- 无标题文档
查看论文信息

论文中文题名:

 基于1,3二吡啶基苯的脲类受体和甘醇衍生物的制备、表征及性质研究    

姓名:

 刘俊伟    

学号:

 19213211043    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085216    

学科名称:

 工学 - 工程 - 化学工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程    

研究方向:

 阴离子识别    

第一导师姓名:

 杨再文    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Synthesis, characterization and properties of urea receptors based on 1,3-dipyridyl benzene and ethylene glycol derivatives    

论文中文关键词:

 主客体作用 ; 吡啶脲 ; 三甘醇 ; 阴离子识别    

论文外文关键词:

 Host-guest interaction ; Pyridine urea ; Triethylene glycol ; Anion recognition    

论文中文摘要:

分子识别是超分子化学领域的重点研究内容,近年来受到了众多研究者的广泛关注。阴离子在人类生活中的重要性,使得阴离子识别成为当今热点,因此设计出良好的阴离子选择性受体有着重要意义。由于阴离子结构具有多样性,并且识别过程依靠比较弱的非共价键作用力,使得受体的设计过程面临着很大挑战。本文论述了吡啶脲类和三甘醇类受体的合成、表征及其阴离子识别性质和主客体作用的研究。主要工作如下:

(1)合成并表征了吡啶脲类受体。以3',5'-二(吡啶-4-基)-[1,1'-联苯]-4-胺和2-硝基苯基异氰酸酯合成了中间产物1-(3',5'-二(吡啶-4-基)-[1,1'-联苯]-4-基)-3-(2-硝基苯基)脲(C29H21N5O3, I),又将化合物I中的-NO2在甲醇体系中通过Pd/C和水合肼还原成-NH2,即中间产物1-(3',5'-二(吡啶-4-基)-[1,1'-联苯]-4-基)-3-(2-氨基苯基)脲(C29H23N5O, II),化合物II在乙腈体系中和三种含有不同取代基的异氰酸酯反应分别生成了1-(3',5'-二(吡啶-4-基)-[1,1'-联苯]-4-基)-3-(2-(3-(4-硝基苯基)脲)苯基)脲(C36H27N7O4,配体L1)、1-(3',5'-二(吡啶-4-基)-[1,1'-联苯]-4-基)-3-(2-(3-(萘-1-基)脲)苯基)脲(C40H30N6O2,配体L2) 和1-(3',5'-二(吡啶-4-基)-[1,1'-联苯]-4-基)-3-(2-(3-(4-氯苯基)脲基)苯基)脲(C36H27ClN6O2,配体L3)。通过熔点测试、元素分析、红外光谱分析和1H NMR、13C NMR进行表征,结果表明,合成产物皆为预期的目标产物。

(2)研究吡啶脲类受体与阴离子的相互作用。通过紫外-可见吸收光谱和荧光光谱探究了配体L1~L3对不同阴离子的选择性识别能力,结果表明配体L1可以选择性识别PO43和SO42−,配体L2可以裸眼识别PO43和CO32−,并且从荧光光谱中可以选择性识别CO32−,配体L3可以选择性识别PO43、SO42−和CO32−。采用紫外-可见吸收光谱和荧光光谱通过Job曲线和滴定得到了配体与阴离子的结合比和结合常数。配体L1与PO43的结合比为1:1,结合常数为2.58×104 M-1;与SO42−的结合比为2:1,结合常数为3.16×104 M-1。配体L2与CO32−的结合比为1:1,结合常数为5.47×104 M-1。配体L3和PO43的结合比为3:2,结合常数为1.78×104 M-1;与SO42−的结合比为2:1,结合常数为2.68×104 M-1;与CO32−的结合比为3:2,结合常数为5.54×104 M-1

