.

[22] Ni G, Xie H, Li Z, et al. Improving the permeability of coal seam with pulsating hydraulic fracturing technique: A case study in Changping coal mine, China[J]. Process Safety and Environmental Protection, 2018, 117: 565-572.

[23] Zou Q, Lin B. Fluid-Solid Coupling Characteristics of Gas-Bearing Coal Subject to Hydraulic Slotting: An Experimental Investigation[J]. Energy & Fuels, 2018, 32: 1047-1060.

[24] Zhu W, Wei C, Li S, et al. Numerical modeling on destress blasting in coal seam for enhancing gas drainage[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59: 179-190.

[25] Zhu W, Gai D, Wei C, et al. High-pressure air blasting experiments on concrete and implications for enhanced coal gas drainage[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1253-1263.

[26] Huang C, Zhang Y, He J, et al. Permeability improvements of an outburst-prone coal seam by means of presplitting and blasting with multiple deep boreholes[J]. Energy Science & Engineering, 2019, 7: 2223-2236.

[27] Zhang C, Lin B, Zhou Y, et al. Study on fracturing-sealing integration technology based on high-energy gas fracturing in single seam with high gas and low air permeability[J]. International Journal of Mining Science and Technology, 2013, 23: 841-846.

[28] 杨宏民, 任发科, 王兆丰, 等. 瓦斯抽采钻孔封孔质量检测及定量评价方法[J]. 煤炭学报, 2019, 44(S1): 164-170.

[29] 程远平, 董骏, 李伟, 等. 负压对瓦斯抽采的作用机制及在瓦斯资源化利用中的应用[J].煤炭学报, 2017, 42(06): 1466-1474.

[30] 王兆丰, 田富超, 赵彬, 等. 羽状千米长钻孔抽采效果考察试验[J]. 煤炭学报, 2010, 35(01): 76-79.

[31] Zhai C, Qin L, Liu S, et al. Pore structure in coal: pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction[J]. Energy & Fuels, 2016, 30: 6009-6020.

[32] Hu G, He W, Sun M. Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole[J]. Journal of Natural Gas Science and Engineering, 2018, 60: 164-173.

[33] Cao Y, Zhang J, Zhai H, et al. CO2 gas fracturing: A novel reservoir stimulation technology in low permeability gassy coal seams[J]. Fuel, 2017, 203: 197-207.

[34] Yang X, Wen G, Sun H, et al. Environmentally friendly techniques for high gas content thick coal seam stimulation-multi-discharge CO2 fracturing system[J]. Journal of Natural Gas Science and Engineering, 2018, 61: 71-82.

[35] 牟俊惠, 程远平, 刘辉. 注水煤瓦斯放散特性的研究[J]. 采矿与安全工程学报, 2012, 29(5): 746-749.

[36] 张国华, 梁冰, 毕业武. 水锁对含瓦斯煤体的瓦斯解吸的影响[J]. 煤炭学报, 2012, 37(2): 253-258.

[37] 刘泽功, 蔡峰, 肖应祺. 煤层深孔预裂爆破卸压增透效果数值模拟分析[J]. 安徽理工大学学报(自然科学版), 2008, 28(04): 16-20.

[38] 黄文尧, 颜事龙, 刘泽功, 等. 煤矿瓦斯抽采水胶药柱在煤层深孔爆破中的研究与应用[J]. 煤炭学报, 2012, 37(3): 472-476.

[39] 梁卫国, 张倍宁, 贺伟, 等. 不同阶煤超临界CO2驱替开采CH4试验研究[J]. 煤炭学报, 2020, 45(01): 197-203.

[40] 梁卫国, 张倍宁, 黎力, 等. 注能(以CO2为例)改性驱替开采CH4理论与实验研究[J]. 煤炭学报, 2018, 43(10): 2839-2847.

[41] 孙可明, 吴迪, 粟爱国, 等. 超临界CO2作用下煤体渗透性与孔隙压力-有效体积应力-温度耦合规律试验研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3760-3767.

[42] 樊世星. 液态CO2压裂煤岩增透及裂缝形成机制研究[J]. 岩石力学与工程学报, 2021, 40(08): 1728.

[43] Yang Z, Zhou Y, Xu X, et al. Numerical modeling of liquid CO2 phase transition blasting based on smoothed particle hydrodynamics algorithm[J]. Thermal Science, 2019, 23: 693-702.

[44] Chen H, Wang Z, Chen X, et al. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. Journal of CO2 Utilization, 2017; 19: 112-119.

[45] Wen H, Li Z, Deng J, et al. Influence on coal pore structure during liquid CO2-ECBM process for CO2 utilization[J]. Journal of CO2 Utilization, 2017; 21: 543-552.

[46] Wen H, Wei G, Ma L, et al. Damage characteristics of coal microstructure with liquid CO2 freezing–thawing[J]. Fuel, 2019; 249: 169-177.

[47] 王公达, REN Tingxiang, 齐庆新, 等. 二氧化碳/氮气驱替煤层瓦斯过程的数学模型[J].岩石力学与工程学报, 2016, 35(S2): 3930-3936.

