论文中文题名: |
耐湿柔性摩擦纳米发电机的构建及自供电传感应用研究
|
姓名: |
薛玉玉
|
学号: |
21213065009
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0817
|
学科名称: |
工学 - 化学工程与技术
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
化学工程与技术
|
研究方向: |
功能超浸润材料
|
第一导师姓名: |
何金梅
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-13
|
论文答辩日期: |
2024-06-03
|
论文外文题名: |
Construction of moisture-resistant flexible triboelectric nanogenerator and application of self-powered sensing
|
论文中文关键词: |
摩擦纳米发电机 ; 耐湿 ; 可穿戴织物 ; 能量收集 ; 自供电传感器
|
论文外文关键词: |
Triboelectric nanogenerators ; Moisture resistance ; Wearable fabrics ; Energy harvesting ; Self-powered sensors
|
论文中文摘要: |
︿
近年来,随着物联网设备、智能传感器等电子设备的蓬勃发展,能源的需求日益增多。传统的设备供应电池由于体积庞大、寿命有限且含有有害成分污染环境等缺点可能会限制物联网设备、智能传感器和可穿戴设备的工作效率。因此,为这些设备提供动力的环保替代新技术是当前和未来的研究挑战。摩擦纳米发电机基于接触起电和静电耦合的原理,能够将环境中的许多能量进行收集,并将其转换为电能。其作为一种从环境中收集能量的替代技术,因具有重量轻、生产成本低、操作简单、输出效率高等显著优点吸引了人们广泛关注。尽管已经有许多关于提高摩擦纳米发电机的输出效率和扩宽应用领域的研究,但是在潮湿环境中高效运行仍然面临挑战。因此,本文通过对摩擦电材料的设计和优化,获得了具有耐湿柔性的摩擦纳米发电机。使其不仅可以抵挡高湿度环境的干扰,并且能够更好与应用环境相匹配,在能量收集和人机界面传感等领域具有巨大前景。主要工作如下:
(1)通过溶液浇注和模板法在聚偏氟乙烯六氟丙烯共聚物和聚氯乙烯中掺杂二氧化钛纳米颗粒,获得了具有凹凸结构的柔性薄膜。将其作为负摩擦层与正摩擦层聚对苯二甲酸乙二醇酯薄膜进行组装,得到耐湿柔性的薄膜基摩擦纳米发电机(P-TENG)。通过引入二氧化钛,复合材料的介电常数和摩擦电性得到了显著的提升。同时,薄膜表面的粗糙结构使得其接触过程中有效接触面积增大,进而提升了材料表面的电荷密度。在面积为3 × 3 cm2时,P-TENG的开路电压和短路电流可达到235 V和35 μA,峰值功率密度为1.4 W m-2。由于薄膜的静态接触角可达到为121°,具有良好的疏水性,因此使得P-TENG在潮湿环境中也能保持较好的性能。通过持续接触释放P-TENG,能够将机械能量通过整流器整流收集存储到商用电容器中,为一些低功耗电子设备提供电能,该P-TENG自供电传感器还有望被应用于运动健身、康复训练和人机交互等领域。
(2)以廉价易得的棉织物为基材,在其表面引入聚多巴胺、碳纳米管和聚吡咯,最后通过有机硅烷改性修饰,获得了超疏水导电织物。将其同时作为正摩擦层和电极,与负摩擦层聚四氟乙烯薄膜进行组装,得到耐湿导电的织物基摩擦纳米发电机(HPC-TENG)。该HPC-TENG与传统摩擦纳米发电机相比,具有结构简单、穿戴轻便等优点。在面积为3 × 3 cm2时,其开路电压和短路电流可达到300 V和50 μA,峰值功率密度为2.6 W m-2,这可归因于HPC织物的强给电子基团、高导电性和丰富的微纳米粗糙结构的协同作用。此外,该HPC-TENG展现出卓越的耐湿性,可有效防止水分的干扰,即使在高湿度环境下依然能够保持良好的摩擦电输出性能。通过手拍HPC-TENG,不仅能点亮180个LEDs灯,还可以作为电源快速地为不同的商用电容器进行充电。应用研究表明,该柔性可穿戴HPC-TENG可被用作监测人体运动状态的压力传感器和多通道传感的智能娱乐游戏毯。
﹀
|
论文外文摘要: |
︿
In recent years, with the booming development of electronic devices such as Internet of Things devices and smart sensors, the demand for energy has been increasing. Traditional device supply batteries may limit the efficiency of IoT devices, smart sensors, and wearables due to their bulky, limited lifespan, and environmental pollution with harmful components. , it has attracted much attention due to its significant advantages such as light weight, low production cost, simple operation and high output efficiency. Although there have been many studies on improving the output efficiency of triboelectric nanogenerators and expanding their application areas, efficient operation in humid environments is still a challenge. Therefore, in this paper, triboelectric nanogenerators with moisture-resistant flexibility are obtained through the optimization and design of friction electric materials. It makes it not only resistant to the interference of high humidity environment, but also better matched with the application environment, which has great prospects in the fields of energy harvesting and human-machine interface sensing. The main work is as follows:
(1) By solution casting and template method of doping titanium dioxide nanoparticles in poly(vinylidene fluoride) hexafluoropropylene copolymer and poly(vinyl chloride), flexible thin films with concave-convex structure were obtained. It was assembled as a negative friction layer with a positive friction layer of polyethylene terephthalate film to obtain moisture-resistant and flexible film-based triboelectric nanogenerator (P-TENG). By introducing titanium dioxide, the dielectric constant and friction electrical properties of the composites were significantly improved. At the same time, the rough structure of the film surface makes the effective contact area increase during the contact process, which in turn enhances the charge density of the material surface. The open-circuit voltage and short-circuit current of P-TENG can reach 235 V and 35 μA at an area of 3 × 3 cm2, with a peak power density of 1.4 W m-2. The static contact angle of the film can reach 121°, and the film has good hydrophobicity, which allows P-TENG to maintain its performance in humid environments. By releasing P-TENG through sustained contact, mechanical energy can be collected and stored in commercial capacitors through rectifier rectification to provide power for some low-power electronic devices, and this P-TENG self-powered sensor is also expected to be applied in the fields of sports and fitness, rehabilitation training and human-computer interaction.
(2) Using cheap and readily available cotton fabric as a substrate, superhydrophobic conductive fabric was obtained by introducing polydopamine, carbon nanotubes and polypyrrole on its surface and finally modified by organosilane modification. It was simultaneously used as a positive friction layer and electrode, and assembled with a negative friction layer of polytetrafluoroethylene film to obtain a moisture-resistant and conductive fabric-based triboelectric nanogenerator (HPC-TENG). This HPC-TENG has the advantages of simple structure and light wearing compared with the traditional triboelectric nanogenerator. The open-circuit voltage and short-circuit current can reach 300 V and 50 μA at an area of 3 × 3 cm2 with a peak power density of 2.6 W m-2, which can be attributed to the synergistic effect of strong electron-donating groups, high electrical conductivity, and abundant micro- and nano-coarse structures of HPC fabric. In addition, this HPC-TENG exhibits excellent moisture resistance to prevent moisture interference and maintains good friction electrical output performance even in high humidity environments. By hand tapping the HPC-TENG, it not only lights up 180 LEDs, but also serves as a power source to quickly charge different commercial capacitors. Application studies have shown that the flexible wearable HPC-TENG can be used as a pressure sensor for monitoring human movement status and a smart entertainment game blanket with multi-channel sensing.
