- 无标题文档
查看论文信息

论文中文题名:

 基于三维动作捕捉的消防员防护服工效性能研究    

姓名:

 黄一鸣    

学号:

 19220089019    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 人体热防护    

第一导师姓名:

 刘纪坤    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-01    

论文外文题名:

 The study on the ergonomic of firefighters’ personal protective clothing based on 3D motion capture    

论文中文关键词:

 消防员防护服 ; 工效性能 ; 关节活动度 ; 应急救援 ; 三维动作捕捉    

论文外文关键词:

 Firefighter’s personal protective clothing ; Ergonomic ; Range of motion ; Emergency rescue ; 3D motion capture    

论文中文摘要:

为减少消防员伤亡,本文以个体防护为指导、结合人体工效学,将三维动作捕捉技术应用到防护服工效性能研究中,完善了防护服工效性能评价指标体系及其评价方法,实现了防护服对人体移动性能影响的“多服装、多状态、多部位、主客观结合”定量研究。主要工作和研究成果如下:

招募了20名受试者进行人体运动实验,分别穿着四种不同服装进行模拟消防救援的静态活动和动态活动,将三维动作捕捉系统测量的人体运动数据通过运算转化为防护服工效性能评价指标,对比不同服装间的工效性能差异;同时收集受试者在人体运动实验过程中对疲劳度、活动受限程度的主观评价得分,通过主客观指标相关性分析,提出了防护服工效性能主客观评价指标的定量表达式,对比分析了不同类型防护服对消防员身体各部位的移动性能影响规律。

结果表明:与基础服装相比,防护服对人体的关节活动度、操作的灵活性影响显著,且提高了人体运动过程中的疲劳度和活动受限程度。其中,静态活动中肩关节外展显著减小(25.9% - 40.2%, p < 0.05),动态活动中髋关节(伸展角度增大27.2%)、膝关节(着地角度增大75.4%)和踝关节(趾屈角度减小11.4° - 13.1°, p < 0.05)都受到防护服的影响导致行走的步速、步频、稳定性显著降低(p < 0.05),这可能导致消防员救援效率下降,滑倒、跌倒、绊倒的风险增高。此外,防护服工效性能的主客观评价指标显著相关:服装质量不仅直接负向影响关节活动度(r = - 0.521, p < 0.01),还通过限制关节活动正向影响疲劳度,进而间接负向影响关节活动度。即服装质量越大,活动受限程度越强,则疲劳感越大,导致关节活动度越小,中介效应显著(c = - 0.110, p = 0.026)。因此,降低消防员防护服的质量、提高防护靴鞋帮和鞋底的柔软度、增加防护服肩部的褶皱等设计都可以给疲劳感的降低、舒适感的提升带来帮助,进而提高消防员的运动表现。

结果明确了不同防护服之间存在差异的特定身体关节部位,从而支持对防护服进行系统全面的工效性能评估,以指导个体防护装备系统的改进,为高性能防护服的研发提供基础数据、为消防员应急救援训练和实战提供理论指导。

论文外文摘要:

In order to reduce the casualties of firefighter, this paper takes the individual protection as the guide, combined with ergonomics, and the 3D motion capture technology was applied to the research on the ergonomic of personal protective clothing (PPC). The ergonomic evaluation index system and the quantitative research on the impact of PPC on human mobility with "multiple clothing, multiple sports states, multiple body parts, and subjective and objective combination" was realized in this study. The main work and research results are as follows:

Twenty participants were recruited for human movement experiments with four different clothing for static and dynamic activities, and the human movement data measured by the 3D motion capture system was converted into PPC ergonomics performance evaluation indicators through calculation. The differences in ergonomics between different PPCs were compared, and the subjective evaluation scores of the rating of perceived exertion (RPE) and the restriction to movement during the experiment were collected. The quantitative expression of the subjective and objective evaluation indicators of the ergonomic of PPC was proposed through the correlation analysis, and the influence of different PPCs on the mobility of different parts of the firefighter's body was compared and analyzed.