[48] Fan C, Elsworth D, Li S, et al. Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery[J]. Energy, 2019, 173: 1054-1077.

[49] Wang H, Ran Q, Liao X, et al. Study of the CO2 ECBM and sequestration in coalbed methane reservoirs with SRV[J]. Journal of Natural Gas Science & Engineering, 2016, 33: 678-686.

[50] 郑学召, 黄渊, 文虎, 等. 不同注气压力下CO2驱替置换CH4试验研究[J]. 工矿自动化, 2021, 47(04): 73-78.

[51] 林海飞, 黄猛, 李志梁, 等. 注气驱替抽采瓦斯技术在高瓦斯突出矿井煤巷掘进中的试验[J]. 矿业安全与环保, 2016, 43(03): 10-12+17.

[52] Chen H, Yang S, Ren S, et al. Crude Oil Displacement Efficiency of Produced Gas Re-injection[J]. International Journal of Green Energy, 2013, 10: 566-573.

[53] 雷云, 刘建军, 张哨楠. CO2相变致裂本煤层增透技术研究[J]. 工程地质学报, 2017, 25(01): 215-221.

[54] 洪紫杰, 王成, 熊祖强. 高瓦斯低透气性煤层CO2相变致裂增透技术研究[J]. 中国安全生产科学技术, 2017, 13(1): 40-45.

[55] 陈鹏, 孙可明, 张宇. 超临界CO2气爆非均质煤体破裂规律模拟研究[J]. 计算力学学报, 2021, 09: 1-10.

[56] Zhang Y, Zhang Z, Sarmadivaleh M, et al. Micro-scale fracturing mechanisms in coal induced by adsorption of supercritical CO2[J]. Int. J. Coal. Geol, 2017, 175: 40-50.

[57] Zhang Y, Lebedev M, Sarmadivaleh M, et al. Swelling-induced changes in coal microstructure due to supercritical CO2 injection[J]. Geophys. Res. Lett. 2016, 43, 9077-9083.

[58] Vishal V. In-situ disposal of CO2: Liquid and supercritical CO2, permeability in coal at multiple down-hole stress conditions[J]. Journal of CO2 Utilization, 2017, 17: 235-242.

[59] Wei G, Wen H, Deng J, et al. Liquid CO2 injection to enhance coalbed methane recovery: An experiment and in-situ application test[J]. Fuel, 2021, 284, 119043.

[60] Xu J, Zhai C, Liu S, et al. Feasibility investigation of cryogenic effect from liquid carbon dioxide multi cycle fracturing technology in coal-bed methane recovery[J]. Fuel, 2017, 206: 371-380.

[61] 杨新乐, 任常在, 张永利, 等. 低渗透煤层气注热开采热-流-固耦合数学模型及数值模拟[J]. 煤炭学报, 2013, 38(06): 1044-1049.

[62] 李子文, 郝志勇, 庞源, 等. 煤的分形维数及其对瓦斯吸附的影响[J]. 煤炭学报, 2015, 40(4): 863-869.

[63] 王文林, 谭蓉晖, 王兆丰. 吸附平衡时间对瓦斯吸附常数测值的影响[J]. 河南理工大学学报(自然科学版), 2013, 32(5): 513-517.

[64] 刘厅. 深部裂隙煤体瓦斯抽采过程中的多场耦合机制及其工程响应[D]. 中国矿业大学,2019.

[65] 王登科, 张航, 魏建平, 等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报, 2021, 09(03): 1-19.

[66] Wang J, Liu J, Kabir A. Combined effects of directional compaction, non-Darcy flow and anisotropic swelling on coal seam gas extraction[J]. International Journal of Coal Geology, 2013, 109-110: 1-14.

[67] Snow D.T. Aparallel plate model of fractured permeable media[J]. PhD. Thesis, Univ. Calif. Berkeley, 1965.

[68] 周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报, 1990, 15(01): 15-24.

[69] 何学秋, 周世宁. 煤和瓦斯突出机理的流变假说[J]. 煤矿安全, 1991(10): 1-7.

[70] 尹光志, 李铭辉, 李生舟, 等. 基于含瓦斯煤岩固-气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报, 2013, 38(04): 535-541.

[71] 石必明. 关于瓦斯突出流变机理的哲学思考[J]. 淮南工业学院学报(社会科学版), 2002, 03: 8-10.

[72] 余楚新, 鲜学福, 谭学术. 煤层瓦斯流动理论及渗流控制方程的研究[J]. 重庆大学学报(自然科学版), 1989, 12 (5): 1-10.

[73] Rudakov D, Sobolev V. A mathematical model of gas flow during coal outburst initiation[J]. International Journal of Mining Science and Technology, 2019, 29(5): 791-796.

[74] Klinkenberg L. The permeability of porous media to liquids and gases[J]. Socar Proceedings, 1941, 2: 200-213.

[75] 徐浩, 秦跃平, 毋凡, 等. 煤粒瓦斯定压吸附数学模型及数值解算[J]. 矿业科学学报, 2021, 6(04): 445-452.

[76] 卢义玉, 贾亚杰, 葛兆龙, 等. 割缝后煤层瓦斯的流-固耦合模型及应用[J]. 中国矿业大学学报, 2014, 43(01): 23-29.

