- 无标题文档
查看论文信息

论文中文题名:

 表面活性剂溶液对煤体瓦斯抑解实验研究与机理分析    

姓名:

 杨婷    

学号:

 20220089008    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 非常规天然气安全开发    

第一导师姓名:

 严敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Experimental study and mechanism analysis on the inhibition of coal gas by surfactant solution    

论文中文关键词:

 表面活性剂 ; 润湿性 ; 煤体孔隙结构 ; 官能团 ; 抑制解吸    

论文外文关键词:

 Surfactant ; Wettability ; Coal pore structure ; functional group ; Inhibited desorption    

论文中文摘要:

我国是煤炭生产和消费大国,随着近年煤炭资源消耗量逐渐上升,煤层开采深度逐渐增加,而深部煤层地质条件复杂,矿井瓦斯灾害事故多发,严重影响矿井安全生产。向煤层注入表面活性剂溶液可防止工作面瓦斯超限,为研究表面活性剂溶液对煤层瓦斯解吸抑解效应及机理,本文以彬长小庄矿井煤样为主要研究对象,分析APG0810和SBDS两种表面活性剂溶液对煤样瓦斯解吸效应的影响,并通过润湿性参数、煤中孔隙结构及官能团等参数变化分析抑解机理。

将表面活性剂分别制备为质量分数为0.01%、0.02%、0.05%、0.1%和0.15%的溶液,为研究表面活性剂溶液对煤样润湿性特性,通过表面张力、接触角、煤粉自吸等实验,测定了不同种类不同质量分数表面活性剂溶液对煤润湿性影响,并计算了铺展系数、黏附张力、黏附功及表面自由能等润湿性参数。为研究表面活性剂溶液对煤基质的影响,通过压汞、氮吸附实验检测表面活性剂溶液对煤样孔隙结构的影响规律、红外光谱实验测定了煤样官能团变化规律。为研究表面活性剂溶液对煤样瓦斯解吸效应影响规律,通过煤样瓦斯解吸实验测定了添加不同表面活性剂溶液煤样的瓦斯解吸效应,并通过气相色谱实验研究了表面活性剂泡沫结构对瓦斯的缓释效应。为分析润湿性参数、煤样孔隙结构、官能团等参数与瓦斯解吸效应之间的关系,采用极差标准化法消除变量量纲和变异范围的影响,对各项影响因素进行重要度评估。

研究结果表明随着溶液质量分数的增加,对煤样润湿性越好,润湿性效应增加趋势逐渐减缓,相同质量分数下SDBS溶液比APG0810润湿性好,质量分数为0.05%时,SDBS溶液比APG0810溶液表面张力6.03%。在质量分数为0.1%时两种表面活性剂溶液与煤的接触角相差最大,差值为27.6°。表面活性剂溶液主要影响煤样微孔孔隙结构,溶液质量分数为0.15%时APG0810溶液和SDBS溶液处理煤样后煤样微孔孔体积分别较原煤下降49.5%和51.9%。APG0810溶液质量分数为0.15%时,OH-π和环状羟基分别较原煤分峰面积上升23.91和14.76。SDBS溶液质量分数为0.15%时,自由缔合羟基和环状羟基分别较原煤分峰面积上升12.77和8.83。溶液质量分数越大,对煤样瓦斯抑解效果越好。溶液质量分数为0.15%时,添加APG0810和SDBS溶液下瓦斯最大解吸量较原煤分别下降50.5%和56.8%。溶液在质量分数较大时润湿性及煤样微孔孔隙结构改变是影响抑解的重要影响因素,质量分数为0.05%时亲水性基团的改变是抑解的重要影响因素。本文可为表面活性剂溶液抑制煤体瓦斯解吸,防止采煤工作面瓦斯超限提供一定理论依据和数据支撑。

论文外文摘要:

China is a major coal producing and consuming country. With the gradual rise of coal resource consumption in recent years, the mining depth of coal seam gradually increases, while the geological conditions of deep coal seam are complex,  frequent gas disasters in mine, which seriously affects the safety of mine production. In this paper, the coal sample of Xiaozhuang mine in Binchang is taken as the main research object, and the influence of APG0810 and SBDS on gas desorption effect of coal sample and on various properties of coal is analyzed.