(3)合成并表征了三甘醇类受体及其单晶结构。用三乙二醇、对甲苯磺酰氯和4-硝基苯酚合成了1,8-双(对甲苯磺酰氧基)-3,6-二氧杂辛烷(C20H26O8S2, I)和1,8-双(4-硝基苯氧基)-3,6-二氧杂辛烷(C18H20N2O8, II)并培养了其单晶,用1H NMR、13C NMR、红外、熔程、元素分析等方法进行了表征,结果表明化合物I和化合物II已成功制备,X-射线单晶衍射表明,化合物I的空间群为单斜晶系P21/c,通过C-H在乙二醇和苯环上的分子内C-H···π相互作用下形成特殊的S形构象,并由五个分子间C-H···O氢键构成三维网络结构。化合物II的空间群为三斜晶系P ,分子间无C-H···π相互作用,通过两个C-H···O氢键连接形成二维网络结构,并探索了它们特有的固态结构和弱相互作用。研究了化合物II和β-环糊精之间的主客体相互作用。通过1H NMR、FT-IR和UV-vis光谱证实了化合物II与β-环糊精之间形成包合物,通过UV-vis滴定实验中的Job图和Hill曲线分析,计算了化合物II与β-环糊精之间的缔合常数和表观化学计量比,结果表明它们以1:2的结合比结合,且结合常数为5.31×104 M-1

论文外文摘要:

Molecular recognition is an important research area in supramolecular chemistry, which has attracted extensive attention of many researchers in recent years. The importance of anions in human life makes anion recognition a hot topic nowadays. Therefore, it is of great significance to design a good anion selective receptor. Due to the anion structure is diverse and the recognition process depends on the force of relatively weak non covalent bonds, which makes the design of receptors is facing great challenges. This paper discusses the synthesis, characterization, anion recognition and host guest interaction of pyridine urea and triethylene glycol receptors. The main work is as follows:

(1) Pyridine urea receptor was synthesized and characterized. Intermediate 1- (3',5'-bis(pyridin-4-yl)-[1,1'-biphenyl]-4-yl)-3-(2-nitrophenyl)urea (C29H21N5O3, I) was synthesized from 3',5'-bis(pyridin-4-yl)-[1,1'-biphenyl]-4-amine and 2-nitrophenyl isocyanate. Then -NO2 in compound I was reduced to -NH2 in methanol system through Pd/C and hydrazine hydrate, which is the intermediate 1-(3',5'-bis(pyridin-4-yl)-[1,1'-biphenyl]-4- yl)-3-(2-aminophenyl)urea(C29H23N5O, II). Compound II reacted with three isocyanates containing different substituents in an acetonitrile system to generate 1-(3',5'-bis (pyridin-4-yl)-[1,1'-biphenyl]-4-yl)-3-(2-(3-(4-nitrophenyl)urea)urea(C36H27N7O4, ligand L1), 1-(3',5'-bis(pyridin-4-yl)-[1,1'-biphenyl]-4-yl)-3-(2-(3-(naphthyl-1-yl)urea)urea (C40H30 N6O2, ligand L2) and 1-(3',5'-bis(pyridine-4-yl)-[1,1'-biphenyl]-4-yl)-3-(2-(3-(4-chlorophenyl) urea)urea(C36H27ClN6O2, ligand L3). Through melting range test, elemental analysis, FT-IR and 1H NMR, 13C NMR, the results show that the synthetic products are the expected target products.

(2) The interaction between pyridine urea receptors and anions was studied. The selective recognition ability of ligands L1~L3 to different anions was explored by UV-vis absorption spectrum and fluorescence spectrum. Ligand L3 can selectively recognize PO43, SO42 and CO32. The binding ratio and binding constant of ligands and anion were obtained by Job plot curve and titration. The binding ratio of ligand L1 to PO43 is 1:1 and the binding constant is 2.58×104 M-1, the binding ratio with SO42 is 2:1, and the binding constant is 3.16×104 M-1. The binding ratio of ligand L2 to CO32 is 1:1 and the binding constant is 5.47×104 M-1. The binding ratio of ligand L3 to PO43 is 3:2 and the binding constant is 1.78×104 M-1; The binding ratio with SO42 was 2:1 and the binding constant was 2.68×104 M-1; The binding ratio with CO32 is 3:2 and the binding constant is Ka = 5.54×104 M-1