[77] 许克南, 王佰顺, 刘青宏. 基于动态流固耦合模型的瓦斯抽采半径及孔间距研究[J]. 煤炭科学技术, 2018, 46(5): 102-108.

[78] 张立强. 煤层瓦斯抽采中煤体破裂与气体渗流规律研究[D]. 中国矿业大学, 2020.

[79] 周西华, 张潇文, 白刚, 等. 考虑水渗流作用的顺层抽采模拟及参数优化研究[J]. 中国安全生产科学技术, 2018, 14(10): 112-118.

[80] 林柏泉, 刘厅, 杨威. 基于动态扩散的煤层多场耦合模型建立及应用[J]. 中国矿业大学学报, 2018, 47(01): 32-39+112.

[81] 李树刚, 张晓宇, 严敏, 等. 原煤粒度对孔隙结构特征及瓦斯吸附特性的影响[J].矿业安全与环保, 2019, 46(04): 8-12+16.

[82] 李树刚, 赵波, 赵鹏翔, 等. 类煤岩材料瓦斯吸附特性影响因素试验[J]. 中国矿业大学学报, 2019, 48(05): 943-954.

[83] 李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J]. 西安科技大学学报, 2018, 38(02): 181-186+272.

[84] 李钢, 范喜生, 马丕梁, 等. 基于MATLAB的本煤层瓦斯抽采钻孔间距设计[J]. 煤矿安全, 2011, 42(1): 35-37.

[85] 赵阳升, 胡耀青, 赵宝虎, 等. 块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J]. 煤炭学报, 2003, 28(1): 41-45.

[86] 李祥春, 聂百胜, 何学秋, 等. 瓦斯吸附对煤体的影响分析[J]. 煤炭学报, 2011, 36(12): 2035-2038.

[87] Connell L.D. Coupled flow and geo-mechanical processes during gas production from coal seams[J]. International Journal of Coal Geology, 2009, 79: 18-28.

[88] Xia T, Gao F, Kang J, et al. A fully coupling coal-gas model associated with inertia and slip effects for CBM migration[J]. Environmental Earth Sciences, 2016, 75: 582.

[89] Vishal V, Singh T, Ranjith P. Influence of sorption time in CO2-ECBM process in Indian coals using coupled numerical simulation. Fuel, 2015, 139: 51-58.

[90] Pan Z, Ye J, Zhou F, et al. CO2 storage in coal to enhance coalbed methane recovery: a review of field experiments in China[J]. International Geology Review, 2018, 60: 754-776.

[91] 秦勇. “煤系气共采技术”专题特约主编致读者[J]. 煤炭学报, 2018, 43(6): 1486.

[92] B.B Hodot, 宋士钊, 王佑安. 煤与瓦斯突出[M]. 北京,中国工业出版社, 1966, P, 23-25.

[93] 吴俊, 金奎励, 童有德, 等.煤孔隙理论及在瓦斯突出和抽放评价中的应用[J].煤炭学报, 1991, 16(3): 86~95.

[94] IUPAC. Reporting physisorption of naturally fractured reservoirs[A]. Trans Soc Petrol Eng. AIME 1963, 228, 245-55.

[95] 司磊磊. 水浸煤体瓦斯运移机理及应用研究[D]. 中国矿业大学, 2019.

[96] 孙丽娟. 不同煤阶软硬煤的吸附-解吸规律及应用[D]. 中国矿业大学(北京), 2013.

[97] 舒龙勇, 齐庆新, 王凯, 等. 煤矿深部开采卸荷消能与煤岩介质属性改造协同防突机理[J]. 煤炭学报, 2018, 43(11): 3023-3032.

[98] 康红普, 伊丙鼎, 高富强, 等. 中国煤矿井下地应力数据库及地应力分布规律[J]. 煤炭学报, 2019, 44(1): 30-40.

[99] 樊世星, 文虎, 程小蛟, 等. 井下高压液态CO2压裂增透煤岩成套装备研制与应用[J].煤炭学报, 2020, 45(S2): 801-812.

[100] 刘勇, 何岸, 魏建平, 等. 水射流卸压增透堵孔诱因及解堵新方法[J]. 煤炭学报, 2016, 41(08): 1963-1967.

[101] 吕进国, 李守国, 赵洪瑞, 等. 高地应力条件下高压空气爆破卸压增透技术实验研究[J]. 煤炭学报, 2019, 44(04): 1115-1128.

[102] 王欣, 李德旗, 姜伟, 等. 覆压水化作用对页岩水力压裂缝扩展的影响[J]. 天然气工业, 2019, 39(6): 81-86.

[103] Vengosh A, Warner N, Jackson R, et al. The Effects of Shale Gas Exploration and Hydraulic Fracturing on the Quality of Water Resources in the United States[J]. Procedia Earth & Planetary Science, 2013, 7: 863-866.

[104] Claire E.B, Townsendsmall A, Nash D.B, et al. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio[J]. Environmental Monitoring & Assessment, 2018, 190: 322.

[105] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(1): 109-118.