The results showed that: compared with basic clothing, PPC has a significant impact on the range of motion (ROM) and operational flexibility, and improves the RPE and the restriction to movement during activities. In particular, shoulder abduction was significantly reduced by the limitation of PPC in static activities (25.9%-40.2%, p < 0.05), and in dynamic activities, hip (extension angle increased by 27.2%), knee (landing angle increased by 75.4%) and ankle (plantarflexion angle increased by 11.4°-13.1°) were both affected by PPC resulting in significantly lower gait speed, stride frequency, and stability (p < 0.05). This may lead to a decrease in firefighters' rescue efficiency in fires and increased risk of slips, falls, and trips (STF). In addition, the subjective and objective evaluation indicators of ergonomic of PPC were significantly correlated: clothing mass not only directly affected ROM (r = -0.521, p < 0.01), but also positively affected RPE by restricting movement, and then indirectly negatively affect ROM. The greater the mass of clothing, the greater the degree of restriction to movement, the greater the RPE, the lower the ROM of the joints, and the mediating effect was significant (c = -0.110, p = 0.026). Therefore, reducing the mass of PPC, using soft uppers and soles, and increasing the pleated design of the shoulders can all help reduce RPE and improve comfort, thereby improving the performance of firefighters’ movement.

These findings identify specific body parts in which differences between the PPCs were identified, thereby supporting a systematic and comprehensive ergonomic evaluation of PPC to guide the improvement of personal protective equipment systems. It can provide basic data for the development of high-performance PPC, and provide theoretical guidance for the training and actual combat of emergency rescue of firefighter.

参考文献:

[1]中国消防. 2021年消防接处警创新高, 扑救火灾74.5万起[EB/OL]. 应急管理部消防救援局公开数据统计, 2022-3-2.

[2]中国消防. 2020年全国火灾及接处警情况[EB/OL]. 应急管理部消防救援局公开数据统计, 2021-3-18.

[3]王诗潭, 王云仪. 防护服活动性及其对职业骨肌损伤影响的研究进展[J]. 丝绸, 2018, 55(08): 52-59.

[4]Angelini M J, Kesler R M, Petrucci M N, et al. Effects of simulated firefighting and asymmetric load carriage on firefighter obstacle crossing performance[J]. Applied Ergonomics, 2018, 70: 59.

[5]Park H, Branson D, Kim S, et al. Effect of armor and carrying load on body balance and leg muscle function[J]. Gait & Posture, 2014, 39(1): 430-435.

[6]Richard C. Firefighter Injuries on the Fireground [EB/OL]. National Fire Protection Association/Data-research-and-tools, 2022-01-19.

[7]赵富森. 我国消防员个人防护装备产业和技术状况及未来发展方向[J]. 中国个体防护装备, 2013(03): 12-16.

[8]全国消防标准化技术委员会. 消防员灭火防护服: XF 10-2014[S]. 北京: 中华人民共和国应急管理部消防救援局, 2014.

[9]全国消防标准化技术委员会. 消防员化学防护服装: XF 770-2008[S]. 北京: 中华人民共和国应急管理部消防救援局, 2008.

[10]毕月姣, 郑振荣, 王佳为. 消防服研究进展与概述[J]. 天津纺织科技, 2021(1): 60-64.

[11]常生, 李津. 空气层对针织物热传递性能的影响[J]. 针织工业, 2015(7): 100-103.

[12]崔琳琳. 消防服舒适性主观评价研究[J]. 天津纺织科技, 2017(6): 9-13.

[13]林崇德, 杨治良, 黄希庭. 心理学大辞典[M]. 上海教育出版社, 2003.

[14]Konitzer L, Fargo M, Brininger T, et al. Association between back, neck, and upper extremity musculoskeletal pain and the individual body armor[J]. Journal of Hand Therapy,2008,21(2): 143-149.

