- 无标题文档
查看论文信息

论文中文题名:

 含磷多组分粉体对甲烷爆炸的抑制作用研究    

姓名:

 赵腾龙    

学号:

 19120089005    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘爆炸防控    

第一导师姓名:

 陈晓坤    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Study on the inhibition effect of phosphorous-containing multicomponent powder on methane explosion    

论文中文关键词:

 甲烷爆炸 ; 含磷多组分粉体 ; 抑爆效果 ; 热分解特性 ; 抑爆产物 ; 抑爆机理    

论文外文关键词:

 Methane explosion ; Phosphorus containing multicomponent powder ; Inhibition effect ; Thermal decomposition characteristics ; Products of explosion inhibition ; Inhibition mechanism    

论文中文摘要:

甲烷爆炸事故严重威胁着工业安全,阻碍工业发展。有效防治甲烷爆炸是目前工业安全发展的重要课题之一。粉体抑爆剂作为甲烷爆炸防控的重要材料,倍受关注。本文选取低温下容易发生热分解的粉体抑爆剂,通过多元复配的方式得到了一种具有更好抑爆效果的含磷多组分粉体抑爆剂。同时,采用实验与理论分析相结合的方法,从甲烷抑爆实验-火焰抑制实验-物性分析对比三个方面研究了含磷多组分粉体对甲烷爆炸的抑制作用,揭示了含磷多组分粉体的抑爆机理。相关研究成果为新型粉体抑爆剂的研发提供了基础数据参考,对可燃气体爆炸防控具有重要的理论与现实意义。

利用可视化20 L球形爆炸测试容器,研究了不同配比、含磷组分以及添加浓度下含磷多组分粉体对甲烷爆炸压力、压升速率、特征时间、火焰发展以及自由基产生数量的影响,明确了含磷多组分粉体对甲烷爆炸的抑制作用。结果表明,当碳酸氢钠(NaHCO3)、氢氧化铝(Al(OH)3)、碳酸钾(K2CO3)与磷酸二氢铵(NH4H2PO4)四种粉体的质量配比为1:1:2:1时,含磷多组分粉体对甲烷爆炸的抑爆效果达到最佳。空气氛围中,在该最佳配比下,当含磷多组分粉体添加浓度由0 g/m3提升至375 g/m3时,9.5%浓度甲烷的最大爆炸压力由0.666 MPa降低至0.326 MPa,明显低于对应单元粉体抑制下的最大爆炸压力。含磷多组分粉体对甲烷爆炸的抑爆效果明显优于与其对应的单元粉体,表明含磷多组分粉体存在抑爆协同增效。同时,最佳配比下,当含磷组分分别为聚磷酸铵(APP)、改性壳聚糖(PACS)及磷酸二氢铵(MAP)时,含磷多组分粉体完全抑制9.5%浓度甲烷爆炸的添加浓度分别为660 g/m3、625 g/m3和600 g/m3。其中,添加了MAP的含磷多组分粉体的抑爆效果优于其他两种含磷多组分粉体。

通过火焰演化过程分析,明确了含磷多组分粉体对甲烷爆炸过程火焰发展的影响。当含磷组分为NH4H2PO4时,最佳配比下随着含磷多组分粉体添加浓度由0 g/m3提升至375 g/m3,9.5%浓度甲烷的平均火焰传播速度由1.19 m/s降低至0.23 m/s,明显低于对应单元粉体抑制下的平均火焰传播速度。与对应单元粉体相比,含磷多组分粉体对甲烷燃烧反应具有更好的抑制作用,使甲烷爆炸由球形火焰演化为脱离点火电极的“蘑菇形”火焰。受粉体团聚作用与浮力效应的影响,当含磷多组分粉体添加浓度为250~525 g/m3时,空气中实际的粉体浓度低于添加浓度。此时,向上移动的火焰核心导致甲烷爆炸,含磷多组分粉体的抑爆效果提升不明显。同时,通过对自由基发射光谱的分析,明确了含磷多组分粉体对甲烷燃烧反应中关键自由基产生数量的影响。含磷多组分粉体有效抑制了甲烷爆炸过程中关键自由基的产生,火焰发展变慢,甲烷燃烧反应速率降低。与单元粉体相比,在相同的·H与·CH2O自由基产生数量下,含磷多组分粉体抑制下甲烷爆炸产生的能量更低。在相同的爆炸能量下,含磷多组分粉体抑制下·OH自由基的产生数量更少。最佳配比下,添加了MAP的含磷多组分粉体对火焰发展的抑制作用优于添加了APP或PACS的含磷多组分粉体,甲烷燃烧产生的自由基数量更大程度减少。