[106] 杨健锋. 煤体黏聚裂纹本构方程研究及其在压裂工程中的应用[D]. 太原理工大学, 2019.

[107] 姜婷婷, 张建华, 黄刚. 煤岩水力压裂裂缝扩展形态试验研究[J]. 岩土力学, 2018, 39(10): 179-186.

[108] 卢运虎, 金衍, 陈勉, 等. 高温高压耦合下含不同倾角充填缝砂岩的强度实验研究[J]. 岩石力学与工程学报, 2019, 38(1): 2668-2679.

[109] 陈勉, 庞飞, 金衍. 大尺寸真三轴水压致裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(1): 868-872.

[110] 陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 88-94.

[111] 王志荣, 宋沛, 陈玲霞, 等. 裂隙性储层压裂缝延伸机理及防治水意义[J]. 东北大学学报(自然科学版), 2021, 42(05): 741-747.

[112] 陈群策, 李方全, 毛吉震, 等. 水压致裂法三维地应力测量的实用性研究[J]. 地质力学学报, 2001, 7(1): 69-78.

[113] Stephen R.D. Prediction of fracture pressure for wildcat wells[J]. JPT, 1982, 34: 863-872.

[114] Howard G, Fast C.R. Hydraulic Fracture[M]. Monograph series, Dallas, 1970.

[115] Daneshy A.A. Numerical solution sand transport in hydraulic fracture[J]. JPT, 1978.

[116] Geertsma J, Dekerk F. Rapid method of predicting width an extent of hydraulically induced fractures[J]. JPT, Dec, 1969.

[117] Khristianovich S, Zhenltov Y. Formation of vertical fracture by mean of highly visous liquids[C]. Proceeding of the world petroleum congress, section 11, 1955.

[118] Bennour Z, Watanabe S, Chen Y, et al. Evaluation of stimulated reservoir volume in laboratory hydraulic fracturing with oil, water and liquid carbon dioxide under microscopy using the fluorescence method[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2018, 4(1): 39-50.

[119] Li X, Li G, Wang H, et al. A unified model for wellbore flow and heat transfer in pure CO2 injection for geological sequestration, EOR and fracturing operations [J]. International Journal of Greenhouse Gas Control, 2017, 57: 102-115.

[120] 吴迪, 王翰阳, 苗丰, 等. 超临界CO2作用下CO2渗流特性与煤层增透效果研究[J]. 煤炭科学技术, 2020, 48(10): 90-96.

[121] 陈立强, 田守嶒, 李根生, 等. 超临界CO2压裂起裂压力模型与参数敏感性研究[J]. 岩土力学, 2015, 36(2): 125-131.

[122] Lebedev M, Iglauer S, Mikhaltsevich V. Acoustic Response of Reservoir Sandstones during Injection of Supercritical CO2[J]. Energy Procedia, 2014, 63, 4281-4288.

[123] 陈喜恩, 赵龙, 王兆丰, 等. 液态CO2相变致裂机理及应用技术研究[J]. 煤炭工程, 2016, 48(9): 95-97.

[124] 闫浩. 超临界CO2压裂煤体分阶段致裂机理及裂缝扩展规律[D]. 中国矿业大学, 2020.

[125] 李豪君, 王兆丰, 陈喜恩, 等. 液态CO2相变致裂技术在布孔参数优化中的应用[J]. 煤田地质与勘探, 2017, 45(04): 31-37+43.

[126] 周西华, 门金龙, 宋东平, 等. 液态CO2爆破煤层增透最优钻孔参数研究[J]. 岩石力学与工程学报, 2016, 35(03): 524-529.

[127] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J]. 煤炭学报, 2018, 43(07): 54-166.

[128] 杜泽生, 范迎春, 薛宇飞, 等. 二氧化碳爆破采掘装备及技术研究[J]. 煤炭科学技术, 2016, 44(09): 36-42.

[129] 贾进章, 李斌, 王东明. 煤层液态CO2相变致裂半径范围的影响因素研究[J]. 中国安全科学学报, 2021, 31(04): 57-63.

[130] Kang J, Zhou F, Qiang Z, Zhu S. Evaluation of gas drainage and coal permeability improvement with liquid CO2 gasification blasting [J]. Advances in Mechanical Engineering, 2018, 10 (4): 1-15.

[131] 王兆丰, 李豪君, 陈喜恩. 液态CO2相变致裂煤层增透技术布孔方式研究[J].中国安全生产科学技术,2015, 11(09): 11-16.

[132] 曹运兴, 田林, 范延昌. 低渗煤层CO2气相压裂裂隙圈形态研究[J]. 煤炭科学技术, 2018, 46(06): 46-51.

[133] 白鑫, 张东明, 王艳, 等. 液态CO2相变射流压力变化及其煤岩致裂规律[J]. 中国矿业大学学报, 2020, 49(04): 661-670.

[134] 孙小明. 液态二氧化碳相变致裂穿层钻孔强化预抽瓦斯效果研究[D]. 河南理工大学, 2014.

[135] 李珍宝. 液态CO2低温致裂及相变驱替促抽煤层CH4机制研究[D]. 西安科技大学, 2017.