[15]David B, Warren G, Thomas R. The thermal ergonomics of firefighting reviewed[J]. Applied Ergonomics, 2010(41): 161-172.

[16]Murphy M, Patton J, Mello R, et al. Energy cost of physical task performance in men and women wearing chemical protective clothing[J]. Aviation Space and Environmental Medicine, 2001, 72(1): 25-31.

[17]Adams P, Keyserling W. The effects of size and fabric weight of protective coveralls on range of gross body motions[J]. American Industrial Hygiene Association Journal, 1995, 56(4): 333-340.

[18]Huck J. Restriction to movement in fire-fighter protective clothing: evaluation of alternative sleeves and liners[J]. Applied Ergonomics, 1991, 22(2): 91-100.

[19]Bishop P, Ray P, Reneau P. A review of the ergonomics of work in the US military chemical protective clothing[J]. International Journal of Industrial Ergonomics 1995, 15: 271-283.

[20]Patton J, Bidwell T, Murphy M, et al. Energy cost of wearing chemical protective clothing during progressive treadmill walking[J]. Aviation Space and Environmental Medicine, 1995(66): 238-242.

[21]Huang D, Yang H, Qi Z, et al. Questionnaire on Firefighters’ Protective Clothing in China[J]. Fire Technology, 2012, 48: 255-268.

[22]Tochihara Y, Chou C, Fujita M, et al. Protective clothing-related heat stress on firefighters in Japan[C]. Environmental ergonomics XI, Sweden: Lund University, 2005: 137-139.

[23]Park H, Park J, Lin S, et al. Assessment of Firefighters' needs for personal protective equipment[J]. Fashion and Textiles, 2014, 1(1): 8.

[24]Saul E, Jaffe J. The effects of clothing on gross motor performance[R]. Natick: US Army Quartermaster Research and Development Command, 1955.

[25]田苗, 王云仪. 高温防护服的舒适工效性评价与优化对策[J]. 东华大学学报(自然科学版) . 2013(6):754-759.

[26]沈津竹, 赵晓露, 张帆, 等. 柔性康复手套设计与工效性评价[J]. 纺织学报, 2020, 41(9):119-127.

[27]Park K, Hur P, Rosengren K S, et al. Effect of load carriage on gait due to firefighting air bottle configuration[J]. Ergonomics, 2010, 53(7): 882-891.

[28]Huck J. Protective clothing systems: a technique for evaluating restriction of wearer mobility[J]. Applied Ergonomics,1988,19(3): 185-190.

[29]Nunneley S. Heat stress in protective clothing: Interactions among physical and physiological factors[J]. Scandinavian Journal of Work and Environmental Health, 1989(15): 52-57.

[30]Teitlebaum A, Goldman R F. Increased energy cost with multiple clothing layers[J]. Journal of Applied Physiology, 1972, 32(6): 743-744.

[31]Dorman L, Havenith G. The effects of protective clothing on energy consumption during different activities[J]. European Journal of Applied Physiology 2008, 105: 463-470.

[32]胡海滔, 李志忠, 严京滨, 等. 关节活动度的照相测量方法[J]. 人类工效学, 2006(2):13-15.

[33]Coca A, Roberge R, Shepherd A, et al. Ergonomic comparison of a chem/bio prototype firefighter[J]. European Journal of Applied Physiology, 2008, 104(2): 351-359.

[34]倪娜, 薛晓敏, 王垠. 高线性度离子皮肤手指关节弯曲角度传感器[J]. 传感器与微系统, 2021, 40(2):61-64.

[35]Leyard. Optitrack for Animation[EB/OL]. OptiTrack official website, 2022-3-6.

[36]田苗, 李俊. 三维动作捕捉仪在服装工效学评价中的应用[J]. 服装学报, 2016, 1(001): 30-34.

[37]Whittle M. Clinical gait analysis: a review[J]. Human Movement Science,1996,15(3): 369-387.

