- 无标题文档
查看论文信息

论文中文题名:

 SiO2 纳米颗粒对泡沫灭火剂稳泡性能 影响研究    

姓名:

 薛梦华    

学号:

 19220214081    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与技术    

第一导师姓名:

 马砺    

第一导师单位:

 西安科技大学    

第二导师姓名:

 盛友杰    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Influence of Silica Nanoparticles on Foam Stability of firefi ghting Foams    

论文中文关键词:

 SiO2纳米颗粒 ; 泡沫灭火剂 ; 起泡剂 ; 稳泡剂 ; 泡沫稳定性    

论文外文关键词:

 Silica nanoparticles ; Firefighting foam ; Foaming agent ; Foam stabilizer ; Foam stability    

论文中文摘要:

水成膜泡沫(aqueous film-forming foam,AFFF)是一类用于扑灭易燃液体火灾的泡沫灭火剂,凭借在液体燃料表面形成水膜层和泡沫层,实现高效灭火。然而,传统AFFF核心组分长链氟碳表面活性剂存在严重的环境问题,已被限制使用。开发适用于液体火灾的新一代环保型泡沫灭火剂是消防领域面临的迫切任务。本文将纳米颗粒稳泡技术引入到环保型泡沫灭火剂中,研究纳米颗粒对泡沫灭火剂稳泡性能的影响。

首先,选取亲水型SiO2纳米颗粒与泡沫灭火剂核心组分——起泡剂和稳泡剂进行复配,制备纳米颗粒与泡沫灭火剂核心组分复配体系,系统研究了纳米颗粒对泡沫灭火剂核心组分的表面活性、粘性和电导率的影响规律。结果表明:SiO2纳米颗粒的加入,导致起泡剂体系表面活性和粘性增加,电导率下降;而SiO2纳米颗粒浓度的增加导致起泡剂和稳泡剂复合体系的表面活性、粘性、电导率均增加。

其次,研究了SiO2纳米颗粒对泡沫灭火剂核心组分泡沫稳定性的影响。结果表明:SiO2纳米颗粒能够提高起泡剂体系的发泡能力,同时显著增强泡沫稳定性。SiO2纳米颗粒与黄原胶或羧甲基纤维素共同存在时,起泡剂体系起泡性降低,泡沫稳定性显著提高。而聚丙烯酰胺和SiO2纳米颗粒共同存在泡沫稳定性和起泡性均降低。

最后,选择氟碳表面活性剂、碳氢表面活性剂和黄原胶作为核心组分,添加抗冻剂、助溶剂等组份,复合制备AFFF,研究SiO2纳米颗粒对AFFF泡沫稳定性的影响。结果表明:SiO2纳米颗粒可以有效延缓AFFF泡沫析液和粗化,显著的提高AFFF泡沫稳定性。SiO2纳米颗粒稳定泡沫灭火剂的原理主要是其能够在液膜和Plateau边界聚集,形成稳定的网络结构,有效地延缓泡沫析液和粗化,增强泡沫的稳定性。本研究结果能够为SiO2纳米颗粒在环保型泡沫灭火剂中的应用提供理论参考。

论文外文摘要:

Aqueous film-forming foam (AFFF) is a type of firefighting foams used to extinguish flammable liquid fires. Its high efficiency in fire extinguishment is achieved by a water film layer and a foam layer formed on the surface of liquid fuel upon AFFF application. However, the core component of AFFF, the long-chain fluorocarbon surfactants, have proved to have serious environmental problems and its application has been restricted severely. It is an urgent task to developing a new generation of environmentally friendly firefighting foams suitable for flammable liquid fires. In the present study, nanoparticle-stabilized foams are focused in order to develop the environmentally friendly firefighting foams. The effect of nanoparticles on the foam stability of the firefighting foams are studied systematically.