[136] Zhang D, Cui Y, Zhang Q, et al. Features of the excess adsorption isotherms of high-pressure methane adsorption on coal and simulation model[J]. Acta Geological Sinica-English Edition, 2010, 84: 1547-1554.

[137] Cai Y, Liu D, Pan Z, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 2013, 103: 258-268.

[138] Zhang D, Li S, Cui Y, et al. Displacement behavior of methane adsorbed on coal by CO2 injection[J]. Industrial & Engineering Chemistry Research, 2011, 50: 8742-8749.

[139] Zhang D, Hussain F, Cinar Y. Injecting pure N2 and CO2 to coal for enhanced coalbed methane: experimental observations and numerical simulation[J]. International Journal of Coal Geology, 2013, 116: 53-62.

[140] Chen M·Y, Cheng Y·P, Zhou H·X, et al. Effects of igneous intrusions on coal pore structure, methane desorption and diffusion within coal, and gas occurrence[J]. Environmental & Engineering Geoscience, 2017, 23(3): 191-207.

[141] Lin W, Kovscek A·R. Gas sorption and the consequent volumetric and permeability change of coal : experimental[J]. Transport in porous media, 2014, 105(2): 371-389.

[142] Wang L, Wang Z, Li K, et al. Comparison of enhanced coalbed methane recovery by pure N2 and CO2 injection: Experimental observations and numerical simulation, J. Nat. Gas. Sci. Eng 2015; 23: 363–372.

[143] Mukherjee M, Misra S. A review of experimental research on enhanced Coalbed methane (ECBM) recovery via CO2 sequestration[J]. Earth-Science Reviews, 2018, 179: 392-410.

[144] Zeng Q, Wang Z, Liu L, et al. Modeling CH4 displacement by CO2 in deformed coalbeds during enhanced coalbed methane recovery[J]. Energy & Fuels, 2018, 32(2): 1942-1955.

[145] Guo H, Ni X, Wang Y, et al. Experimental study of CO2-water-mineral interactions and their influence on the permeability of coking coal and implications for CO2-ECBM[J]. Minerals, 2018, 8(3): 117.

[146] Fulton P.F, Parente C.A, Rogers B.A, et al. A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection[C]. Symposium on Unconventional Gas Recovery held in Pittsburgh, SPE 8930, 1981.

[147] Jessen K, Tang G.Q, Kovscek A.R. Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection[J]. Transport in Porous Media, 2008, 73(2):141-159.

[148] Reznik A.A, Singh P.K., Foley W.L. An Analysis of the Effect of CO2 injection on the recovery of in-situ methane from bituminous coal[C]. An Experimental Simulation. SPE 10822, 1984.

[149] Mazumder S, Wolf K.H.A.A, Hemert P.V, et al. Laboratory experiments on environmental friendly means to improve coalbed methane production by carbon dioxide/flue gas injection[J]. Transport in Porous Media, 2008, 75(1): 63-92.

[150] Dutka B, Kudasik M, Topolnicki J. Pore pressure changes accompanying exchange sorption of CO2/CH4 in a coal briquette[J]. Fuel Processing Technology, 2012, 100:30-34.

[151] 唐明云, 张海路, 段三壮, 等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J].煤炭科学技术, 2021, 49(05): 182-189.

[152] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探, 2018, 46(05): 1-9.

[153] 杨宏民, 鲁小凯, 陈立伟. 不同注源气体置换-驱替煤层甲烷突破时间的差异性分析[J].重庆大学学报, 2018, 41(02): 96-102.

[154] 杨宏民, 鲁小凯. 变质程度对CO2置换煤中CH4效应的影响规律[J]. 中国安全生产科学技术, 2017, 13(9): 41-46.

[155] 杨宏民, 冯朝阳, 陈立伟. 煤层注氮模拟实验中的置换-驱替效应及其转化机制分析[J].煤炭学报, 2016, 41(09): 2246-2250.

[156] 吴世跃, 张美红, 郭勇义. 单井间歇注气开采煤层气生产过程分析[J]. 太原理工大学学报, 2008, 38(2): 148-150.

[157] 张美红, 吴世跃, 李川田. 煤系地层注入CO2开采煤层气质交换的机理[J]. 煤炭学报, 2013, 38(07): 1196-1200.

[158] Stefanska C.G, Zarebska K. Sorption of carbon dioxide-methane mixtures[J]. International Journal of Coal Geology. 2005, (62): 211-222.

[159] Busch A, Gensterblum Y, Bernhard M, et al. Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling[J]. International Journal of Coal Geology. 2004, (60): 151-168.

[160] 孙可明. 煤层气注气开采多组分流体扩散模型数值模拟[J]. 辽宁工程技术大学学报, 2005, 24(3): 305-308.

[161] 孙可明, 潘一山, 梁冰. 流固耦合作用下深部煤层气井群开采数值模拟[J]. 岩石力学与工程学报, 2007, 26(5): 994-1001.

[162] 杨新乐, 巩天白, 苏畅, 等. 气-固耦合作用下煤层气注热开采热量迁移规律数值模拟[J]. 安全与环境学报, 2021, 21(04): 1551-1558.