The surfactants were prepared into solutions with mass fractions of 0.01%, 0.02%, 0.05%, 0.1% and 0.15%. In order to study the wettability properties of the surfactant solutions on coal samples, the effects of different kinds of surfactant solutions with different mass fractions on the wettability of coal were determined through surface tension, contact Angle and coal self-imbibition experiments. The wettability parameters such as spreading coefficient, adhesion tension, adhesion work and surface free energy were calculated. In order to study the effect of surfactant solution on coal matrix, the effect of surfactant solution on pore structure of coal sample was detected by mercury injection and nitrogen adsorption experiment, and the change rule of functional groups of coal sample was determined by infrared spectroscopy experiment. In order to analyze the relationship between wettability parameters, pore structure of coal samples, functional groups and gas desorption effect, the range normalization method was adopted to eliminate the influence of variable dimension and variation range, and the importance of each influencing factor was evaluated. Finally, the relationship between various parameters and gas desorption effect was comprehensively analyzed, and the influence of variable dimension and variation range was eliminated by using range standardization method, and the importance of each influencing factor was evaluated.

The results show that with the increase of the mass fraction of the solution, the wettability of the coal sample is better, and the increasing trend of the wettability effect gradually slows down. Under the same mass fraction, SDBS solution has better wettability than APG0810 solution. When the mass fraction is 0.05%, the surface tension of SDBS solution is 6.03% compared with APG0810 solution. When the mass fraction is 0.1%, the contact Angle difference between the two surfactant solutions and coal is the largest, and the difference is 27.6°. The surfactant solution mainly affects the micropore structure of coal samples. When the mass fraction of solution is 0.15%, the micropore volume of coal samples treated by APG0810 solution and SDBS solution decreases by 49.5% and 51.9%, respectively, compared with that of raw coal. When the mass fraction of APG0810 was 0.15%, the peak area of OH-π and cyclic hydroxyl increased 23.91 and 14.76, respectively, compared with that of raw coal. When the mass fraction of SDBS solution is 0.15%, the peak area of free associated hydroxyl group and cyclic hydroxyl group increase by 12.77 and 8.83, respectively, compared with that of raw coal. The larger the mass fraction of the solution, the better the inhibition effect on coal sample gas. When the solution mass fraction is 0.15%, the maximum desorption amount of gas in APG0810 and SDBS solution decreases by 50.5% and 56.8% compared with raw coal, respectively. The wettability and pore structure change of coal sample are the important factors affecting the inhibition when the mass fraction of solution is large, and the change of hydrophilic groups is the important factor affecting the inhibition when the mass fraction is 0.05%. This paper can provide some theoretical basis and data support for the surfactant solution to inhibit coal body gas desorption and prevent coal face gas exceeding limit.

参考文献:

[1]王林琳 康子仪. 国家统计局: 2022年我国煤炭消费量增长4.3%[N]. 中国煤炭报, 2023.

[2]霍多特 BB. 煤与瓦斯突出[M]. 宋士钊, 王佑安, 译. 北京: 中国工业出版社, 1966.

[3]刘纪坤, 任棒, 王翠霞. 考虑煤基质压缩效应的煤全孔径分布特征研究[J].工矿自动化,2022,48(2):125-130.

[4]王翠霞, 李树刚. 低阶煤孔隙结构特征及其对瓦斯吸附的影响[J]. 中国安全科学学报, 2015,25(10):133-138.

[5]Song Y, Jiang B, Liu J. Nanopore Structural Characteristics and Their Impact on Methane Adsorption and Diffusion in Low to Medium Tectonically Deformed Coals: Case Study in the Huaibei Coal Field[J]. Energy & Fuels,2017,31(7):6711-6723.

[6]Nie BS, Liu XF, Yang LL, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel,2015,158:908-917.

[7]Li Z. Fractal analysis of pore characteristics and their impacts on methane adsorption of coals from Northern China[J]. International Journal of Oil Gas&coal Technology,2015,10(3):306.

[8]Yao Y, Liu D, Tang D, et al. Fractal Characterization of Adsorption-Pores of Coals from North China : An Investigation on CH4 Adsorption Capacity of Coals[J]. International Journal of Coal Geology, 2007,73(1):27-42.

[9]赵东, 赵阳升, 冯增朝. 结合孔隙结构分析注水对煤体瓦斯解吸的影响[J]. 岩石力学与工程学报, 2011,30(04): 686-692.

[10]降文萍. 溶剂萃取前后煤吸附甲烷特征对比及机理研究[J]. 煤炭科学技术,2013,41(03):114-119.