First, the hydrophilic silica nanoparticles and the core components of firefighting foams, foaming agent and foam stabilizer, are chosen for preparing the mixed dispersions of nanoparticles and the core components. Influence of nanoparticles on surface activity, viscosity and electrical conductivity of the mixed dispersions was studied deeply. The results show that the addition of silica nanoparticles leads to the increase in surface activity and viscosity of the foaming agent system, and the decrease in the conductivity, while the increase of the concentration of silica nanoparticles leads to the increase in the surface activity, viscosity and conductivity of the mixed dispersions of foaming agent and foam stabilizer

Secondly, the effect of silica nanoparticles on the foam properties of the core component of firefighting foams was studied. The results show that silica nanoparticles can improve the foaming ability and the foam stability of the foaming agent. When silica nanoparticles coexist with xanthan gum or carboxymethyl cellulose, the foaming ability of the foaming agent is reduced, and the foam stability is significantly improved. However, the mixture of polyacrylamide and silica nanoparticles resulted in decease in the foaming ability and foam stability.

Finally, fluorocarbon surfactant, hydrocarbon surfactant, xanthan gum, antifreeze, cosolvent, and other components were selected for preparing AFFF concentrates. The effect of silica nanoparticles on the stability of the prepared AFFF was studied. The results show that silica nanoparticles can effectively delay the drainage and coarsening of AFFF, significantly improving the foam stability. The silica nanoparticles aggregated and formed a stable network structure at foam bubble films and Plateau borders, effectively delaying foam drainage and coarsening, and hence enhance foam stability. The results obtained from this study can provide theoretical support for the application of silica nanoparticles in environmentally friendly firefighting foams.

参考文献:

[1]2020中国统计年鉴[J]. 统计理论与实践, 2021(01): 2.

[2]孙彬程. 石油化工类火灾特点和预防策略[J]. 今日消防, 2020, 5(01): 26+28.

[3]UNEP. Stockholm convention on persistent organic pollutants(POPs). Geneva, Switzerland: Secretariat of the stockholm convention, 2009.

[4]余威, 王鹏翔, 田亮, 等. PFOS受控的公约进展及中国消防行业使用PFOS情况[J]. 消防科学与技术, 2010, 29(6): 513-515.

[5]韩郁翀, 秦俊. 泡沫灭火剂的发展与应用现状[J]. 火灾科学, 2011, 20(04): 235-240.

[6]王宝宁, 王怡文. AFFF灭火效果研究[J]. 山东工业技术, 2021(05): 116-122.

[7]志贺博. 不含氟类表面活性剂的泡沫灭火剂: 日本, ZL02823068.X[P], 2005.

[8]边久荣, 程宝义, 金朴, 等. 多功能环保新型高效灭火剂——法安德2000[J]. 消防技术与产品信息, 2008(09): 85-87.

[9]包志明, 傅学成, 李姝, 等. 中国含PFOS泡沫灭火剂替代品研究及生产现状[C]//持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会. 论文集. 2011.

[10]Wang P. Application of green surfactants developing environment friendly foam extinguishing agent[J]. Fire Technology, 2015, 51(3): 503-511.

[11]盛友杰. 碳氢和有机硅表面活性剂复配体系为基剂的泡沫灭火剂研究[D]. 中国科学技术大学, 2018.

[12]吴楠, 曹青, 张连超. 有机硅/碳氢表面活性剂对水成膜灭火剂性能的影响[J]. 消防科学与技术, 2020, 39(07): 997-1000.

[13]Ananth R, Snow A W, Hinnant K M, et al. Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123686.

[14]包志明, 赵婷婷, 张宪忠, 等. 车用乙醇汽油泡沫灭火剂的研究[J]. 消防科学与技术, 2021, 40(5): 738-741.

[15]周莹. 无氟合成泡沫灭火剂制备及与2-BTP协同灭火有效性实验研究[D]. 中国矿业大学, 2021.

[16]Vinogradov A V, Kuprin D S, Abduragimov I M, et al. Silica foams for fire prevention and firefighting[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 294-301.

[17]Yu X, Jiang N, Miao X, et al. Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams[J]. Process Safety and Environmental Protection, 2020, 133: 201-215.

[18]Lin C, Pan R, Xing P, et al. Synthesis and surface activity study of novel branched zwitterionic heterogemini fluorosurfactants with CF3CF2CF2C (CF3) 2 group[J]. Journal of Fluorine Chemistry, 2018, 214: 35-41.

[19]Hagenaars A, Meyer I J, Herzke D, et al. The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: Physiological and transcriptomic effects of two Forafac® fluorosurfactants in turbot[J]. Aquatic Toxicology, 2011, 104(3-4): 168-176.