[163] 吴嗣跃, 郑爱玲. 注气驱替煤层气的三维多组分流动模型[J]. 天然气地球科学, 2007, 18(4): 580-583.

[164] 吴金涛, 侯健, 陆雪皎, 等. 注气驱替煤层气数值模拟[J]. 计算物理, 2014, 31(6): 681-689.

[165] 张文东. 深部煤层CO2注入与驱替煤层气机理研究及数值模拟[D]. 中国地质大学(北京), 2015.

[166] 王兆丰, 陈进朝, 杨宏民. 注气驱替煤层甲烷的有效影响半径研究[J]. 煤炭科学技术, 2012, 40(09): 28-31.

[167] J.克洛斯. 美国圣胡安盆地南部欠压水果地组煤层气非富集区煤储层特征研究[J]. 中国煤层气, 1999, (2): 38-42+37.

[168] Gunter W, Mavor S. CO2 storage and enhanced methane production: field testing at fenn big Valley, Alberta and Canada with Application[C]. Proceedings of 7th Conference on Greenhouse Gas Control Technologies, Oxford: Elsevier Ltd. 2005, 413-421.

[169] Shi J, Durucan S, Fujioka M, A reservoir simulation study of CO2 injection and N2 flooding at the Ishikari coalfield CO2 storage pilot project, Japan[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 47-57.

[170] 申建, 秦勇, 张春杰, 等. 沁水盆地深煤层注入CO2提高煤层气采收率可行性分析[J]. 煤炭学报, 2016, 41(1): 156-161.

[171] 傅国廷. 潞安低渗透性软煤层瓦斯驱替技术实践[J]. 矿业安全与环保, 2009, 36(1): 90-91.

[172] 刘超, 靖洪文, 蔚立元, 等. 高压流体注入对煤岩变形和破裂特性影响的实验研究[J].煤炭学报, 2021, 09(10): 1-15.

[173] 黄温钢, 王作棠, 夏元平, 等. 煤炭地下气化热-力耦合作用下条带开采数值模拟研究[J]. 煤炭科学技术, 2021, 05(24): 1-8.

[174] 王登科, 张平, 刘淑敏, 等. 温度冲击下煤层内部孔缝结构演化特征实验研究[J]. 煤炭学报, 2018, 43(12): 3395-3403.

[175] 严敏, 张一真, 林海飞, 等. 液氮浸融对不同预制温度煤体损伤特性试验研究[J]. 煤炭学报, 2020, 45(08): 2813-2823.

[176] 李万和, 王来贵, 牛富民, 等. 液氮对不同温度煤裂隙冻融扩展作用研究[J]. 中国安全科学学报, 2015, 25(10): 121-126.

[177] 任韶然,范志坤,张亮,等. 液氮对煤体的冷冲击作用机制及试验研究[J]. 岩石力学与工程学报, 2013, 32(S2):3790-3794.

[178] 宋春明,李干,王明洋,等. 不同速度段弹体侵彻岩石靶体的理论分析[J]. 爆炸与冲击, 2018, 38(2):250-257.

[179] 黄飞,卢义玉,李树清,等. 高压水射流冲击速度对砂岩破坏模式的影响研究[J]. 岩石力学与工程学报, 2016, 35(11):259-2265.

[180] 贾进章, 李斌, 王东明. 煤层液态CO2相变致裂半径范围的影响因素研究[J]. 中国安全科学学报, 2021, 31(4):57-63.

[181] 文虎, 李珍宝, 王旭, 等.液态CO2溶浸作用下煤体孔隙结构损伤特性研究[J]. 西安科技大学学报, 2017, 37(02): 149-153.

[182] 马砺, 魏高明, 王世斌, 等. 低渗透性煤层注液态CO2置换驱替CH4试验[J]. 重庆大学学报, 2018, 41(06): 76-83.

[183] Wang F, Cheng Y, Lu S, et al. Influence of coalification on the pore characteristics of middle high rank coal. Energy&Fuels, 2014, 28(9): 5729-5736.

[184] Xu J, Zhai C, Liu S, et al. Pore variation of three different metamorphic coals by multiple freezing-thawing cycles of liquid CO2 injection for coalbed methane recovery. Fuel, 2017, 208: 41-51.

[185] 邓淋升, 周宏伟, 薛东杰, 等. 基于NMR的煤体孔隙结构表征及气液两相渗流研究[J]. 煤炭学报, 2019, 44(S1):133-141.

[186] Clarkson C.R, Wood J, Burgis S, et al. Nanopore-structure analysis and permeability predictions for a tight gas siltstone reservoir by use of low-pressure adsorption and mercury intrusion techniques. SPE Reserv. Eval. Eng 2012, 15: 648–661.

[187] Zhao J, Tang D, Qin Y, et al. Fractal characterization of pore structure for coal macrolithotypes in the Hancheng area, southeastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 178: 666-677.

[188] Fu H, Tang D, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 2017, 193: 254–264.

[189] 李希建,薛海腾,陈刘瑜,等. 贵州地区突出煤层微孔结构及对瓦斯流动特性的影响[J]. 煤炭科学技术,2020,48(10):67-74.