[38]Majumdar D, Pal M, Majumdar D. Effects of military load carriage on kinematics of gait[J]. Ergonomics, 2010, 53(6): 782-791.

[39]Mullins A, Annett L, Drain J, et al. Lower limb kinematics and physiological responses to prolonged load carriage in untrained individuals[J]. Ergonomics,2015,58(5): 770-780.

[40]Casper P. Mvn Analysis[EB/OL]. Mvn-analyze of Xsens official website. 2022-03-19.

[41]Cappozzo A. Three-dimensional analysis of human walking: experimental methods and associated artifacts[J]. Human Movement Science,1991,10(5): 589-602.

[42]Smith B, Ashton K, Bohl D, et al. Influence of carrying a backpack on pelvic tilt, rotation, and obliquity in female college students[J]. Gait and Posture, 2006, 23(3): 263-267.

[43]Nadeau S, Mcfadyen B, Malouin F. Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? [J]. Clinical Biomechanics, 2003, 18(10): 950-959.

[44]Eng J, Winter D. Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model?[J]. Journal of Biomechanics,1995,28(6): 753-758.

[45]Novacheck T. The biomechanics of running[J]. Gait and Posture,1998,7(1): 77-95.

[46]Lafiandra M, Holt K, Wagenaar R, et al. Transverse plane kinetics during treadmill walking with and without a load[J]. Clinical Biomechanics,2002,17(2): 116-122.

[47]Protopapadaki A, Drechsler W, Cramp M, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals[J]. Clinical Biomechanics, 2007, 22(2): 203-210.

[48]Costigan P, Deluzio K, Wyss U. Knee and hip kinetics during normal stair climbing[J]. Gait and Posture, 2002, 16(1): 31-37.

[49]Lafiandra M, WAgenaar R, Holt K, et al. How do load carriage and walking speed influence trunk coordination and stride parameters?[J]. Journal of Biomechanics, 2003, 36(1): 87-95.

[50]Birrell S, Haslam R. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters[J]. Ergonomics, 2009, 52(10): 1298-1304.

[51]Park H, Branson D, Petrova A, et al. Effects of body armor and load carriage on lower limb joint movement[J]. Journal of Human Performance in Extreme Environments, 2014, 10(2): 3.

[52]Wood R. The first takeoff of a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008 (24): 341-347.

[53]Peoples G, Silk A, Notley S, et al. The effect of a tiered body armour system on soldier physical mobility[R]. Australia: University of Wollongong, 2010.

[54]Park H, Trejo H, Miles M, et al. Impact of firefighter gear on lower body range of motion[J]. International Journal of Clothing Science and Technology, 2015, 27(2): 315-334.

[55]Park H, Nolli G, Branson D, et al. Impact of wearing body armor on lower body mobility[J]. Clothing and Textiles Research Journal, 2011, 29(3): 232-247.

[56]Ricciardi R, Deuster P, Talbot L. Metabolic demands of body armor on physical performance in simulated conditions[J]. Military medicine, 2008, 173(9).

[57]Pandorf C, Nindl B, Montain S, et al. Reliability Assessment of Two Militarily Relevant Occupational Physical Performance Tests[J]. NRC Research Press Ottawa, Canada, 2003, 28(1).

[58]Hasselquist L, Bensel C, Corner B, et al. Understanding the Physiological, Biomechanical and Performance Effects of Body Armour Use[R]. Natick, MA, Natick Soldier Research, Development and Engineering Centre, 2008.

[59]Larsen B, Netto K, Skovli D, et al. Body armor, performance, and physiology during repeated high-intensity work tasks[J]. Military Medicine, 2012, 177(11):1308-1315.

[60]田苗, 李俊. 智能服装的设计模式与发展趋势[J]. 纺织学报, 2014, 35(2): 109-115.

[61]中华人民共和国卫生部医政司. 中国康复医学诊疗规范[M]. 北京: 华夏出版社, 1998: 27-32.

[62]何佳臻, 李俊. 防护服工效性能评价方法研究进展[J]. 纺织学报, 2014, 35(1): 158-164.