[20]李远翔, 安娜, 乔建江. 氟碳-碳氢表面活性剂复配及其灭火性能[J]. 华东理工大学学报(自然科学版), 2015, 41(04): 502-507.

[21]端木亭亭, 王嘉, 王培源, 等. 非PFOA型氨基酸氟碳表面活性剂的合成与性能测试[J]. 消防科学与技术, 2011, 30(7): 624-627.

[22]Jia X, Bo H, He Y. Synthesis and characterization of a novel surfactant used for aqueous film-forming foam extinguishing agent[J]. Chemical Papers, 2019, 73(7): 1777-1784.

[23]薄海东, 贾旭宏, 张汉飞, 等. 环保型AFFF研究[C]//持久性有机污染物论坛2018暨化学品环境安全大会. 论文集. 2018: 302-304.

[24]Yang Y W, Fang J Q, Sha M, et al. Study on foam extinguishing agents based on hydrocarbon and perfluorinated branched short-chain fluorocarbon surfactants mixed system[J]. Chemical Papers, 2021, 75(12): 6241-6255.

[25]Arriaga L R, Drenckhan W, Salonen A, et al. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants[J]. Soft Matter, 2012, 8(43): 11085-11097.

[26]Sun Q, Li Z, Wang J, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 471: 54-64.

[27]Nguyen A V, Schulze H J. Colloidal science of flotation[M]. CRC Press, 2003: 39-45.

[28]Singh R, Mohanty K K. Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery[J]. Energy & Fuels, 2015, 29(2): 467-479.

[29]Zitha P J, 戚倩. 疏水型SiO2纳米颗粒的稳泡性研究[J]. 能源化工, 2018, 39(1): 1-6.

[30]Horozov T S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13(3): 134-140.

[31]Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(24): 3722-3725.

[32]Garrett P R, Wicks S P, Fowles E. The effect of high volume fractions of latex particles on foaming and antifoam action in surfactant solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282: 307-328.

[33]Yekeen N, Manan M A, Idris A K, et al. Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles[J]. Journal of Petroleum Science and Engineering, 2017, 159: 115-134.

[34]Yekeen N, Manan M A, Idris A K, et al. A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2018, 164: 43-74.

[35]杨易骏, 王锦昌, 周瑞立, 等. 纳米粒子泡排剂在大牛地低含硫气井中的应用及评价[J]. 石油化工应用, 2019, 38(07): 20-25.

[36]Gonzenbach U T, Studart A R, Tervoort E, et al. Stabilization of foams with inorganic colloidal particles[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2006, 22(26): 10983-10988.

[37]Gonzenbach U T, Studart A R, Tervoort E, et al. Tailoring the microstructure of particle-stabilized wet foams[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2007, 23(3): 1025-1032.

[38]Sun Q, Li Z, Li S, et al. Utilization of surfactant-stabilized Foam for enhanced oil recovery by Adding nanoparticles[J]. Energy & Fuels, 2014, 28(4): 2384–2394.

[39]Xiao C, Balasubramanian S N, Clapp L W. Rheology of viscous CO2 foams stabilized by nanoparticles under high pressure[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8340-8348.

[40]AlYousef Z, Almobarky M, Schechter D. Enhancing the stability of foam by the use of nanoparticles[J]. Energy & Fuels, 2017, 31(10): 10620-10627.

[41]AlYousef Z A, Almobarky M A, Schechter D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of Colloid and Interface Science, 2018, 511: 365-373.

[42]Stocco A, Drenckhan W, Rio E, et al. Particle-stabilised foams: an interfacial study[J]. Soft Matter, 2009, 5(11): 2215-2222.

[43]Kim I, Worthen A J, Johnston K P, et al. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams[J]. Journal of Nanoparticle Research, 2016, 18(4): 1-12.

[44]Carn F, Colin A, Pitois O, et al. Foam drainage in the presence of nanoparticle− surfactant mixtures[J]. Langmuir, 2009, 25(14): 7847-7856.

[45]Denkov N D, Ivanov I B, Kralchevsky P A, et al. A possible mechanism of stabilization of emulsions by solid particles[J]. Journal of colloid and interface science. 1992, 150 (2), 589−593.

[46]Yekeen N, Idris A K, Manan M A, et al. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability[J]. Chinese Journal of Chemical Engineering, 2017, 25(3): 347-357.