(3) Triethylene glycol receptors and their single crystal structures were synthesized and characterized. 1,8-bis(p-toluenesulfonyloxy)-3,6-dioxaoctane(C20H26O8S2, I) and 1,8-bis(4- nitrophenoxy)-3,6-dioxaoctane (C18H20N2O8, II) were synthesized from triethylene glycol, p-toluenesulfonyl chloride and 4-nitrophenol and their single crystals were obtained. It was characterized by 1H NMR, 13C NMR, FT-IR, melting point and elemental analysis. Result showed that compound I and compound II were successfully prepared. X-ray single crystal diffraction showed that the space group of compound I is monoclinic P21/c and formed a special sigmoid conformation through the intramolecular C-H···π interaction of C-H on ethylene glycol and benzene ring. The three-dimensional network structure is composed of five intermolecular C-H···O hydrogen bonds. The space group of compound II is triclinic system P . There is no C-H···π interaction between molecules. Two-dimensional network structures are formed through the connection of two C-H···O hydrogen bonds. Their unique solid structure and weak interaction are also explored. The host-guest chemistry between compounds II and β-cyclodextrin was studied. The inclusion complex between compounds II and β-cyclodextrin was confirmed by 1H NMR, FT-IR and UV-vis spectra. Through the analysis of Job plot and Hill curve in UV-vis titration experiment, the association constant and apparent stoichiometric ratio of compound II and β-cyclodextrin were explored. The results showed that they were combined with a binding ratio of 1:2, and the binding constant is 5.31×104 M-1.

参考文献:

[1] Lehn J, Supramolecular Chemistry-Scope and Perspectives: Molecules-Supermolecules -Molecular Devices[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1988, 6(4): 351-396.

[2] Kalyani V S, Gawhale S T, Rathod N V, et al. pH Dependent Self-Assembly of Single-Pyrene-Armed Calix[4]arene: Modulation and Complexation with p-Sulfonatocalix [6]arene[J]. ChemistrySelect, 2019, 4(29): 8542-8549.

[3] Huang F, Eric V, Introduction: Supramolecular Chemistry[J]. Chemical Reviews, 2015, 115(15): 6999-7000.

[4] Qin B, Yin Z, Tang X, et al. Supramolecular polymer chemistry: From structural control to functional assembly[J]. Progress in Polymer Science, 2020, 100(8): 101167-1-101167- 18.

[5] Ji X, Wang F, Yan X, et al. Construction of Supramolecular Polymers Based on Host‐Guest Recognition[J]. Chinese Journal of Chemistry, 2020, 38(12): 1473-1479.

[6] El-Rahman M, Mazzone G, Mahmoud A, Sicilia E, Shoeib T. Spectrophotometric determination of choline in pharmaceutical formulations via host-guest complexation with a biomimetic calixarene receptor [J]. Microchemical Journal, 2019, 146(2): 735-741.

[7] 陈琦. 超分子化学在光电材料科学及环境科学中的应用[J]. 合成材料老化与应用, 2016, 45(4): 114-118.

[8] Wang H, Duan Y, Wang Y, et al. Anion Regulates scu Topological Porous Coordination Polymers into the Acetylene Trap[J]. 2022, 14(11): 13550-13559.

[9] Molina P, Zapata F, Caballer A. Anion recognition strategies based on combined noncovalent interactions. Chemical Reviews, 2017, 117(15): 9907-9972.

[10] 王后臣, 周利, 刘洋, 陈明月, 石铁生. 超分子聚集体构筑单元的分子设计及其自组装研究进展[J/OL]. 应用化学, 2021, 1-9.

[11] Busschaert N, Caltagirone C, Van Rossom W, et al. Applications of Supramolecular Anion Recognition[J]. Chemical Reviews, 2015, 115 (15): 8038-8155.