基于可燃物强迫点火模型,建立了含磷多组分粉体抑制下的火焰发展模型。结合含磷多组分粉体的热分解特性、吸热特性以及参与抑爆前后粉体微观结构特征,揭示了含磷多组分粉体对甲烷爆炸的抑爆机理。NaHCO3、Al(OH)3和K2CO3能够与含磷酸根的铵盐在甲烷爆炸升温初期发生化学作用并快速分解。最佳配比下,对于添加了MAP的含磷多组分粉体,该快速分解主要发生在400 ℃之前,吸热焓为474.9 J/g,明显低于对应单元组分的吸热焓;分解过程中释放了大量的二氧化碳(CO2)、水蒸气(H2O)以及氨气(NH3)等,消耗了甲烷爆炸产生的能量、稀释了火焰面附近的甲烷与氧气,并且吸收了甲烷燃烧反应过程中的关键自由基。同时,NH3还能与甲烷燃烧的产物与中间产物发生化学反应,生成碳酸铵盐类固态产物,起到消耗甲烷燃烧反应过程中可燃物与自由基的作用。根据抑爆机理,提出了含磷多组分粉体协同抑爆作用模型。

论文外文摘要:

Methane explosion accidents seriously threaten industrial safety and development. Methane explosion prevention and control is one of the most important topics in the present development of industrial safety. Among these topics, powder suppressants have received great attention as important materials for methane explosion inhibition. In this paper, inorganic compound powder and organic phosphorus-containing compound powder that were prone to thermal decomposition at low temperature were selected, and a phosphorous-containing multicomponent powder with a relatively great explosion inhibition capability was obtained through multicomponent compounding. In addition, three experimental and theoretical analyses were used to investigate the inhibition effect of the phosphorous-containing multicomponent powder: a methane explosion inhibition experiment, flame inhibition experiment and physical property comparison. The inhibition mechanism of the phosphorous-containing multicomponent powder on methane explosion was revealed. The relevant results could provide a new idea for research on new powder suppressants and have important theoretical and practical significance for the prevention and control of industrial flammable gas explosions.

The inhibition effects of the phosphorous-containing multicomponent powders with various ratios, phosphorous-containing components and concentrations on methane explosion were investigated by using a visualized 20-L spherical vessel; the explored parameters included the explosion pressure, pressure increase rate, characteristic time, flame propagation and free radical production. The results showed that when the mass ratio of sodium bicarbonate (NaHCO3), aluminum hydroxide (Al(OH)3), potassium carbonate (K2CO3), and ammonium dihydrogen phosphate (NH4H2PO4, MAP) was 1:1:2:1, the phosphorous-containing multicomponent powder achieved the best inhibition of methane explosion. At this optimal ratio, when the powder concentration increased from 0 g/m3 to 375 g/m3, the maximum explosion pressure of methane (9.5%) was reduced from 0.666 MPa to 0.326 MPa. The maximum explosion pressures of methane (9.5%) for the corresponding single powders were reduced to 0.501 MPa (Al(OH)3), 0.376 MPa (NaHCO3), 0.366 MPa (NH4H2PO4), and 0.360 MPa (K2CO3). The inhibition effect of the phosphorous-containing multicomponent powder was significantly greater than that of the single powders, indicating the synergistic effect of the powders on inhibition. When ammonium polyphosphate (APP), modified phosphorus containing chitosan (PACS), and MAP were added as phosphorus-containing components, the complete inhibition concentrations of phosphorus-containing multicomponent powders for methane explosion (9.5%) were 660 g/m3, 625 g/m3, and 600 g/m3, respectively. When MAP was added, the phosphorus-containing multicomponent powder had a greater inhibition effect on methane explosion.

Based on the analysis of flame evolution, the inhibition effect of the phosphorus-containing multicomponent powder on flame propagation was clarified. When MAP was added, under the optimal ratio, as the concentration of the phosphorus-containing multicomponent powder increased from 0 g/m3 to 375 g/m3, the average flame propagation velocity of the methane (9.5%) explosion was reduced from 1.19 m/s to 0.23 m/s, which was significantly lower than the velocity under single powder inhibition. The phosphorus-containing multicomponent powder had a greater inhibition effect on the methane combustion reaction than the corresponding single powder, evolving the methane explosion from a spherical flame to a mushroom-shaped flame that is ultimately extinguished. Under the influences of powder agglomeration and buoyancy, as the concentration of the phosphorus-containing multicomponent powder increased from 250 g/m3 to 525 g/m3, methane explosion was found to be caused by the upward moving flame core, reducing the powder inhibition effect. In addition, based on an analysis of the free radical emission spectra, the inhibition effect of the phosphorus-containing multicomponent powder on the methane combustion reaction was revealed. The production of key free radicals during methane explosion was reduced under powder inhibition conditions. The flame propagation slowed, and the methane combustion reaction rate decreased to a relatively large degree under powder inhibition conditions. Under the same production conditions of ·CH2O and ·H radicals, the energy produced by methane explosion was lower through phosphorus-containing multicomponent powder inhibition than through the single powder inhibition. Under the same energy produced by methane explosion, the production of ·OH radicals was lower under phosphorus-containing multicomponent powder inhibition conditions than under single powder inhibition conditions. At the optimal ratio, when MAP was added, the phosphorus-containing multicomponent powder had a relatively great inhibition effect on flame propagation and radical production for methane explosion.