[63]Coca A, Williams W, Roberge R, et al. Effects of fire fighter protective ensembles on mobility and performance[J]. Applied Ergonomics, 2010, 41: 636-641.

[64]Rostami M, Razeghi M, Daneshmandi H, et al. Cognitive and Skill Performance of Individuals in Sitting versus Standing Workstations: A Quasi-experimental Study[J]. International Journal of Occupational Safety and Ergonomics, 2020, 1: 1-25.

[65]Roger B, Shawn D, Gail L, et al. A CB protective firefighter turnout suit[J]. International Journal of Occupational Safety and Ergonomics,2010,16(2): 135-152.

[66]陈守平, 丁立, 杨锋, 等. 基于舱外航天服手套基础性工效评价的人体力学指标优选[J]. 航天医学与医学工程, 2006, 19(2): 106-110.

[67]Adams P, Monroek W. Three methods for measuring range of motion while wearing protective clothing: a comparative study[J]. International Journal of Industrial Ergonomics, 1993(12): 177-191.

[68]Goodwin J, Deakes C, Burdon J, et al. Clinical methods of goniometry: a comparative study[J]. Disability and Rehabilitation, 1992, 14(1): 10-15.

[69]Dorman L. The effects of protective clothing and its properties on energy consumption during different activities[D]. UK, Lough borough University, 2007: 205-225.

[70]张斌, 王成祥. 四肢关节活动度测量方法研究[J]. 刑事技术, 2004(4): 5-6.

[71]Havenith G, Heus R. A test battery related to ergonomics of protective clothing[J]. Applied Ergonomics, 2004 (35): 3-20.

[72]Neliswe C, Moses N. Comparison of functional performance of a soldier in full chemical and biological protection versus battle dress[J]. International Journal of Industrial Ergonomics, 2001(27): 393-398.

[73]Hu H, Ding L, Yang C, et al. Investigation on ergonomics characteristics of protective clothing based on capture of three-dimensional body movements[J]. Digital Human Modeling, 2007, 4561: 856-864.

[74]Li X, Ding L, Hedge A, et al. An experimental study on the ergonomics indices of partial pressure suits[J]. Applied Ergonomics, 2013, 44(3): 393-403.

[75]Chou C, Umezaki S, Son S, et al. Effects of wearing trousers or shorts under firefighting protective clothing on physiological and subjective responses[J]. Applied Ergonomics, 2010(46): 631-644.

[76]Kranz C, Lee K, Jadhav P, et al. Kinematic and perceptual responses in heavy lifting and pulling: Are there differences between males and females?[J]. Applied Ergonomics, 2020, 90: 103274.

[77]王元. 数学大辞典[M]. 北京: 科学出版社, 2010.

[78]Occupational Safety and Health Administration. OSHA Technical Manual (OTM) Section VIII: Chapter 1. Chemical Protective Clothing[EB/OL]. Occupational Safety and Health Administration official website. 2022-03-08.

[79]王松. 运动解剖学[M]. 武汉: 华中科技大学出出版社, 2014.

[80]Borg G. Psychophysical bases of perceived exertion[J]. Medicine and Science in Sports and Exercise, 1982, 14(5): 377-381.

[81]ISO10551. Ergonomics of the physical environment - Subjective judgement scales for assessing physical environments[S]. Switzerland: International Organization for Standardization, 2019.

[82]中国科学院数学研究所统计组. 方差分析[M]. 北京: 科学出版社, 1977.

[83]张文彤. SPSS统计分析基础教程:第3版[M]. 北京: 高等教育出版社, 2017.

[84]David N, Ian B, Joseph T. Can perceptual indices estimate physiological strain across a range of environments and metabolic workloads when wearing explosive ordnance disposal and chemical protective clothing?[J]. Physiology and Behavior, 2015, 147: 71-77.

[85]张文彤. SPSS统计分析高级教程: 第3版[M]. 北京: 高等教育出版社, 2018.