[12] Aurélie Z, Berlanga P, De M, Rossi P, Magdalini P. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force[J]. Developmental Cell, 2020, 55(1): 45-68.

[13] Wu J, Ding W, Han G, You W, Gao W, Shen H, et al. Nuclear delivery of dual anti-cancer drugs by molecular self-assembly[J]. Biomaterials Science, 2021, 9(2): 116-123.

[14] Mallon M, Dutt S, Schrader T, et al. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin[J]. ChemBioChem, 2016, 17(8): 774-783.

[15] Kumar P K, Jha I, Venkatesu P, Bahadur I, Ebenso E E. A comparative study of the stability of stem bromelain based on the variation of anions of imidazolium-based ionic liquids[J]. Journal of Molecular Liquids, 2017, 246(5): 178-186.

[16] Vázquez J, Sindelar V . Supramolecular binding and release of sulfide and hydrosulfide anions in water[J]. Chemical Communications, 2018, 54(46): 5859-5862.

[17] Hahn N, Darren M, Zhou Y, George E, Lei C, et al. Influence of Ether Solvent and Anion Coordination on Electrochemical Behavior in Calcium Battery Electrolytes[J]. 2020, 3(9): 8437-8447.

[18] Huo F, Zhang Y, Ning P, et al. A novel isophorone-based red-emitting fluorescent probe for selective detection of sulfide anions in water for in vivo imaging[J]. Journal of Materials Chemistry, B. materials for biology and medicine, 2017, 5(15): 2798-2803.

[19] Chen Z, Jiang J, Zhao W, et al. An aggregation-induced phosphorescent emission-active iridium(III) complex for fluoride anion imaging in living cells[J]. Journal of Organometallic Chemistry, 2021, 932(15): 121644-121650.

[20] Park C H, Simmons H E. Macrobicyclic amines. III. Encapsulation of halide ions by in, in-1, (k+2)-diazabicyclo[k.l.m.]alkane ammonium ions[J]. Journal of the American Chemical Society, 1968, 90(9): 2431-2432.

[21] Dietrich B, Hosseini M W, Lehn J M, et al. Synthesis and protonation features of 24-,

27-and 32-membered macrocyclic poly amines[J]. Helvetica Chimica Acta, 1983, 66(2):

1262-1278.

[22] Lehn J M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices(Nobel Lecture)[J].Angewandte Chemie-International Edition, 1988, 27(3): 89-112.

[23] Kang S O. Begum R A, Bowman-James K, et al. Amide-based ligands for anion coordination[Jl. Angewandte Chemie-International Edition, 2006, 45(5): 7882-7894.

[24] Zhao Z, Tang B, Yan X, Wu X, et al. Crown ether-thiourea conjugates as ion transporters[J]. Frontiers of Chemical Science and Engineering, 2022, 16(1):81-91.

[25] Pascal R A, Spergel J, Engbersen D V, Synthesis and x-ray crystallographid

characterization of a (1,3,5)cyclophane with three amide N-H groups surrounding a central cavity. A neutral host for anion complexation[J]. Tetrahedron Letters, 1986, 27(2): 4099-4102.

[26] Gale P A, Sessler J L, Lynch V, et al. Calix [4]pyrroles: old yet new anion-binding agents[J]. Jounal of American Chemistry Society, 1996, 118(2): 5140-5141.

[27] Alcázar V, Segura M, Prados P, Mendoza J D. A preorganized macrocycle based on a bicyclic guanidinium subunit with six convergent hydrogen bonds for anion recognition [J]. Tetrahedron Letters, 1998, 39(9): 1033-1036.

[28] Müller G, Riede J, Schmidtchen F P. Wirt-Cast-Bindung von Oxoanionen an

Cuanidinium-Ankergruppen. Angewandte Chemie, 1988, 100(2): 1574-1575.