Based on the forced ignition model of combustibles, a model for the flame propagation of methane explosion under phosphorus-containing multicomponent powder was proposed. By combining the analysis of thermal decomposition, heat absorption and microstructural characteristics, the inhibition mechanism of the phosphorus-containing multicomponent powder on methane explosion was revealed. NaHCO3, Al(OH)3, and K2CO3 could react with ammonium salt containing phosphate radicals at the initial stage of methane explosion heating. At the optimal ratio, when MAP was added, the rapid decomposition of the phosphorus-containing multicomponent powder mainly occurred before 400 ℃, with an endothermic enthalpy of 474.9 J/g. Many gases, such as CO2, H2O and NH3, were produced during powder decomposition, thus reducing the amount of energy produced by methane explosion, diluting methane and oxygen near the flame surface, and consuming free radicals produced by methane combustion. In addition, NH3 could react with methane combustion products and intermediate products to generate solid products, such as ammonium carbonate, which played an important role in consuming combustible and free radicals during methane explosion. Based on the inhibition mechanism, a synergistic inhibition model of the phosphorus-containing multicomponent powder was proposed.

参考文献:

[1] 余明高, 阳旭峰, 郑凯, 等. 我国煤矿瓦斯爆炸抑爆减灾技术的研究进展及发展趋势[J]. 煤炭学报, 2020, 45(01): 168–188.

[2] Yu MG, Li SS, Li HT, et al. Numerical evaluation of the influence of initial pressure/temperature on the explosion properties and soot formation of methane/coal volatiles mixtures[J]. Fuel, 2023, 331: 125698.

[3] 张巍, 王锐, 缪平, 等. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(03): 1257–1269.

[4] 阮景昕, 王跃社, 张俊峰, 等. 基于氢储能的风光氢能源系统能质转换优化策略[J]. 工程热物理学报, 2023, 44(02): 413–421.

[5] Wang CH, Guo J, Wang HZ, et al. Effects of hydrogen ratio on explosion characteristics of hydrogen/methane/air in vented chamber[J]. Fuel, 2022, 330(11): 125587.

[6] Wen XP, Yu MG, Ji WT, et al. Methane–air explosion characteristics with different obstacle configurations[J]. International Journal of Mining Science and Technology, 2015, 25(02): 213–218.

[7] Franz T, Javier L, Christopher L, et al. Steam explosion pretreatment of wheat straw to improve methane yields: Investigation of the degradation kinetics of structural compounds during anaerobic digestion[J]. Bioresource Technology, 2015, 179: 299–305.

[8] Mohammed JA, Jafar Z, Behdad M. Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system[J]. Journal of Hazardous Materials, 2017, 339(05): 301–309.

[9] 陈大鹏, 陈力, 还毅, 等. 盐城响水化工园区“3·21”危化品爆炸事故爆炸威力分析及灾害后果评估[J]. 防灾减灾工程学报, 2020, 40(02): 196–203.

[10] 曹凯. 昆山爆炸事故和青岛中石化爆炸事故舆情现象[J]. 计算机与网络, 2014, 40(16): 6.

[11] 赵苡萱. “十四五”安全生产如何谋篇布局——就《“十四五”国家安全生产规划》专访中国安全生产科学研究院安全生产理论与法规标准研究所所长曾明荣[J]. 劳动保护, 2022, 563(05): 27–29.

[12] 曾明荣. “十四五”安全生产法规标准体系建设的思考[J]. 劳动保护, 2020, 12: 15–17.

[13] Akram M, Kumar S. Experimental studies on dynamics of methane air pre–mixed flame in meso–scale diverging channels[J]. Combustion and Flame, 2011, 158(05): 915–924.

[14] Liu JQ, Meng XB, Zhang YS, et al. Study on inhibition of explosion of titanium powder by mesoporous calcium compound/carbonized chelating resin composite powder[J]. Powder Technology, 2023, 420(15): 118355.

[15] Yang K, Yue CX, Xing ZX, et al. Study on the Improvement of Methane Explosion Inhibition Effect by Ultrafine Water Mist Containing Methanotroph–inorganic Salt[J]. Combustion Science and Technology, 2022, 194(11): 2325–2348.

[16] Cao XY, Wei HY, Wang ZR, et al. Experimental research on the inhibition of methane/coal dust hybrid explosions by the ultrafine water mist[J]. Fuel, 2023, 331(03): 125937.

[17] Pei B, Li SL, Yang SJ, et al. Flame propagation inhibition study on methane/air explosion using CO2 twin–fluid water mist containing potassium salt additives[J]. Journal of Loss Prevention in the Process Industries, 2022, 78: 104817.

[18] Dai HM, Liang GQ, Yin HP, et al. Experimental investigation on the inhibition of coal dust explosion by the composite inhibitor of carbamide and zeolite[J]. Fuel, 2022, 308(15): 121981.

[19] Xiao Q, Meng XB, Li ZY, et al. Inhibition of aluminum–silicon alloy dust explosion and flame by KH2PO4/montmorillonite composite powder[J]. Fire and Materials, 2021, 46(05): 797–808.

[20] Zhang TJ, Jiang HP, Shang S, et al. Synthesis of aluminum hydroxide/Zinc borate composite inhibitor and its inhibition effect on aluminum dust explosion[J]. Chemical Engineering Science, 2022, 248(01): 117204.