[11]杜海刚, 宋建伟, 谢军, 等. 弱酸及添加表面活性剂对煤体孔隙的影响及分形特征研究[J]. 矿业安全与环保, 2021,48(03): 12-16.

[12]Xie H, Ni G, Li S, et al. The influence of surfactant on pore fractal characteristics of composite acidized coal[J]. Fuel (Guildford), 2019,253:741-753.

[13]Xie H, Ni G, Xie J, et al. The effect of SDS synergistic composite acidification onthechemical structure and wetting characteristics of coal[J]. Powder Technology, 2020, 367: 253-265.

[14]刘宝莉, 严敏, 林海飞, 等. 表面活性剂对煤体孔隙结构影响的实验研究[J]. 煤矿安全,2018,49(11):20-23+28.

[15]Liu Q, Guo Y, An F, et al. Water blocking effect caused by the use of hydraulic methods for permeability enhancement in coal seams and methods for its removal[J]. International Journal of Mining Science and Technology,2016,26(4):615-621.

[16]吉丹妮. 不同加压注水条件影响煤样渗透特性实验研究[D]. 华北科技学院,2017.

[17]安文博, 王来贵, 陈鹤, 等. 响应曲面法优化表面活性剂改性低渗透煤体工艺[J]. 中国安全生产科学技术,2018,14(07):120-127.

[18]宋瑞, 宋峙潮, 李小刚, 等. 表面活性剂对煤层损害的实验研究[J]. 现代化工,2021,41(S1):150-153+158.

[19]降文萍, 张群, 曾凡桂. 煤中矿物质对甲烷生储特征影响的机理[J]. 煤炭学报,2020,45(S2):904-911.

[20]Lv X, You X, He M, et al. Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface. Fuel,2018;211(1):529-34.

[21]Shi G Q, Han C, Wang Y, et al. Experimental study on synergistic wetting of a coal dust with dust suppressant compounded with noncationic surfactants and its mechanism analysis[J]. Powder Technology,2019,356:1077-1086.

[22]Ni G, Sun Q, Xun M, et al. Effect of NaCl-SDS compound solution on the wettability and functional groups of coal[J]. Fuel,2019,257:116077.

[23]Xi X, Jiang S, Zhang W, et al. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal[J]. Fuel,2019,244:176-183.

[24]吴应琴. 表面活性物质对多环芳烃的增溶作用及微生物可利用性的影响[D].西北师范大学,2007.

[25]彭亚, 蒋仲安, 付恩琦, 等. 综采工作面煤层注水防尘优化及效果研究[J]. 煤炭科学技术,2018,46(1):224-230.

[26]霍灵军, 田彦武, 郝军. 表面活性剂在煤层注水中的应用与实践[J]. 煤炭技术,2011,30(5):106-108.

[27]王青松, 金龙哲, 孙金华. 煤层注水过程分析和煤体润湿机理研究[J]. 安全与环境学报,2004(1):70-73.

[28]姜丽. 生物型表面活性剂对煤瓦斯吸附解吸性能的影响研究[D]. 安徽理工大学,2020.

[29]刘黎明. 表面活性剂强化喷雾用水润湿性能的实验研究[J]. 采矿技术,2021,21(1):4.

[30]李皓伟, 王兆丰, 岳基伟, 等. 不同类型表面活性剂对煤体的润湿性研究[J]. 煤矿安全,2019,50(3):22-25.

[31]张彦克. 添加表面活性剂注水驱替煤层瓦斯的实验研究[D]. 华北科技学院,2016.

[32]Crawford R J, Mainwaring D E. The influence of surfactant adsorption on the surface characterisation of Australian coals[J]. Fuel,2001,80(3):313-320.

[33]辛嵩, 齐晓峰, 陈兴波, 等. 难润湿疏水性煤尘润湿性研究[J]. 煤炭工程,2015,47(5):112-114.

[34]王凯丽, 马有营, 王宗阳, 等. 阴离子表面活性剂与多煤阶煤尘润湿过程实验研究[J]. 山东化工,2019,48(20):4.

[35]赵璐, 张蕾, 文欣, 等. 表面活性剂润湿低阶煤煤尘的性能及作用机理[J]. 西安科技大学学报,2021,41(2):323-330.

[36]Shi GQ, Qi J M, Wang Y M, et al. Synergistic Influence of Noncationic Surfactants on the Wettability and Functional Groups of Coal[J]. Powder Technology,2021,385:92-105.

[37]孟筠青, 夏捃凯, 牛家兴, 等. SDBS溶液对赵庄煤表面润湿作用机理的研究[J]. 中国矿业大学学报,2021,50(2):381-388.