[86]邱曼丽, 陆翠红, 袁凌萍, 等. 针灸治疗肩关节周围炎疗效评价指标探析[J].河南中医, 2019, 39(05): 774-778.

[87]Oosterwijk A, Nieuwenhuis M, Vanderschans C, et al. Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review[J]. Physiotherapy Theory and Practic, 2018, 34(7): 505-528.

[88]倪军, 张昭华, 王文玲, 等. 衣袖结构设计对上肢运动灵活性的影响[J]. 东华大学学报(自然科学版), 2020, 46(01): 41-46.

[89]谌玉红, 李晨明, 郭亚飞. 士兵负重行军肩部疲劳研究[J]. 军事体育学报, 2015, 34(03): 1-4.

[90]刘晓涵, 田苗, 王云仪, 等. 阻燃织物老化对其拉伸强力影响的研究进展[J]. 纺织学报, 2020, 41(11): 181-188+196.

[91]徐田慧, 郭荣如, 陈旭炜, 等. 消防员化学防护服面料用涂层织物的研究[J]. 产业用纺织品, 2012, 30(04): 33-37.

[92]张睿明, 柳忠起, 周前祥, 等. 人体上肢关节活动范围的舒适性评价[J]. 中国安全科学学报, 2018, 28(08): 75-80.

[93]翟胜男, 陈太球, 蒋春燕, 等. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.

[94]David C. Tilbury-Davis R. The kinetic and kinematic effects of increasing load carriage upon the lower limb[J]. Human Movement Science. 1999, 18(5): 693-700.

[95]Tian M, Park H, Li J, et al. Effects of load carriage and work boots on lower limb kinematics of industrial workers[J]. International Journal of Occupational Safety and Ergonomics. 2018, 24(4): 582-591.

[96]Schulz B, Ashton-Miller J, Alexander N. Maximum step length: Relationships to age and knee and hip extensor capacities[J]. Clinical Biomechanics (Bristol, Avon). 2007, 22(6): 689-696.

[97]Mcclelland J, Webster K, Feller J. Gait analysis of patients following total knee replacement: A systematic review[J]. Knee, 2007, 14(4): 253-263.

[98]Park K, Rosengren K, Gavin P, et al. Assessing gait changes in firefighters due to fatigue and protective clothing[J]. 2011, 49(5): 719-726.

[99]Simpson K, Munro B, Steele J. Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers[J]. Ergonomics. 2012, 55(3): 316-326.

[100]Tahir M, Xuezhi D, Jingkai X, et al. Study on the application of new materials in chemical protective clothing[C]. ICESCE 2021, Dali Bai Autonomous Prefecture, China. 2021.

[101]Mcquerry M, Denhartog E, Barker R. Impact of reinforcements on heat stress in structural firefighter turnout suits[J]. The Journal of The Textile Institute. 2018, 109(10): 1367-1373.

[102]Spratford W, Vu V, Ball N, et al. Protective firefighting boots and their impact on the lower body and injury: A narrative review[J]. Occupational Ergonomics. 2017, 13(3): 147-155.

[103]Roh S, Ko Y, Lee J. Physiological and subjective burden when wearing fire protective boots between 3.2 and 5.3 kg[J]. Fashion and Textiles, 2020, 7(14): 1-13.

[104]Chiou S, Turner N, Zwiener J, et al. Effect of boot weight and sole flexibility on gait and physiological responses of firefighters in stepping over obstacles[J]. Hum Factors, 2012, 54(3): 373-386.

[105]Majumdar D, Banerjee P, Majumdar D, et al. Temporal spatial parameters of gait with barefoot, bathroom slippers and military boots[J]. Indian journal of physiology and pharmacology, 2006, 50(1): 33-40.

[106]Viteckova S, Kutilek P, Svoboda Z, et al. Gait symmetry measures: A review of current and prospective methods[J]. Biomedical Signal Processing and Control, 2018, 42: 89-100.