[21] Liu RZ, Zhang MC, Jia BS. Inhibition of gas explosion by nano–SiO2: powder under the condition of obstacles[J]. Integrated Ferroelectrics, 2021, 216(01): 305–321.

[22] 鲁希华, 查刘生, 余菊华. 多元阻燃体系对HDPE的阻燃研究[J]. 塑料工业, 1994(04): 29–30+39.

[23] 顾丽敏, 于倩. 磷氮协效阻燃聚酯多元醇的制备及应用[J]. 高分子材料科学与工程, 2019, 35(10): 36–42.

[24] 李文雄, 赵海波, 汪秀丽, 等. 不同层状双氢氧化物对有机硅泡沫阻燃抑烟与力学性能的影响研究[J]. 化学研究与应用, 2022, 34(06): 1369–1376.

[25] 卢林刚, 赵瑾, 苏祺等. 膨胀型阻燃剂/纳米CuO协同阻燃环氧树脂[J]. 高分子材料科学与工程, 2020, 36(10): 63–70+78.

[26] Yan K, Meng XB, Zheng W, et al. Inhibition of aluminum powder explosion by a NaHCO3/Kaolin composite powder suppressant[J]. Combustion Science and Technology, 2022, 194(04): 815–831.

[27] Dai LL, Hao L, Kang W, et al. Inhibition of different types of inert dust on aluminum powder explosion[J]. Chinese Journal of Chemical Engineering, 2020, 28(07): 1941–1949.

[28] 艾梁辉. 新型有机硼–氮和磷–氮化合物的合成、阻燃性能及其与无机阻燃剂协同阻燃性能[D]. 华南理工大学, 2021.

[29] 肖媛芳, 许家友, 邓海铭. MCA–ADEPH磷–氮协同阻燃剂的制备及其对PA6阻燃性能的影响[J]. 功能材料, 2017, 48(06): 6165–6170.

[30] 余明高, 王雪燕, 郑凯, 等. 催化型复合粉体抑爆剂抑制瓦斯爆炸压力实验研究[J]. 煤炭学报, 2021, 46(10): 3212–3220.

[31] Wang S, Xiao GQ, Mi HF, et al. Experimental and numerical study on flame fusion behavior of premixed hydrogen/methane explosion with two–channel obstacles[J]. Fuel, 2023, 333: 126530.

[32] Gao JC, Wang L, Hu ST, et al. The free radical mechanism of electromagnetic field affecting explosion of premixed methane[J]. Combustion and Flame, 2021, 234: 111649.

[33] Li DF, Chen YCY, Liu LH, et al. Experimental study on enhancing methane explosion characteristics by Al and KMnO4 powders under large pipelines[J]. Fuel, 2023, 342: 127810.

[34] Zhao TL, Chen XK, Cheng FM, et al. Study on the synergistic inhibition mechanism of multicomponent powders on methane explosions[J]. Powder Technology, 2023, 418: 118326.

[35] Liu AH, Lu XE, Zhou XY, et al. Experimental investigation on suppression of methane explosion using KHCO3/zeolite composite powder[J]. Powder Technology, 2023, 415(05): 118157.

[36] Payman W, Shepherd WCF. Explosion waves and shock waves. IV. quasi–detonation in mixtures of methane and air[J]. Proceedings of the Royal Society A, 1937, 158(894): 348–367.

[37] Levy A. Kinetics of the hydrogen–oxygen–methane system. I. inhibition of the second explosion limit[J]. The Journal of Physical Chemistry, 1955, 59(08): 721–727.

[38] 辽宁省煤炭研究所第三研究室. 电火花引起矿井瓦斯(甲烷)爆炸参量试验报告[J]. 煤矿安全, 1972(06): 15–22.

[39] 辽宁省煤炭研究所第三研究室. 甲烷、氢气爆炸混合物的浓度、初压与爆炸压力的关系[J]. 煤矿安全, 1974(03): 28–30.

[40] 曹兴岩. 超细水雾抑制甲烷–空气爆炸机理研究[D]. 大连理工大学, 2017.

[41] 王涛. 管道内甲烷爆炸特性及CO2抑爆的实验与数值模拟研究[D]. 西安科技大学, 2014.

[42] 牛芳, 刘庆明, 白春华, 等. 甲烷–煤尘爆炸物火焰传播特性[J]. 高压物理学报, 2012, 26(04): 455–461.

[43] Verhelst S, Woolley R, Lawes M, et al. Laminar and unstable burning velocities and Markstein lengths of hydrogen–air mixtures at engine–like conditions[J]. Proceedings of the Combustion Institute, 2004, 30(01): 209–216.

[44] 毕明树, 王洪雨. 甲烷–煤尘复合爆炸威力实验[J]. 煤炭学报, 2008, 07: 784–788.

[45] 毕明树, 李江波. 密闭管内甲烷–煤粉复合爆炸火焰传播规律的实验研究[J]. 煤炭学报, 2010, 35(08): 1298–1302.