[38]Chen Y, Xu G, Albijanic B.Evaluation of SDBS surfactant on coal wetting performance with static methods: Preliminary laboratory tests[J]. Energy Sources,Part A: Recovery,Utilization, and Environmental Effects,2017,39(23):2140-2150.

[39]郑仰峰, 翟成, 倪冠华. 基于表面活性剂解除水锁效应的压裂液性能研究[J]. 煤矿安全,2019,50(11):1-5.

[40]Su X, Wang Q, Song J, et al. Experimental study of water blocking damage on coal[J]. Journal of Petroleum Science and Engineering,2017,156:654-661.

[41]陈跃, 马卓远, 马东民, 等. 不同宏观煤岩组分润湿性差异及对甲烷吸附解吸的影响[J].煤炭科学技术,2021,11(1):1-11.

[42]Mavor M J, Owen L B, Pratt T J. Measurement and evaluation of coal sorption isotherm data: SPE Annual Technical Conference and Exhibition, 1990[C]. Society of Petroleum Engineers.

[43]赵凯荣.哈密煤惰质组结构与CH4, CO2, H2O气体间的相互作用分子模拟[D].太原:太原理工大学,2011.

[44]李树刚, 闫冬洁, 严敏, 等. 烷基糖苷活性剂对煤体结构改性及甲烷解吸特性的影响[J].煤炭学报,2022,47(01):286-296.

[45]Liu S, Fan M, et al. Decrease of hydrophilicity of lignite using CTAB: Effects of adsorption differences of surfactant onto mineral composition and functional groups[J]. Fuel,2017,197: 474-481.

[46]Lyu S, Chen X, Shah S M, et al. Experimental study of influence of natural surfactant soybean phospholipid on wettability of high-rank coal[J]. Fuel,2019,239:1-12.

[47]Xi X, Jiang S, Zhang W, et al. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal[J]. Fuel,2019,244:176-183.

[48]Wang XN, Yuan SJ, Jiang BY. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples[J]. Advanced Powder Technology,2019,30(8):1696-1708.

[49]李娇阳, 李凯琦. 煤表面润湿性的影响因素[J]. 煤炭学报,2016,41(S2):448-453.

[50]仝瑞刚, 曹庆贵, 王世聪. 基于表面活性剂的煤尘润湿性研究[J]. 煤炭技术,2019,38(4): 118-120.

[51]汪李龙, 康健婷, 康天合, 等. SDBS溶液改变无烟煤润湿性与冲击产尘粒径分布的实验研究[J]. 煤矿安全, 2020, 51(1):30-37.

[52]孙银宇, 聂容春, 马帅, 等. 煤尘润湿性影响因素的研究[J]. 选煤技术,2013(02):31-34.

[53]黄维刚, 胡夫, 刘楠琴. 表面活性剂对煤尘湿润性能的影响研究[J]. 矿业安全与环保,2010,37(3):4-6+10+3.

[54]翁安琦, 袁树杰, 王晓楠, 等. 煤层注水降尘中表面活性剂复配应用研究[J]. 中国安全科学学报,2020,30(10):90-95.

[55]张丽颖. 复配润湿剂对改善煤尘润湿效果的研究[J]. 矿业安全与环保,2017,44(1):25-27+31.

[56]王道涵, 邹佳霖. 表面活性剂复配对煤尘润湿性能的影响研究[J]. 矿业安全与环保, 2019,46(2):25-28+33.

[57]Li JL, Zhou FB, Liu H. The selection and application of a compound wetting agent to the coal seam water infusion for dust control[J]. International Journal of Coal Preparation & Utilization,2016,36(4):192-206.

[58]林海飞, 刘宝莉, 严敏, 等. 表面活性剂对煤体瓦斯解吸性能影响的实验研究[J]. 煤炭工程,2017,49(12):136-140.

[59]林海飞, 刘宝莉, 严敏, 等. 非阳离子表面活性剂对煤润湿性能影响的研究[J].中国安全科学学报,2018,28(05):123-128.

[60]刘宝莉, 严敏, 林海飞, 等. 表面活性剂对煤体孔隙结构影响的实验研究[J]. 煤矿安全,2018,49(11):20-23+28.

[61]李树刚, 郭豆豆, 白杨, 等. 不同质量分数SDBS对煤体润湿性影响的分子模拟[J]. 中国安全科学学报,2020,30(3):21-27.