﹀
|
参考文献: |
︿
[1] Fei L, Yin Y J, Yang M F, et al. Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization[J]. Energy Storage Materials, 2021, 42, 636-644. [2] Zhu M M, Lou M N, Abdalla I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy, 2020, 69, 104429. [3] Gao W, Ota H, Kiriya D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52, 523-533. [4] Ma T Y. Wu S Y, Wang F, et al. Degradation mechanism study and safety hazard analysis of over discharge on commercialized lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12, 56086-56094. [5] Dong K, Peng X, Cheng R W, et al. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures[J]. Advanced Materials, 2022, 34, 2109355. [6] Zhang T T, Yang T, Zhang M, et al. Recent progress in hybridized nanogenerators for energy scavenging[J]. iScience, 2020, 23, 101689. [7] 陶振. 基于苯丙氨酸二肽的可降解压电纳米发电机[D]. 西安电子科技大学, 2022. [8] Li Z Y, Peng Y, Xu Z B, et al. Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators[J]. Energy, 2021, 228, 120523. [9] Vidal J V, Rolo P, Carneiro P M R, et al. Automated electromagnetic generator with self-adaptive structure by coil switching[J]. Applied Energy, 2022, 325, 119802. [10] Wu Z Y, Guo H Y, Ding W B, et al. A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere[J]. ACS Nano, 2019, 13, 2349–2356. [11] Wang Z L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution[J]. Advanced Energy Materials, 2020, 10, 2000137. [12] 熊瑶, 孙其君. 摩擦纳米发电机:物联网时代的高熵新能源技术[J]. 长沙理工大学学报(自然科学版), 2023, 20: 32-51. [13] 孙鑫. 用于波浪能收集的混合摩擦纳米发电机的研究[D]. 上海电力大学, 2023. [14] Zhang B, Zhang S, Li W B, et al. Self-powered sensing for smart agriculture by electromagnetic-triboelectric hybrid generator[J]. ACS Nano, 2021, 15, 20278-20286. [15] Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1, 328-334. [16] Zi Y L, Guo H Y, Wen Z, et al. Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator[J]. ACS Nano, 2016, 10, 4797-4805. [17] Zhao C H, Wu Y H, Dai X Y, et al. Calliopsis structure-based triboelectric nanogenerator for harvesting wind energy and self-powerd wind speed/direction sensor[J]. Materials & Design, 2022, 221, 111005. [18] Chen H M, Xing C, Li Y L, et al. Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system[J]. Sustainable Energy & Fuels, 2020, 4, 1063-1077. [19] 马超群, 王优强, 王秀通等. 雨滴能量收集型摩擦纳米发电机的研究进展[J]. 微纳电子技术, 2024, 61: 7-22. [20] Wen Z, Yang Y Q, Sun N, et al. A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors[J]. Advanced Functional Materials, 2018, 28, 1803684. [21] Wu Y X, Li Y S, Zou Y, et al. A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring[J]. Nano Energy, 2022, 92, 106715. [22] Cheng T H, Gao Q, Wang Z L. The current development and future outlook of triboelectric nanogenerators: a survey of literature[J]. Advanced Materials Technologies, 2019, 4, 1800588. [23] Zhao X J, Kuang S Y, Wang Z L, et al. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy[J]. ACS Nano, 2018, 12, 4280-4285. [24] Liu D, Gao Y K, Zhou L L, et al. Recent advances in high-performance triboelectric nanogenerators[J]. Nano Research, 2023, 16, 11698-11717. [25] Ren Z W, Ding Y F, Nie J H, et al. Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators[J]. ACS Applied Materials & Interfaces, 2019, 11, 6143-6153. [26] Nguyen V, Yang R. Effect of humidity and pressure on the triboelectric nanogenerator[J]. Nano Energy, 2013, 2, 604-608. [27] Hu S M, Shi Z J, Zheng R Z, et al. Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications[J]. ACS Applied Materials & Interfaces, 2020, 12, 40021-40030. [28] Yuan W, Zhang C G, Zhang B F, et al. Wearable, breathable and waterproof triboelectric nanogenerators for harvesting human motion and raindrop energy[J]. Advanced Materials Technologies, 2022, 7, 2101139. [29] Zhang R Y, Dahlström C, Zou H Y, et al. Cellulose-based fully green triboelectric nanogenerators with output power density of 300 W m-2[J]. Advanced Materials, 2020, 32, 2002824. [30] Antonini C, Innocenti M, Horn T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67, 58-67. [31] 王战胜. 超疏水自清洁涂层的研究进展[J]. 交通科技与管理, 2023, 4: 183-185. [32] Chen B D, Tang W, He C, et al. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator[J]. Materials Today, 2018, 21, 88-97. [33] Zhang Z, Zhang Q L, Xia Z Y, et al. A humidity and environment-resisted high-performance triboelectric nanogenerator with superhydrophobic interface for energy harvesting and sensing[J]. Nano Energy, 2023, 109, 108300. [34] Dai X M, Sun N, Nielsen S O, et al. Hydrophilic directional slippery rough surfaces for water harvesting[J]. Science Advances, 2018, 4, eaaq0919. [35] Wenzel, Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28, 988-994. [36] Wang S, Jiang L. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19, 3423-3424. [37] Montaño-Figueroa A G, Alcantar-Peña J J, Tirado P, et al. Tailoring of polycrystalline diamond surfaces from hydrophilic to superhydrophobic via synergistic chemical plus micro-structuring processes[J]. Carbon, 2018, 139, 361-368. [38] 王青. 仿生超疏水材料的构建及应用研究[D]. 广州: 华南理工大学, 2017. [39] Wang J W, Zhang Y B, He Q. Durable and robust superhydrophobic fluororubber surface fabricated by template method with exceptional thermostability and mechanical stability[J]. Separation and Purification Technology, 2023, 306, 122423. [40] Liu Y, Zhang H, Wang P, et al. 3D-printed bionic superhydrophobic surface with petal-like microstructures for droplet manipulation, oil-water separation, and drag reduction[J]. Materials & Design, 2022, 219, 110765. [41] Xie Y, Tu P P, Xiao Y H, et al. Designing non-fluorinated superhydrophobic fabrics with durable stability and photocatalytic functionality[J]. ACS Applied Materials & Interfaces, 2023, 15, 40011-40021. [42] Shen L X, Hu H F, Wang S, et al. Preparation of super hydrophobic mMoS2/PDMS coating for fabrics[J]. Reactive and Functional Polymers, 2019, 143, 104315. [43] Ye Y Y, Li T Y, Zhao Y M, et al. Engineering environmentally friendly nanofiber membranes with superhydrophobic surface and intrapore interfaces for ultrafast Oil-water separation[J]. Separation and Purification Technology, 2023, 317, 123885 [44] Li T T, Wang Y T, Peng H K, et al. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105685. [45] Cao C Y, Yi B, Zhang J Q, et al. Sprayable superhydrophobic coating with high processibility and rapid damage-healing nature[J]. Chemical Engineering Journal, 2020, 392, 124834. [46] Shen Y Z, Wu Z W, Tao J, et al. Spraying preparation of eco-friendly superhydrophobic coatings with ultralow water adhesion for effective anticorrosion and antipollution[J]. ACS Applied Materials & Interfaces, 2020, 12, 25484-25493. [47] Delgado-Alvarado E, Elvira-Hernández E A, Hernández-Hernández J, et al. Recent progress of nanogenerators for green energy harvesting: performance, applications, and challenges[J]. Nanomaterials, 2022, 12, 2549. [48] Niu Z X, Cheng W L, Cao M L, et al. Recent advances in cellulose-based flexible triboelectric nanogenerators[J]. Nano Energy, 2021, 87, 106175. [49] Gao Y Y, Liu G X, Bu T Z, et al. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator[J]. Nano Research, 2021, 14, 4833-4840. [50] Zheng T, Li G Z, Zhang L N, et al. A waterproof, breathable nitrocellulose-based triboelectric nanogenerator for human-machine interaction[J]. Nano Energy, 2023, 114. 108649. [51] Yang W, Chen H M, Wu M Q, et al. A Flexible triboelectric nanogenerator based on cellulose-reinforced MXene composite film[J]. Advanced Materials Interfaces, 2022, 9, 2102124. [52] Wang X X, Li T Y, Geng W H, et al. Flexible wearable electronic fabrics with dual functions of efficient EMI shielding and electric heating for triboelectric nanogenerators[J]. ACS Applied Materials & Interfaces, 2023, 15, 22762-22776. [53] Meena J S, Khanh T D, Jung S B, et al. Self-repairing and energy-harvesting triboelectric sensor for tracking limb motion and identifying breathing patterns[J]. ACS Applied Materials & Interfaces, 2023, 15, 29486-29498. [54] Bai Z Q, Xu Y L, Li J C, et al. An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing[J]. ACS Applied Materials & Interfaces, 2020, 12, 42880-42890. [55] Gao C, Zhang W L, Liu T, et al. Hierarchical porous triboelectric aerogels enabled by heterointerface engineering[J]. Nano Energy, 2024, 121, 109223. [56] Wang F J, Wang S Y, Liu Y F, et al. Improved electrical output performance of cellulos-based triboelectric nanogenerators enabled by negative triboelectric materials[J]. Small, 2023, 2308195. [57] Cheng Y, Zhu W D, Lu X F, et al. Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing[J]. Nano Energy, 2022, 98, 107229. [58] He F L, You X Y, Gong H, et al. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric Nanogenerators[J]. ACS Applied Materials & Interfaces, 2020, 12, 6442-6450. [59] Wang Z, Liu Z R, Zhao G R, et al. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors[J]. ACS Nano, 2022, 16, 1661-1670. [60] Li Z, Li C, Sun W, et al. A controlled biodegradable triboelectric nanogenerator based on PEGDA/Laponite hydrogels[J]. ACS Applied Materials & Interfaces, 2023, 15, 12787-12796. [61] Ning C, Cheng R W, Jiang Y, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring[J]. ACS Nano, 2022, 16, 2811-2821. [62] Fan F R, Tang W, Wang Z L. Flexible nanogenerators for energy harvesting and self-powered electronics[J]. Advanced Materials, 2016, 28, 4283-4305. [63] 王中林, 蒋涛, 许亮等. 纳米发电机应用: 海洋蓝色能源[J]. 中国科学: 技术科学, 2023, 53: 989-1001. [64] Sahu M, Hajra S, Panda S, et al. Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics[J]. Nano Energy, 2022, 97, 107208. [65] Xie Y N, Wang S H, Niu S M, et al. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency[J]. Advanced Materials, 2014, 26, 6599-6607. [66] Zhang R Y, Olin H. Material choices for triboelectric nanogenerators: A critical review[J]. EcoMat, 2020, 2, e12062. [67] Huang T, Lu M X, Yu H, et al. Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide[J]. Scientific Reports, 2015, 5, 13942. [68] Lee J W, Cho H J, Chun J, et al. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement[J]. Science Advances, 2017, 3, e1602902. [69] Cui S N, Zhou L L, Liu D, et al. Improving performance of triboelectric nanogenerators by dielectric enhancement effect[J]. Matter, 2022, 5, 180-193. [70] Wang Y, Yang Y, Wang Z L. Triboelectric nanogenerators as flexible power sources[J]. npj Flexible Electronics, 2017, 1, 10. [71] Lu C X, Chen J, Jiang T, et al. A stretchable, flexible triboelectric nanogenerator for self-powered real-time motion monitoring[J]. Advanced Materials Technologies, 2018, 3, 1800021. [72] Rana S M S, Rahman M T, Salauddin M, et al. Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances[J]. ACS Applied Materials & Interfaces, 2021, 13, 4955-4967. [73] Chinya I, Pal A, Sen S. Flexible, hybrid nanogenerator based on zinc ferrite nanorods incorporated poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite for versatile mechanical energy harvesting[J]. Materials Research Bulletin, 2019, 118, 110515. [74] He Y L, Wang H Y, Sha Z, et al. Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals[J]. Nano Energy, 2022, 98, 107343. [75] Pandey M, Joshi G M, Mukherjee A, et al. Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites[J]. Polymer International, 2016, 65, 1098-1106. [76] Ahmed F U, Purkayastha D D. Decoration of cauliflower-like TiO2 on nanofibrous PVDF membranes: a strategy for wastewater treatment[J]. ACS Applied Polymer Materials, 2023, 5, 1241-1253. [77] 张小芳, 夏卫民, 邢俊红等. 聚偏氟乙烯及其共聚物基压电复合材料的研究进展[J].复合材料学报, 2021, 38, 997-1019. [78] Kavarthapu V S, Graham S A, Manchi P, et al. Electrospun ZnSnO3/PVDF-HFP nanofibrous triboelectric films for efficient mechanical energy harvesting[J]. Advanced Fiber Materials, 2023, 5, 1685-1698. [79] Lee J H, Hinchet R, Kim T Y, et al. Control of skin potential by triboelectrification with ferroelectric polymers[J]. Advanced Materials, 2015, 27, 5553-5558. [80] Lei T P, Yu L K, Zheng G F, et al. Electrospinning-induced preferred dipole orientation in PVDF fibers[J]. Journal of Materials Science, 2015, 50, 4342-4347. [81] Wang Z L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators[J]. Materials Today, 2017, 20, 74-82. [82] Li G, Zhang J, Huang F, et al. Transparent, stretchable and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode[J]. Nano Energy, 2021, 88, 106289. [83] Manchi P, Graham S A, Patnam H, et al. rGO-ZnSnO3 nanostructure-embedded triboelectric polymer-based hybridized nanogenerators[J]. Advanced Materials Technologies, 2022, 7, 2101460. [84] Wei Y, Cheng M H, Wang M, et al. Polyimide/BaTiO3/NiNWs composites with enhanced dielectric properties[J]. Composites Communications, 2022, 35, 101286. [85] Jangra M, Thakur A, Dam S, et al. Enhanced dielectric properties of MoS2/ PVDF free-standing, flexible films for energy harvesting applications[J]. Materials Today Communications, 2023, 34, 105109. [86] Lu S, Gao L X, Chen X, et al. Simultaneous energy harvesting and signal sensing from a single triboelectric nanogenerator for intelligent self-powered wireless sensing systems[J]. Nano Energy, 2020, 75,104813. [87] Peng L S, Wei Z D. Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell[J]. Engineering, 2020, 6, 653-679. [88] Guan X Y, Xu B G, Wu M J, et al. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing[J]. Nano Energy, 2021, 80, 105549. [89] Ye C, Yang S, Ren J, et al. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception[J]. ACS Nano, 2022, 16, 4415-4425. [90] Zhou M J, Xu F, Ma L Y, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems[J]. Nano Energy, 2022, 104, 107885. [91] Fatma B, Bhunia R, Gupta S, et al. Maghemite/Polyvinylidene fluoride nanocomposite for transparent, flexible triboelectric nanogenerator and noncontact magneto-triboelectric nanogenerator[J]. ACS Sustainable Chemistry & Engineering, 2019, 7, 14856-14866. [92] Wang J, Wen Z, Zi Y L, et al. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors[J]. Advanced Functional Materials, 2016, 26, 1070-1076. [93] He M, Du W W, Feng Y M, et al. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring[J]. Nano Energy, 2021, 86, 106058. [94] Xu F, Dong S S, Liu G X, et al. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics[J]. Nano Energy, 2021, 88, 106247. [95] Peng F, Liu D, Zhao W, et al. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing[J]. Nano Energy, 2019, 65, 104068. [96] Qu C M, Yu X, Xu Y, et al. A sensing and display system on wearable fabric based on patterned silver nanowires[J]. Nano Energy, 2022, 104, 107965. [97] Somkuwar V U, Kumar B. Influence of the fabric topology on the performance of a textile-based triboelectric nanogenerator for self-powered monitoring[J]. ACS Applied Polymer Materials, 2023, 5, 2323-2335. [98] Sadi M S, Pan J, Xu A, et al. Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications[J]. Cellulose, 2019, 26, 7569-7579. [99] Somkuwar V U, Pragya A, Kumar B. Structurally engineered textile-based triboelectric nanogenerator for energy harvesting application[J]. Journal of Materials Science, 2020, 55, 5177-5189. [100] Zhu P, Zhu L J, Ge F F, et al. Sprayable superhydrophobic coating with high mechanical/chemical robustness and anti-corrosion[J]. Surface and Coatings Technology, 2022, 443, 128609. [101] 杨晨曦, 葛磊. 改性疏水材料的制备方法及其研究进展[J]. 广州化工, 2020, 48, 13-15. [102] 秦泽, 肖珍珍, 雷同良. 超疏水材料的制备及功能化研究进展[J]. 胶体与聚合物, 2021, 39, 95-98+102. [103] Wei Y W, Shi X W, Yao Z Q, et al. Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring[J]. npj Flexible Electronics, 2023, 7, 13. [104] Wei L S, Wu Z G, Tang S W, et al. Tracheid-inspired nanoarchitectured carbon-based aerogels with ultra-compressibility for wearable piezoresistive sensors[J]. Carbon, 2023, 203, 386-396. [105] Luo Y C, Yu M L, Zhang Y T, et al. Highly sensitive strain sensor and self-powered triboelectric nanogenerator using a fully physical crosslinked double-network conductive hydrogel[J]. Nano Energy, 2022, 104, 107955. [106] Wang J X, He J M, Ma L L, et al. A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing[J]. Chemical Engineering Journal, 2021, 423, 130200. [107] Doganay D, Cicek M O, Durukan M B, et al. Fabric based wearable triboelectric nanogenerators for human machine interface[J]. Nano Energy, 2021, 89, 106412. [108] Tian X, Hua T. Antibacterial, scalable manufacturing, skin-attachable, and eco-friendly fabric triboelectric nanogenerators for self-powered sensing[J]. ACS Sustainable Chemistry & Engineering, 2021, 9, 13356-13366. [109] Song Y H, Bao J K, Hu Y, et al. Ultra-porous cellulose nanofibril aerogel films as excellent triboelectric positive materials via direct freeze-drying of dispersion[J]. Nano Energy, 2022, 103, 107832. [110] Zhou M J, Xu F, Ma L Y, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems[J]. Nano Energy, 2022, 104, 107885. [111] Fan J C, Yuan M M, Wang L B, et al. MXene supported by cotton fabric as electrode layer of triboelectric nanogenerators for flexible sensors[J]. Nano Energy, 2023, 105, 107973.
﹀
|
中图分类号: |
TB34
|
开放日期: |
2024-06-13
|