[46] 毕明树, 李江波. 密闭管内甲烷–煤粉复合爆炸实验研究[J]. 矿业安全与环保, 2010, 37(06): 1–4+6.

[47] 尉存娟, 谭迎新. 管道内不同浓度甲烷爆炸传播特性的实验研究[J]. 煤矿安全, 2009, 40(10): 4–6+10.

[48] 游天龙, 谭迎新, 许航. 水平管道内甲烷–煤尘混合爆炸压力的研究[J]. 中北大学学报, 2014, 35(04): 449–452.

[49] 王志青, 谭迎新. 障碍物形状对瓦斯爆炸影响的研究[J]. 煤炭工程, 2010, 09: 76–78.

[50] 余明高, 孔杰, 王燕, 等. 不同浓度甲烷–空气预混气体爆炸特性的试验研究[J]. 安全与环境学报, 2014, 14(06): 85–90.

[51] 余明高, 袁晨樵, 郑凯. 管道内障碍物对加氢甲烷爆炸特性的影响[J]. 化工学报, 2016, 67(12): 5311–5319.

[52] Stamatov VA, King KD, Zhang DK. Explosions of methane/air mixtures induced by radiation–heated large inert particles[J]. Fuel, 2005, 84(16): 2086–2092.

[53] Cybulski K, Dyduch Z, Hildebrandt R, et al. Development of methane explosions in the underground experimental facilities of GIG EM Barbara[J]. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk, 2018, 103: 29–40.

[54] Mohammed JA, Jafar Z, Behdad M. Application of flame arrester in mitigation of explosion and flame deflagration of ventilation air methane[J]. Fuel, 2019, 257: 115985.

[55] Kusainov PI, Mazepa EE, Kraynov AY, et al. Considering the settling of dispersed water in the water barrier when calculating the explosion–proof distance at the methane explosion in a mine[J]. Journal of Physics: Conference Series, 2021, 1749(01): 012042.

[56] Novoselov SV, Panihidnikov SA. Injury rate in the coal industry of Russia and prediction of methane explosion risk in the hazardous production facility–working face of the extreme explosion category mine[J]. Ugol’, 2017: 32–35.

[57] Jafar Z, Mohammed JA, Behdad M. Capture and Mitigation of Fugitive Methane: Examining the Characteristics of Methane Explosions in an Explosion Chamber Connected to a Venting Duct[J]. Energy & Fuels, 2020, 34(01): 645–654.

[58] Duva BC, Chance LE, Toulson E. Dilution effect of different combustion residuals on laminar burning velocities and burned gas Markstein lengths of premixed methane/air mixtures at elevated temperature[J]. Fuel, 2020, 267: 117153.

[59] Verhelst S, Woolley R, Lawes M, et al. Laminar and unstable burning velocities and Markstein lengths of hydrogen–air mixtures at engine–like conditions[J]. Proceedings of the Combustion Institute, 2004, 30(01): 209–216.

[60] 王志荣, 孙培培, 唐振华, 等. 密闭容器甲烷–空气混合物爆炸的尺寸效应[J]. 中国安全科学学报, 2021, 31(01): 60–66.

[61] 崔益清, 王志荣, 蒋军成. 球形容器与管道内甲烷–空气混合物爆炸强度的尺寸效应[J]. 化工学报, 2012, 63: 204–209.

[62] 李润之, 司荣军. 低温环境下甲烷爆炸流场特性模拟[J]. 爆炸与冲击, 2015, 35(06): 901–906.

[63] 任韶然, 黄丽娟, 张亮, 等. 高压高温甲烷–空气混合物爆炸极限试验[J]. 中国石油大学学报(自然科学版), 2019, 43(06): 98–103.

[64] 黄代民, 覃欣欣, 徐伟巍. 湍流状态下甲烷爆炸极限实验研究[J]. 电气防爆, 2020, 03: 39–42.

[65] Khan AR, Anbusaravanan S, Kalathi L, et al. Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames[J]. Fuel, 2017, 196: 225–232.

[66] Zhao Q, Li Y, Chen XF. Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion[J]. Energy, 2022, 257: 124767.

[67] 谢溢月, 谭迎新, 孙彦龙. 湍流状态下甲烷爆炸极限的测试研究[J]. 中国安全科学学报, 2016, 26(11): 65–69.

[68] 谭迎新, 于硕, 韩意. 密闭空间甲烷–空气混合物爆炸传播过程研究[J]. 中北大学学报(自然科学版), 2017, 38(05): 605–608.

[69] 司荣军. 温度压力耦合对甲烷爆炸极限影响的试验研究[J]. 安全与环境学报, 2014, 14(04): 32–35.

[70] 程方明, 邓军. 一氧化碳影响二氧化碳惰化甲烷爆炸的实验研究[J]. 西安科技大学学报, 2016, 36(03): 315–319.

[71] 钱承锦, 王志荣, 郑杨艳, 等. 初始压力对连通容器甲烷–空气混合物爆炸压力的影响[J]. 南京工业大学学报, 2017, 39(02): 51–56.