[62]You Q, Wang C, Ding Q, et al. Impact of surfactant in fracturing fluid on the adsorption–desorption processes of coalbed methane[J]. Journal of Natural Gas Science and Engineering,2015,26:35-41.

[63]韦博.表面活性剂溶液对煤体瓦斯扩散特性影响研究[J].煤,2019,28(05):88-89.

[64]Khan A, Marques EF. Synergism and polymorphism in mixed surfactant systems[J]. Curri Opin Colloid Interface Sci,1999,4:402-10.

[65]Kume G, Gallotti M, Nunes G. Review on anionic/cationic surfactant mixtures[J]. J Surfactants Deterg,2008;11:1-11.

[66]Shioi A, Hatton TA. Model for formation and growth of vesicles in mixed anionic/ cationic surfactant systems[J]. Langmuir,2002,18:7341-8.

[67]张亿良, 周日辉. 无机盐的存在对阴离子型表面活性剂临界胶束浓度的影响规律[J]. 上饶师范学院学报(自然科学版),2003(6):48-53.

[68]林海飞, 田佳敏, 刘丹, 等. SDBS与CaCl2复配液对煤体瓦斯解吸抑制效应研究[J]. 中国安全科学学报,2019,29(11):149-155.

[69]傅雪海, 秦勇, 杨永国, 等. 甲烷在煤层水中溶解度的实验研究[J]. 天然气地球科学,2004(4):345-348.

[70]范泓澈, 黄志龙, 袁剑, 等. 富甲烷天然气溶解实验及水溶气析离成藏特征[J]. 吉林大学学报(地球科学版),2011,41(4):1033-1039.

[71]范泓澈, 黄志龙, 袁剑, 等.高温高压条件下甲烷和二氧化碳溶解度试验[J]. 中国石油大学学报(自然科学版),2011,35(2):6-11+19.

[72]吴强, 梁栋. 煤矿水溶性瓦斯及其潜在危险[J].煤炭科学技术,2004(03):54-57.

[73]杨永良, 李增华, 侯世松, 等.甲烷在表面活性剂水溶液中溶解度的实验研究[J]. 采矿与安全工程学报,2013,30(2):302-306.

[74]Zhou Z, Zhu S, Gong J, et al. Experimental study on methane solubilization by organic surfactant aggregates[J]. Springer International Publishing,2018,72(6):1467-1475.

[75]García-Aguilar B P, Ramirez A A, Jones J P, et al. Solubility of methane in pure non-ionic surfactants and pure[J]. Chemical Papers, 2011,65(3):373-379.

[76]Jou F Y, Mather A E. Solubility of Methane in Methyldiethanolamine[J]. American Chemical Society,2006,51(4):1429-1430.

[77]Sohrabi, Mehran S A F. Experimental investigation of CO2-foam stability improvement by alkaline in the presence of crude oil[J]. Chemical Engineering Research & Design, 2015,94:375-389.

[78]Friedmann F, Chen W H, Gauglitz P A. Experimental and Simulation Study of High-Temperature Foam Displacement in Porous Media[J]. SPE Reservoir Engineering, 1991,6(1):37-45.

[79]Kloet J V, Schramm L L, Shelfantook B. Application of the hydrophile–lipophile balance concept to the classification of demulsifiers and bituminous froth and its components[J]. Fuel Processing Technology,2002,75(1):9-26.

[80]杜小东, 左庭颜, 慕飞, 等. 混合表面活性剂在原油中生成稳定泡沫分析[J]. 石油化工应用,2021,40(5):74-78.

[81]Huang Z, Chen M, Wang J, et al. Experimental study on methane dissolved in surfactant-alkane system[J]. International Journal of Mining Science and Technology,2020,30(6):865-873.

[82]Xu Q, Nakajima M, Ichikawa S, et al. Effects of surfactant and electrolyte concentrations on bubble formation and stabilization[J]. Journal of Colloid & Interface Science, 2009,332(1):208-214.

[83]张鹏, 魏文珑, 李兴, 等. 4种阴离子表面活性剂在煤沥青表面的润湿规律[J]. 煤炭学报,2014,39(5):966-970.

[84]Extrand C W. A thermodynamic model for wetting free energies from contact angles[J]. Langmuir,2003,19(3):646-649.

[85]卜婧婷. 新疆矿区中低阶煤全孔径孔隙结构特征的实验研究[D].西安科技大学,2019.

中图分类号:

 TD712    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式