[29] Curiel D, Cowley A, Beer P D. Indolocarbazoles: a new family of anion sensors[J]. Chemical Communications, 2005, (2): 236-238.

[30] Baddi S, Palanisamy A. Thermal and ultrasound induced gelation of bis(acyl- semicarbazides)-Investigations on the anion tuning and dye adsorbing properties of their gels[J]. Sensors and Actuators B-Chemical, 2017, 245(5): 711-719.

[31] Margaret C, Etter, et al. Hydrogen bond directed cocrystallization and molecular recognition properties of acyclic imides[J]. Journal of the American Chemical Society, 1991, 113(7): 2586-2598.

[32] Smith P, Reddington M, Wilcox C. Ion Pair Binding by a Urea in Chloroform Solution[J]. Tetrahedron Letters, 1992, 33(41): 6085-6088.

[33] Jose D A, Kumar D K, Kar P, et al. Role of positional isomers on receptor–anion binding and evidence for resonance energy transfer[J]. Tetrahedron, 2007, 63(48): 12007-12014.

[34] Albrecht M, Zauner J, Burgert R, et al. Synthesis of tweezer-type receptors for the recognition of anions: observation of an additive effect of hydrogen bonds on nitrate binding[J]. Materials Science & Engineering C, 2001, 18(1): 185-190.

[35] Lma B, Ge C, Ot A, et al. Synthesis, characterization and anion recognition studies of new fluorescent alkyl bis(naphthylureylbenzamide)-based receptors-ScienceDirect[J]. Tetrahedron, 2020, 76(2): 1-49.

[36] Kim Y J, Han K, Lee S J, et al. Urea/thiourea-based colorimetric chemosensors for the biologically important ions: efficient and simple sensors[J]. Tetrahedron, 2006, 62(41): 9635-9640.

[37] Lee J Y, Cho E J, Mukamel S, et al. Efficient Fluoride-Selective Fluorescent Host: Experiment and Theory[J]. The Journal Organic Chemistry, 2004, 69(3): 943-950.

[38] Manna U, Portis B, Egboluche T K, et al. Anion Binding Studies of Urea and Thiourea

Functionalized Molecular Clefts[J]. Frontiers in Chemistry, 2021, 8: 575701.

[39] Li R, Zhao Y, Li S, Yang P, et al. Tris Chelating Phosphate Complexes of Bis(thio)urea Ligands[J]. Inorganic Chemistry, 2013, 52(10): 5851-5860.

[40] Shu X, Wang R, Y Fan, et al. Macrocyclic bis-urea receptor: synthesis, crystal structure and phosphate binding properties[J]. Tetrahedron Letters, 2019, 60(10): 729-733.

[41] Chen H, Liu Y, Cheng X, Fang S,et al. Self‐Assembly of Size‐Controlled m‐Pyridine-Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angewandte Chemie International Edition, 2021, 60(19): 10833-10841.

[42] Liu J, Wang F, Ding Q, Zhang J. Synthesis of an Enantipure Tetra-zole-Based Homochiral CuIII-MOF for Enantioselective Separation[J]. Inorganic Chemistry, 2016, 55(24): 12520-12522.

[43] Li Y, Zhao Y, Kang Y, Liu X, Sun W, Syntheses, Structures, and Sorption Properties of Metal-Organic Frameworks with 1,3,5-Tris-(1-imidazolyl)benzene and Tricarboxylate Ligands[J]. Crystal Growth & Design, 2016, 16(12): 7112-7123.

[44] 凃波,董翊天,徐红,黄亚励,张奇龙.基于1,1’-(1,5-萘二基)双(3-(3-吡啶基)脲)Hg(Ⅱ)配合物的合成及晶体结构[J]. 化学研究与应用, 2018, 30(12): 2038-2042.

[45] Custelcean R, Jiang D, Hay B. Hydrogen-Bonded Helices for Anion Binding and Separation[J]. Cryst Growth & Design, 2008, 8(6): 1909-1915.