[72] 秦文茜, 王喜世, 谷睿, 等. 超细水雾作用下瓦斯的爆炸压力及升压速率[J]. 燃烧科学与技术, 2012, 18(01): 90–95.

[73] 钱海林, 王志荣, 蒋军成. N2/CO2混合气体对甲烷爆炸的影响[J]. 爆炸与冲击, 2012, 32(04): 445–448.

[74] 贾宝山, 肖明慧, 尹彬, 等. 甲烷最大爆炸压力的计算与分析[J]. 煤炭科学技术, 2017, 45(12): 101–106.

[75] Azatyan VV, Prokopenko VM, Abramov SK. Using Small impurities of inert gases to prevent the combustion of methane from transitioning to an explosion[J]. Russian Journal of Physical Chemistry A, 2021, 95(07): 1327–1330.

[76] Abdelhameed E, Tashima H. Experimental investigation on methane inert gas dilution effect on marine gas diesel engine performance and emissions[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(02): 3584–3596.

[77] Mitu M, Prodan M, Giurcan V, et al. Influence of inert gas addition on propagation indices of methane–air deflagrations[J]. Process Safety and Environmental Protection, 2016, 102: 513–522.

[78] 路长, 苏振国, 陈硕, 等. 全氟己酮与惰性气体对甲烷爆炸的协同阻爆作用[J]. 安全与环境学报, 2023, 23(04): 1115–1123.

[79] 刘奎, 李孝斌, 郑丹. 甲烷爆炸感应期内火焰光谱特征分析方法研究[J]. 光谱学与光谱分析, 2015, 35(08): 2067–2072.

[80] 郑丹, 李孝斌, 郭子东, 等. 甲烷爆炸火焰传播机理实验及数值模拟[J]. 消防科学与技术, 2014, 33(07): 725–728.

[81] 罗振敏, 王子瑾, 苏彬, 等. 多元可燃气体对CH4爆炸及其自由基发射光谱影响试验[J]. 中国安全科学学报, 2020, 30(04): 1–7.

[82] 罗振敏, 康凯, 任军莹. NH3对甲烷链式爆炸的微观作用机理[J]. 煤炭学报, 2016, 41(04): 876–883.

[83] 李孝斌, 李会荣, 何昆, 等. 甲烷爆炸感应期内CN/CH/CHO/CH2O/NCN特征光谱分析[J]. 煤炭学报, 2014, 39(10): 2042–2046.

[84] 李孝斌, 崔沥巍, 张瑞杰, 等. 甲烷爆炸初期关键自由基化学发光与爆炸压力的耦合关系分析[J]. 含能材料, 2020, 28(08): 779–785.

[85] 李成兵. N2/CO2/H2O抑制甲烷爆炸化学动力学机理分析[J]. 中国安全科学学报, 2010, 20(08): 88–92.

[86] 杨春丽, 刘艳, 李祥春. 甲烷/空气混合气体爆炸基元反应特征及能量分析[J]. 煤矿安全, 2018, 49(05): 171–174.

[87] 王海燕, 张雷, 吕佳溪. 点火方式对甲烷爆炸生成气体产物的影响研究[J]. 煤矿安全, 2020, 51(05): 16–20+26.

[88] 王相. 复合粉体抑爆剂对煤尘爆炸的抑制特性及机理研究[D]. 山东科技大学, 2019.

[89] Cao XY, Lu YW, Jiang JC, et al. Experimental study on explosion inhibition by heptafluoropropane and its synergy with inert gas[J]. Journal of Loss Prevention in the Process Industries, 2021, 71(04): 104440.

[90] 解北京, 杜玉晶, 曾膑. CO2和ABC干粉灭火剂扑灭火旋风火焰实验对比分析[J]. 中国安全生产科学技术, 2018, 14(09): 31–37.

[91] Song YF, Zhang Q. Quantitative research on gas explosion inhibition by water mist[J]. Journal of Hazardous Materials, 2019, 363: 16–25.

[92] 杨克, 张平, 邢志祥, 等. 含NaCl超细水雾抑制甲烷爆炸实验研究[J]. 中国安全生产科学技术, 2019, 15(03): 86–91.

[93] Kosinski P. Numerical investigation of explosion suppression by inert particles in straight ducts[J]. Journal of Hazardous Materials, 2008, 154: 981–991.

[94] Chen ZH, Fan BC, Jiang XH. Suppression effects of powder suppressants on the explosions of oxyhydrogen gas[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(06): 648–655.

[95] 范宝春, 谢波, 张小和, 等. 惰性粉尘抑爆过程的实验研究[J]. 流体力学实验与测量, 2001, 15(04): 20–25.

[96] Liu Y, Liu XT, Li XQ. Numerical investigation of hydrogen detonation suppression with inert particle in pipelines[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21548–21563.

[97] 黄子超. 抛光铝粉爆炸及ABC粉体抑爆特性的实验研究[J]. 中国安全生产科学技术, 2020, 16(07): 119–124.

[98] 伍毅, 袁旌杰, 蒯念生, 等. 碳酸盐对密闭空间粉尘爆炸压力影响的试验研究[J]. 中国安全科学学报, 2010, 20(10): 92–96.