[107]Samo D, Bahk J, Gerkin R. Effect of firefighter masks on monocular and binocular peripheral vision[J]. Journal of Occupational and Environmental Medicine. 2003, 45(4): 428-432.

[108]陆阿明, 运动生物力学:第四版[M]. 北京: 高等教育出版社, 2018.

[109]Park K, Sy J, Horn G, et al. Assessing gait changes in firefighters after firefighting activities and while carrying asymmetric loads[J]. Applied Ergonomics. 2018, 70: 44-50.

[110]Block J, Shakoor N. Lower limb osteoarthritis: Biomechanical alterations and implications for therapy[J]. Current Opinion in Rheumatology. 2010, 22(5): 544-550.

[111]Park H, Kakar R, Pei J, et al. Impact of size of fire boot and SCBA cylinder on firefighters’ mobility[J]. Clothing and Textiles Research Journal. 2018, 37(2): 103-118.

[112]Helbostad J, Vereijken B, Hesseberg K, et al. Altered vision destabilizes gait in older persons[J]. Gait Posture. 2009, 30(2): 233-238.

[113]Birrell S, Haslam R. The effect of load distribution within military load carriage systems on the kinetics of human gait[J]. Applied Ergonomics. 2010, 41(4): 585-590.

[114]Rissanen S, Jousela I, Jeong J, et al. Heat stress and bulkiness of chemical protective clothing impair performance of medical personnel in basic lifesaving tasks[J]. Ergonomics, 2008, 51(7): 1011-1022.

[115]Ghazy A. The thermal protective performance of firefighters' clothing: The air gap between the clothing and the body[J]. Heat Transfer Engineering, 2017, 38(10): 975-986.

[116]White M, Hodous T, Vercruyssen M. Effects of thermal environment and chemical protective clothing on work tolerance, physiological responses, and subjective ratings[J]. Ergonomics, 1991, 34(4):445-457.

[117]Krueger G, Banderet L. Effects of chemical protective clothing on military performance: A review of the issues[J]. Military Psychology. 2009, 9(4): 255-286.

[118]Rutherford D, Hubley-Kozey C, Stanish W. The neuromuscular demands of altering foot progression angle during gait in asymptomatic individuals and those with knee osteoarthritis[J]. Osteoarthritis Cartilage, 2010, 18(5): 654-661.

[119]Phan V, Wroten E, Yngve D. Foot progression angle after distal tibial physeal fractures[J]. Journal of Pediatric Orthopaedics. 2002, 22(1): 31-35.

[120]毛睿成, 郭迎福, 谌玉红, 等.不同救援防护装备穿戴下的人体生物力学响应与主观疲劳感实验研究[J]. 人类工效学, 2018, 24(6): 1-5+10.

[121]卢业虎, 王丽君. 多灾害环境下热防护服装防护性能研究进展[J]. 服装学报, 2020, 5(1): 31-39.

[122]Larsen B, Netto K, Skovli D, et al. Body armor, performance, and physiology during repeated high-intensity work tasks[J]. Military medicine, 2012, 177(11): 1308-15.

[123]Quesada P, Mengelkoch L, Hale R, et al. Biomechanical and metabolic effects of varying backpack loading on simulated marching[J]. Ergonomics, 2000, 43(3): 293-309.

[124]Adams P, Keyserling W. Methods for assessing protective clothing effects on worker mobility[C]. Sasmira: ASTM Special Technical Publication, 1996, 1237: 311-326.

[125]Janice H, Oprah M, Younghee K. Protective overalls: evaluation of garment design and fit[J]. International Journal of Clothing Science and Technology, 1997, 9(1): 45-61.

[126]温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745.

[127]Savinainen M, Nygard C, Ilmarinen J, et al. A 16-year follow-up study of physical capacity in relation to perceived workload among ageing employees[J]. Ergonomics, 2004, 47(10): 1087-1102.

中图分类号:

 X924.4    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式