[46] Chao H, Jin Y, Chen J L, et al. Synthesis and crystal structures of metallomacrocyclic and helical Hg(II) complexes with two bis(pyridylurea) ligands[J]. Inorganica Chimica Acta, 2018, 483: 252-257.

[47] Huang C, Xian M, et al. Synthesis and crystal structures of ZnCl2 and CdCl2 containing helical coordination polymers derived from a flexible bis(pyridylurea) ligand[J]. Inorganica Chimica Acta, 2018, 476: 123-128.

[48] Yang Z, Sun S, Liu Y, Liu X, Zhao S, et al. Crystal structure, thermal analyses, and acetate binding properties in Zinc(II) complex of a urea-functionalized pyridyl ligand, Indian Journal of Chemistry, 2019, 58A(12): 1302-1310.

[49] Wu B, Liang J, Zhao Y, Li S, Liu Y, et al. Sulfate encapsulation in three-fold interpenetrated metal-organic frameworks with bis(pyridylurea) ligands[J]. CrystEngComm, 2010, 12(2): 2129-2134.

[50] Esrafili L, Morsali A, Hu M, et al. Size-Selective Urea-Containing Metal-Organic Frameworks as Receptors for Anions[J]. Inorganic Chemistry, 2020, 59(22): 16421-16429.

[51] Yang Z, Li C, Liu X, Zhao S, Qu M, et al. Copper(II) Complex of a Urea‐functionalized Pyridyl Ligand: Synthesis, Crystal Structure, and Acetate Binding Properties[J]. Zeitschrift Fur Anorganische und Allgemeine Chemie, 2020, 646(15): 1324-1330.

[52] Ammann D, Pretsch E, Simon W. Darstellung von neutralen, lipophilen Liganden für Membranelektroden mit Selektivitt für Erdalkali-Ionen[J]. Helvetica Chimica Acta, 1973, 56(5): 1780-1787.

[53] Weber E, Vogtle F. Multidentate acyclic neutral ligands and their complexation[J]. Angewandte Chemie International Edition in English, 1979, 18(10): 753-758.

[54] Wen Y H, Lahiri S, Qin Z, et al. Decontamination of radioactive cesium from natural NaCl by amide-type open-chain crown ethers[J]. Journal of Radioanalytical & Nuclear Chemistry, 2002, 253(2): 263-265.

[55] Ma H, Wu R, Xiong J, et al. Bis-biphenylacrylonitrile bridged with crown ether chain: The novel fluorescence sensor for Fe3+ in aqueous media[J]. New Journal of Chemistry, 2020, 44(27): 2-7.

[56] Weickenmeier M, Wenz G, Huff J Macromol Rapid Commun, 1997, 18 (12):1117-1123.

[57] Inoue Y, Miyauchi, M, Nakajima, H, Takashima, et al. Self-Threading and Dethreading Dynamics of Poly(ethylene glycol)-Substituted Cyclodextrins with Different Chain Lengths. Macromolecules, 2007, 40(9): 3256-3262.

[58] Boer S A, Foyle E M, Thomas C M, et al. Anion coordination chemistry using O-H groups[J]. Chemical Society Reviews, 2019, 48(9): 2596-2614.

[59] Kolesnichenko I, Anslyn E. Practical applications of supramolecular chemistry[J]. Chemical Society Reviews, 2017, 46(6): 2385-2390.

[60] Montis R, Aragoni M, Arca M, Coles S, et al. Coordination Chemistry and Sensing Properties Towards Anions and Metal Ions of a Simple Fluorescent Urea[J]. European Journal of Inorganic Chemistry, 2021, 2021(37): 3878-3885.

[61] Xu Z, Ge H, Han X, et al. Self-recognition behavior of novel frameworks containing both urea and carboxylate anion motifs[J]. Tetrahedron, 2017, 73(44): 6386-6391.

[62] Byrne S, Mullen K M. Urea and thiourea based anion receptors in solution and on polymer supports[J]. Supramolecular Chemistry, 2017, 30(3): 1-10.