[99] 王婷, 王信群, 吕岳, 等. 超细活性及惰性粉体对甲烷/空气预混物层流火焰传播的影响[J]. 煤炭学报, 2016, 41(07): 1720–1727.

[100] 贾海林, 项海军, 李第辉, 等. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制[J]. 爆炸与冲击, 2020, 40(04): 34–43.

[101] Wang JF, Meng XB, Yan K, et al. Suppression of aluminum dust explosion by Ca(H2PO4)2/RM composite powder with core–Shell structure: effect and mechanism[J]. Processes, 2019, 7(10): 761.

[102] Jiang HP, Bi MS, Zhang JK, et al. Explosion characteristics and mechanism of aluminum–reduced graphene oxide composite powder[J]. Powder Technology, 2022, 405: 117545.

[103] 罗振敏. 瓦斯爆炸抑制材料的特性及抑爆作用研究[D]. 西安科技大学, 2009.

[104] 左前明, 程卫民, 汤家轩. 粉体抑爆剂在煤矿应用研究的现状与展望[J]. 煤炭技术, 2010, 29(11): 78–80.

[105] 王秋红, 邓军, 罗振敏, 等. 超细氢氧化镁粉体抑制甲烷–空气混合物爆炸效能研究[J]. 中国安全科学学报, 2014, 24(12): 33–37.

[106] 文虎, 王秋红, 邓军, 等. 超细Al(OH)3粉体浓度对甲烷爆炸压力的影响[J]. 煤炭学报, 2009, 34(11): 1479–1482.

[107] Amyotte PR, Pegg MJ, Khan FI, et al. Moderation of dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2007, 20: 675–687.

[108] Jadhav DM. Fire protection of oil filled transformers and reactors: Nitrogen gas based explosion prevention and fire extinguishing system[J]. Water and Energy International, 2016, 59: 21–25.

[109] Krasnyansky M. Prevention and suppression of explosions in gas–air and dust–air mixtures using powder aerosol–inhibitor[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(06): 729–735.

[110] 彭于怀, 黄丽媛, 曹卫国, 等. 石松子粉尘爆炸危险性及抑爆研究[J]. 爆破器材, 2014, 43(06): 16–21.

[111] 雷伟刚, 毕海普, 王凯全. 铝粉抑爆剂适用性能评估研究[J]. 安全与环境工程, 2018, 25(02): 121–125+138.

[112] 喻源, 刘斐斐, 马香香, 等. 橡胶粉尘的爆炸特性及抑爆的试验研究[J]. 安全与环境学报, 2018, 18(03): 920–924.

[113] Liu TQ, Zhao X, Tian WY, et al. Experimental research on the suppression effect of different types of inert dust on micron–sized lignite dust explosion pressure in a confined space[J]. ACS omega, 2022, 7(39): 35069–35076.

[114] 卫园梦, 王庆慧, 杨晓明, 等. 微米级硅粉粉尘爆炸特性及抑爆试验研究[J]. 消防科学与技术, 2019, 38(06): 775–779.

[115] 何汶静. 铝粉爆炸特性研究及抑爆剂的开发[J]. 消防科学与技术, 2019, 38(12): 1736–1738.

[116] Zhang YS, Yang JJ, Li LL, et al. Study on the preparation of novel FR–245/MCM–41 suppressant and its inhibition mechanism on oil shale deflagration flame[J]. Journal of Loss Prevention in the Process Industries, 2023, 81: 104946.

[117] 王信群, 王婷, 徐海顺, 等. BC粉体抑爆剂改性及抑制甲烷/空气混合物爆炸[J]. 化工学报, 2015, 66(12): 5171–5178.

[118] Yang K, Chen KF, Ji H, et al. Experimental study on the inhibition of methane/air explosion by modified attapulgite powder[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104574.

[119] Wang Z, Meng XB, Yan K, et al. Study on the inhibition of Al–Mg alloy dust explosion by modified Mg(OH)2[J]. Powder Technology, 2021, 384: 284–296.

[120] Wang FX, Jia JZ, Tian XY. Suppression of methane explosion in pipeline network by carbon dioxide–driven calcified montmorillonite powder[J]. Arabian Journal of Chemistry, 2022, 15(10): 104126.

[121] Wu Y, Meng XB, Zhang YS, et al. Experimental study on the suppression of coal dust explosion by silica aerogel[J]. Energy, 2023, 267: 126372.

[122] Zhao TL, Chen XK, Luo ZM, et al. Effect of N2 inerting on the inhibition of methane explosions by a multicomponent powder[J]. Fuel, 2023, 337: 127203.

[123] Liu B, Zhang YY, Xu KL, et al. Study on a new type of composite powder explosion inhibitor used to suppress underground coal dust explosion[J]. Applied Sciences, 2021, 11(18): 8512.

[124] 左前明, 程卫民, 邹冠贵, 等. 协同增效原理在煤尘抑爆剂中的应用实验[J]. 重庆大学学报, 2012, 35(01): 105–109+116.