[190] 贾腾飞, 王猛, 高星月, 等. 低阶煤储层孔隙结构特征及分形模型评价[J]. 天然气地球科学, 2021, 32(3): 423-436.

[191] 林海飞, 卜婧婷, 严敏, 等. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J].西安科技大学学报, 2019, 39(01): 1-8.

[192] 陈向军, 赵伞, 司朝霞, 等. 不同变质程度煤孔隙结构分形特征对瓦斯吸附性影响[J]. 煤炭科学技术, 2020, 48(2): 118-124.

[193] 宋昱, 姜波, 李凤丽, 等. 低-中煤级构造煤纳米孔分形模型适用性及分形特征[J]. 地球科学, 2018, 43(5): 1611-1622.

[194] 王登科, 张平, 魏建平, 等. CT可视化的受载煤体三维裂隙结构动态演化试验研究[J]. 煤炭学报, 2019, 44(S2): 574-584.

[195] 王刚, 江成浩, 刘世民, 等. 基于CT三维重建煤骨架结构模型的渗流过程动态模拟研究[J]. 煤炭学报, 2018, 43(5): 1390-1399.

[196] 方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法研究-以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探, 2018, 46(5): 167-174.

[197] 张青成, 王万富, 左建民, 等. 煤岩CT图像二值化阀值选取及三维重构技术研究[J]. CT理论与应用研究, 2014, 23(01): 45-51.

[198] 李鑫. 基于CT的黄土微细观空隙结构及优先流特性研究[D]. 长安大学, 2020.

[199] 刘勇, 胡霞, 李宗超, 等. 基于医学CT和工业CT扫描研究土壤大孔隙结构特征的区别[J]. 中国农学通报, 2016, 32(14): 106-111.

[200] 林承焰, 王杨, 杨山, 等. 基于CT的数字岩心三维建模[J].吉林大学学报(地球科学版), 2018, 48(01): 307-317.

[201] 王刚, 沈俊男, 褚翔宇, 等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J].煤炭学报, 2017, 42(08): 2074-2080.

[202] 宋党育, 何凯凯, 吉小峰, 等. 基于CT扫描的煤中孔裂隙精细表征[J].天然气工业, 2018, 38(03):41-49.

[203] Schlüter S, Sheppard A, Brown K, et al. Image processing of multi-phase images obtained via X-ray microtomography: a review[J]. Water Resources Research, 2014, 50(4): 3615-3639.

[204] FEI, SAS. Amira-Avizo Software 2019 User’s Guide[M]. Zentrum fur Informationstechnik Berlin (ZIB), Germany: Thermo Fisher Scientific, 2019.

[205] 毛慧华, 王枫红, 陈炽坤, 等. 几种常用CT图像分割算法分析和探讨[J]. 计算机与数字工程, 2012, 40(01): 101-103+108.

[206] Koestel J, Larsbo M, Jarvis N. Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil[J]. Geoderma, 2020, 366:114206.

[207] Koestel J, Dathe A, Skaggs T.H, et al. Estimating the Permeability of Naturally Structured Soil From Percolation Theory and Pore Space Characteristics Imaged by X-Ray[J]. Water Resources Research, 2018, 54(11):9255-9263.

[208] Cruz-Matías I. Partitioning of the pore space based on a non-hierarchical decomposition model[J]. Acta universitaria, 2019, 29: 18-26.

[209] Blunt M.J, Bijeljic B, Dong H, et al. Pore-scale imaging and modelling [J]. Advances in Water Resources, 2013, 51: 197-216.

[210] Jarvis N, Larsbo M, Koestel J. Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography[J]. Geoderma, 2017, 287: 71-79.

[211] Troch P.A, Carrillo G.A, Heidbüchel I, et al. Dealing with landscape heterogeneity in watershed hydrology: A review of recent progress toward new hydrological theory[J]. Geography Compass, 2009, 3(1):375-392.

[212] Jarvis N, Forkman J, Koestel J, et al. Long-term effects of grass-clover leys on the structure of a silt loam soil in a cold climate[J]. Agriculture, Ecosystems & Environment, 2017, 247: 319-328.

[213] Soto-Gómez D, Vázquez Juíz L, Pérez-Rodríguez P, et al. Percolation theory applied to soil tomography[J]. Geoderma, 2020, 357:113959.

[214] 刘泉声, 魏莱, 刘学伟, 等. 基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J]. 岩石力学与工程学报, 2017, 36(07): 1561-1569.

[215] 胡义锋, 张楠, 师俊平, 等. 基于泛形理论的裂纹扩展路径模拟[J]. 力学季刊, 2020, 41(02): 344-352.

[216] 王剑锋, 钱松荣, 石宏顺. 近场动力学理论在脆性材料波散射与裂纹扩展问题的数值模拟[J]. 科学技术与工程, 2019, 19(11): 1-9.

[217] Ramandi H.L, Mostaghimi P, Armstrong R.T, et al. Porosity and permeability characterization of coal: a micro-computed tomography study[J]. International Journal of Coal Geology, 2016,154: 57-68.