[63] Dajana B, Nikola, et al. Protonation and Anion Binding Properties of Aromatic Bis-Urea Derivatives-Comprehending the Proton Transfer.[J]. Chemistry-A European Journal, 2019, 25(18): 4695-4706.

[64] Augusto A S, Miranda A S, Ascenso J R, et al. Anion Recognition by Partial Cone Dihomooxacalix[4]arene-Based Receptors Bearing Urea Groups: Remarkable Affinity for Benzoate Ion[J]. European Journal of Organic Chemistry, 2018, 41(8): 5657-5667.

[65] Busschaert N, Caltagirone C, Rossom W, Gale P. Applications of supramolecular anion recognition[J]. Chemical Reviews, 2015, 115(15): 8038-8155.

[60] Amendola V, Fabbrizzi L, Mosca L, Anion recognition by hydrogen bonding: urea-based receptors[J]. Chemical Society Reviews, 2010, 39(10): 3889-3915.

[66] Zhao J, Yang X, Wu B, Anion coordination chemistry: from recognition to supramolecular assembly[J]. Coordination Chemistry Reviews, 2019, 378(JAN): 415- 444.

[67] 黄喆. 水溶性多脲受体对四面体阴离子的识别[D]. 陕西:西北大学, 2019.

[68] 曹成, 闫盆吉, 籍向东, 李宽兵, 李芳, 岳国仁. 新型氨基脲衍生物的合成及阴离子识别性能[J/OL]. 精细化工, 2021, 1-13.

[69] Kim J S, Shon O J, Yang S H. Chromogenic Indoaniline Armed-Calix[4]azacrowns[J]. Journal of Organic Chemistry, 2002, 67(18): 6514-6518.

[70] Huang W, Xu D, et al. A colorimetric sensor for the recognition of biologically important anions[J]. Journal of Inclusion Phenomena & Macrocyclic Chemistry, 2011, 69: 69-73.

[71] Sakai R, Okade S, Barasa E B, et al. Efficient Colorimetric Anion Detection Based on Positive Allosteric System of Urea-Functionalized Poly(phenylacetylene) Receptor[J]. Macromolecules, 2010, 43(18): 7406-7411.

[72] Santanu P, Abhishek K, Neeraj M. Naphthalene-Coupled Pyridinium Urea Salt in Fluorometric Sensing of Iodide[J]. Chemistry Select, 2021, 6(25): 6353-6359.

[73] Liang Y, Wang X, Zhao S, et al. A New Photoresponsive Bis (Crown Ether) for Extraction of Metal Ions[J]. Chemistryselect, 2019, 4(35): 10316-10319.

[74] Gokel G W, LeevyW M. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models[J].Chemical Review, 2004, 35(32): 2723-2750.

[75] Inoue Y, Gokel G W. Cation Binding by Macrocycles: Complexation of Cationic Species by Crown Ethers, Marcel Dekker, New York, 1990, 1-207.

[76] Liu Y, Wei H, Yang Z, et al. Synthesis, characterization and properties of novel amide derivatives based open-chain crown ether and their Tb (III) complexes[J]. Journal of Luminescence, 2015, 160(2): 35-42.

[77] Duan D, Su B, Bao Z, et al. Novel Open-chain Crown Ether Bridged Diphosphates as Chelating Ligands for Lanthanides Extraction in Supercritical Carbon Dioxide[J]. Journal of Supercritical Fluids The, 2019, 147(1): 42-47.

[78] Kazemabad M, Verliefde A, Cornelissen E R, et al. Crown ether containing polyelectrolyte multilayer membranes for lithium recovery[J]. Journal of Membrane Science, 2019, 595, 117432.

[79] Zz A, Ys, A. Jt A, et al. Supramolecular asymmetric catalysis mediated by crown ethers and related recognition systems-ScienceDirect[J]. Green Synthesis and Catalysis, 2021, 2(2): 156-164.