[47]Kam S I, Rossen W R. Anomalous capillary pressure, stress, and stability of solids-coated bubbles[J]. Journal of Colloid and Interface Science, 1999, 213(2): 329-339.

[48]Binks B P. Particles as surfactants—similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1-2): 21-41.

[49]AlYousef Z A, Almobarky M A, Schechter D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of Colloid and Interface Science, 2018, 511: 365-373.

[50]王腾飞, 王杰祥, 韩蕾, 等. 纳米氢氧化铝稳定泡沫性能研究[J]. 西安石油大学学报(自然科学版), 2012, 27(5): 78-81.

[51]Kim D W, Lee J Y, Lee S M, et al. Surface modification of calcium carbonate nanoparticles by fluorosurfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536: 213-223.

[52]崔燕贞. 纳米碳酸钙—表面活性剂混合体系的泡沫性能研究[D]. 江南大学, 2009

[53]李兆敏, 孙乾, 李松岩, 等. 纳米颗粒提高泡沫稳定性机理研究[J]. 油田化学, 2013, 30(04): 625-629+634.

[54]王鹏. SiO2纳米颗粒提高CO2泡沫稳定性实验研究与应用[D]. 中国石油大学(华东), 2015.

[55]傅柄棋, 唐宝华. 不同粒径二氧化硅对抗醇泡沫灭火剂性能影响实验研究[J]. 消防科学与技术, 2016, 35(3): 407-410.

[56]Zhou R, Dou X, Lang X, et al. Foaming ability and stability of silica nanoparticle-based triple-phase foam for oil fire extinguishing: experimental[J]. Soft Materials, 2018, 16(4): 327-338.

[57]Zhou R, Lang X, Zhang X, et al. Thermal stability and insulation characteristics of three-phase fire-fighting foam exposed to radiant heating[J]. Process Safety and Environmental Protection. 2021, 146: 360-368.

[58]唐宝华. 强化油品抗烧三相泡沫灭火剂开发及性能研究[D]. 河北工业大学, 2016.

[59]Fu G, Jiang J, Wei D, et al. The study of the stability of aqueous three-phase fire-resistant foam in typical liquidus hydrocarbons[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1075-1084.

[60]Vinogradov A V, Kuprin D, Abduragimov I, et al. Silica foams for fire prevention and firefighting[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 294-301.

[61]Sheng Y, Xue M, Zhang S, et al. Effect of xanthan gum and silica nanoparticles on improving foam properties of mixed solutions of short-chain fluorocarbon and hydrocarbon surfactants[J]. Chemical Engineering Science, 2021, 245: 116952.

[62]姜宁. 基于短链碳氟-碳氢复配体系的耐海水型AFFF研究[D]. 中国科学技术大学, 2021.

[63]Garcıa-Ochoa F, Santos V E, Casas J A, et al. Xanthan gum: production, recovery, and properties[J]. Biotechnology advances, 2000, 18(7): 549-579.

[64]Vatanparast H, Samiee A, Bahramian A, et al. Surface behavior of hydrophilic silica nanoparticle-SDS surfactant solutions: I. Effect of nanoparticle concentration on foamability and foam stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513: 430-441.

[65]彭宝亮, 罗健辉, 王平美, 等. 用于低渗透油田调剖的纳米颗粒稳定泡沫体系研究进展[J]. 油田化学, 2017, 34(04): 745-748.

[66]Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16 (23): 8622−8631.

[67]Lu Q, Li Z, Li B, et al. Study of nanoparticle−surfactant-stabilized foam as a fracturing fluid[J]. Industrial & Engineering Chemistry Research, 2015, 54: 9468−9477.

[68]Zhang S, Lan Q, Liu Q, et al. Aqueous foams stabilized by Laponite and CTAB[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1-3): 406-413.

[69]孙乾. 改性SiO2纳米颗粒稳泡机理及渗流特征研究[D]. 中国石油大学(华东), 2015.

[70]Sheng Y, Xue M, Zhang S, et al. Effect of xanthan gum and silica nanoparticles on improving foam properties of mixed solutions of short-chain fluorocarbon and hydrocarbon surfactants[J]. Chemical Engineering Science, 2021, 245: 116952.

中图分类号:

 TD753    

开放日期:

 2022-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式