[218] Ramandi H.L, Mostaghimi P, Armstrong R.T. Digital rock analysis for accurate prediction of fractured media permeability[J]. Journal of Hydrology, 2017,554: 817-826.

[219] 张铎. 超宽带雷达波在煤中传播规律与定位基础研究[D]. 西安科技大学,2018.

[220] 程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报, 2021, 46(01): 180-198.

[221] 张晓光. 褐煤氧化对CO2和CH4竞争吸附行为影响的模拟研究[J]. 能源化工, 2020, 41(03): 38-41.

[222] Zhang J, Liu K, Clennell M.B, et al. Molecular simulation of CO2-CH4 competitive adsorption and induced coal swelling, Fuel 2015; 160: 309–317.

[223] Arif M, Barifcani A, Lebedev M, et al. CO2-wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery, Fuel 2016; 181: 680–689.

[224] Merkel A, Genstrerblum Y, Krooss B.M, et al. Competitive sorption of CH4, CO2 and H2O on natural coals of different rank, Int. J. Coal. Geol 2015; 150–151: 181–192.

[225] Vishal V, Mahanta B, Pradhan S, et al. Simulation of CO2 enhanced coalbed methane recovery in Jharia coal in-situs, India, Energy 2018; 159: 1185–1194.

[226] 周西华, 韩明旭, 白刚, 等. CO2注气压力对瓦斯扩散系数影响规律实验研究[J]. 煤田地质与勘探, 2021, 49(01): 81-86+99.

[227] 王立国. 注气驱替深部煤层CH4实验及驱替后特征痕迹研究[D]. 中国矿业大学, 2013.

[228] 刘世奇, 方辉煌, 桑树勋, 等. 基于多物理场耦合求解的煤层CO2-ECBM数值模拟研究[J]. 煤炭科学技术, 2019, 47(09): 51-59.

[229] 赵俊山, 陈亮, 李瑞敬, 等. 地质构造及水动力条件对瓦斯赋存的控制作用[J]. 煤炭科学技术, 2019, 47(07): 74-81.

[230] 舒才, 王宏图, 施峰, 等. 基于两能态吸附热理论的煤层瓦斯流动热-流-固多场耦合模型[J]. 岩土力学, 2017, 38(11): 3197-3204.

[231] 于洪观, 范维唐, 孙茂远, 等. 煤对CH4/CO2二元气体等温吸附特性及其预测[J]. 煤炭学报, 2005(05): 76-80.

[232] 刘正东. 高应力煤体物理结构演化特性对瓦斯运移影响机制研究[D]. 中国矿业大学, 2020.

[233] 魏建平, 温志辉, 苑永旺, 等. 应力对含瓦斯煤解吸特征影响的试验研究[J]. 煤炭科学技术, 2021, 49(05): 35-43.

[234] 杨孝波, 许江, 周斌, 等. 煤与瓦斯突出发生前后煤层温度演化规律研究[J]. 采矿与安全工程学报, 2021, 38(01): 206-214.

[235] 安丰华, 贾宏福, 刘军. 基于煤孔隙构成的瓦斯扩散模型研究[J]. 岩石力学与工程学报, 2021, 40(05): 987-996.

[236] 张建生. 基于VTK的Fick第二定律动态扩散过程模拟[J]. 计算机系统应用, 2012, 21(12): 117-120.

[237] 张丙强, 王启云, 卢晓颖. 软土地层浅埋圆形隧道非达西渗流场解析研究[J]. 岩土力学, 2018, 39(12): 4377-4384.

[238] 曹佐勇, 王恩元, 何学秋, 等. 近距离突出煤层群水力冲孔卸压瓦斯抽采及效果评价研究[J]. 采矿与安全工程学报, 2021, 03(05): 1-9.

[239] 邓博知. 二氧化碳压裂增透煤层及驱替煤层甲烷机理研究[D]. 重庆大学, 2018.

[240] Connell L.D, Lu M, Pan Z. An analytical coal permeability model for tri-axial strain and stress conditions. International Journal of Coal Geology, 2010; 84(2): 103-114.

[241] 魏晨慧. 热流固耦合条件下煤岩体损伤模型及其应用[D]. 东北大学, 2012.

[242] Tong F, Jing L, Zimmerman R.W, et al. A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses. International Journal of Rock Mechanics & Mining Science, 2010, 47:205-217.

[243] 于志金. 松散煤体内液态CO2相变传热与传质过程研究[D]. 西安科技大学, 2017.

[244] Wareing C J, Woolley R M, Fairweather M, et al. A composite equation of state for the modeling of sonic carbon dioxide jets in carbon capture and storage scenarios[J]. Aiche Journal, 2013, 59(10):3928-3942.

[245] Padua A, Wakeham W.A, Wilhelm J. The viscosity of liquid carbon dioxide[J]. International Journal of Thermophysics, 1994, 15(5):767-777.

[246] 雷云. 低渗透高瓦斯煤层二氧化碳相变致裂增透理论及实验研究[D].西南石油大学, 2018.

[247] 孔祥言. 高等渗流力学[M]. 中国科学技术大学出版社, 1999.

中图分类号:

 TD712    

开放日期:

 2024-03-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式