[80] Liu X, Zhang D, et al. Open-Chain Crown-Ether-Derived Two-Photon Fluorescence Probe for Real-Time Dynamic Biopsy of Mercury Ions[J]. Australian Journal of Chemistry, 2017, 70(6): 705-711.

[81] Klement I, Lennick K, Tucker C E, et al. Preparation of polyfunctional nitriles by the cyanation of functionalized organozinc halides with p-toluenesulfonyl cyanide[J]. Tetrahedron Letters, 2010, 24(41): 4623-4626.

[82] Joardar A, Meher G, Bag B P, et al. Host-guest complexation of eugenol in cyclodextrins for enhancing bioavailability[J]. Journal of Molecular Liquids, 2020, 319: 114336.

[83] Tahir M N, Cao Y, Azzouz A, et al. Host-guest chemistry of the sulfasalazine-β-

cyclodextrin inclusion complex[J]. Tetrahedron, 2021, 85(26): 132052-132061.

[84] Silski A M, Brown R D, Petersen J P, et al. C-H···O Hydrogen Bonding in Pentamers of Isatin[J]. The Journal of Physical Chemistry C, 2017, 121(39): 21520-21526.

[85] Karotki L. A triple helical structure supported solely by C-H···O hydrogen bonding[J]. Chemical Communication. 2012, 48(9): 1242-1244.

[86] Yang Z, Huang X, Zhao Q, et al. Hydrogen-bonded 1D nanotubes and 2D layers of group 12 metal complexes with a pyridylurea ligand[J]. Crystengcomm, 2012, 14(17): 5446-5453.

[87] Ji W, Liu G, Li Z, et al. The influence of C-H···O hydrogen bonds on macroscopic properties of supramolecular assembly[J]. Acs Applied Materials & Interfaces, 2016, 8(8): 5188-5195.

[88] Marquis D, Desvergne J P, Bouas-Laurent H. Photoresponsive Supramolecular Systems: Synthesis and Photophysical and Photochemical Study of Bis-(9, l0-anthracenediy1) coronands AAOnOn. Journal of Organic Chemistry, 1995, 60(24): 7984-7996.

[89] Chen Y, Baker G. Synthesis and Properties of ABA Amphiphiles. Journal of Organic Chemistry, 1999, 64(18): 6870.

[90] Eastmond G C, Paprotny J. Polyimides with main-chain ethylene oxide units: synthesis and properties[J]. Polymer, 2002, 43(12): 3455-3468.

[91] Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C, 2015, 71(1): 3-8.

[92] Bruker AXS Inc. SMART APEX (Version 5.628), SAINT+(Version 6.45) and SHELXTL-NT (Version 6.12) [M]. Madision; Bruker AXS Inc. 2001.

[93] Sparkes H A, Sage H G, Yufit D S. In-situ cryocrystallization of 1,2-dimethyl-3- nitrobenzene and 2,4-dimethyl-1-nitrobenzene[J]. Acta Crystallographica, 2014, 70(9): 872-875.

[94] Tang P, Tang B, et al. Effect of hydroxypropyl-β-cyclodextrin on the bounding of salazosulfapyridine to human serum albumin[J]. International Journal of Biological Macromolecules, 2016, 92(5): 105-115.

[95] Chen M, Diao G, Zhang E. Study of inclusion complex of β-cyclodextrin and nitrobenzene[J]. Chemosphere, 2006, 63(3): 522-529.

[96] Wu A, F Lu, Sun P, et al. Low-Molecular-Weight Supramolecular Ionogel Based on Host-Guest Interaction[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2017, 33(49): 13982-13989.

[97] Wu T, Huang J, Yan Y. From aggregation-induced emission to organic room temperature phosphorescence through suppression of molecular vibration[J]. Cell Reports Physical Science, 2022, 3(2): 2666-3864.

中图分类号:

 O164.3    

开放日期:

 2023-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式