[125] Zhang YS, Wu GG, Cai L, et al. Study on suppression of coal dust explosion by superfine NaHCO3/shell powder composite suppressant[J]. Powder Technology, 2021, 394: 35–43.

[126] Wang Y, Cheng YS, Yu MG, et al. Methane explosion suppression characteristics based on the NaHCO3/red–mud composite powders with core–shell structure[J]. Journal of Hazardous Materials, 2017, 335: 84–91.

[127] 关文玲, 杨天灿, 董呈杰, 等. 惰性介质对铝粉抑爆效果的试验研究[J]. 消防科学与技术, 2020, 39(05): 601–603+623.

[128] Yin HP, Dai HM. Flame inhibition of coal dust with different particle sizes by Al(H2PO2)3 and Al2O3[J]. Fuel, 2022, 326: 125001.

[129] Zhang TJ, Bi MS, Jiang HP, et al. Suppression of aluminum dust explosions by expandable graphite[J]. Powder Technology, 2020, 366: 52–62.

[130] Jiang HP, Bi MS, Gao W, et al. Inhibition of aluminum dust explosion by NaHCO3 with different particle size distributions[J]. Journal of Hazardous Materials, 2018, 344: 902–912.

[131] Huang DM, Wang XQ, Yang J. Influence of particle size and heating rate on decomposition of BC dry chemical fire extinguishing powders[J]. Particulate Science and Technology, 2015, 33(05): 488–493.

[132] 黄子超, 司荣军, 薛少谦. 抑爆粉剂浓度及粒度对瓦斯爆炸抑制效果的影响[J]. 中国安全生产科学技术, 2018, 14(04): 89–94.

[133] 王玉杰, 陈曦, 陈先锋, 等. 碳酸氢钠粉体粒径对铝粉火焰传播特性的影响[J]. 中国安全科学学报, 2016, 26(03): 53–58.

[134] Benedetto AD, Russo P, Amyotte PR, et al. Modelling the effect of particle size on dust explosions[J]. Chemical Engineering Science, 2009, 65(02): 772–779.

[135] Nakahara K, Yoshida A, Nishioka M. Experiments and numerical simulation on the suppression of explosion of propane/air mixture by water mist[J]. Combustion and Flame, 2021, 223: 192–201.

[136] Bu YJ, Amyotte PR, Li C, et al. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds[J]. Journal of Hazardous Materials, 2021, 404: 124119.

[137] Shi ZW, Zheng LG, Zhang JL, et al. Effect of initial pressure on methane/air deflagrations in the presence of NaHCO3 particles[J]. Fuel, 2022, 325(06): 124910.

[138] 王燕, 林森, 李忠, 等. 喷粉压力对KHCO3冷气溶胶甲烷抑爆效果影响研究[J]. 中国安全科学学报, 2021, 31(07): 70–75.

[139] 王亚磊, 郑立刚, 于水军, 等. NaHCO3分散状况对其抑制甲烷爆炸的影响研究[J]. 中国安全科学学报, 2018, 28(11): 80–85.

[140] Wang Y, Meng XQ, Ji WT, et al. The inhibition effect of gas–solid two–phase inhibitors on methane explosion[J]. Energies, 2019, 12(03): 398.

[141] Wang X, Zhang YS, Liu B, et al. Effectiveness and mechanism of carbamide/fly ash cenosphere with bilayer spherical shell structure as explosion suppressant of coal dust[J]. Journal of hazardous materials, 2019, 365: 555–564.

[142] 李孝斌, 张瑞杰, 崔沥巍, 等. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析[J]. 爆炸与冲击, 2020, 40(03): 13–23.

[143] 李孝斌, 张瑞杰, 孙婧雯, 等. 甲烷爆炸中尿素粉体浓度对典型自由基影响研究[J]. 安全与环境学报, 2023, 23(04): 1093–1100.

[144] 蒋新生, 杜扬, 严欣, 等. 地下储库油气爆炸及抑爆机理与技术研究[J]. 安全与环境学报, 2008, 44(02): 134–139.

[145] 何文浩, 郝朝瑜, 张亚超, 等. 硅藻土抑制瓦斯爆炸的微观机理分析[J]. 煤炭学报, 2022, 47(10): 3695–3703.

[146] 张庆利, 李孝斌, 张瑞杰, 等. 尿素抑制甲烷爆炸关键基元反应机理研究[J]. 消防科学与技术, 2022, 41(06): 732–735.

[147] Liu B, Xu KL, Zhang YY, et al. PAN dust explosion inhibition mechanisms of NaHCO3 and Al(OH)3[J]. Journal of Loss Prevention in the Process Industries, 2021, 73: 104619.

[148] Cao XY, Ren JJ, Bi MS, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360.

[149] Zhang SL, Bi MS, Jiang HP, et al. Synergistic inhibition of aluminum dust explosion by gas–solid inhibitors[J]. Journal of Loss Prevention in the Process Industries, 2021, 71: 104511.

[150] 邓军, 康付如, 吴长林, 等. 环保型硅胶泡沫阻燃抑烟及热分解特性[J]. 高分子材料科学与工程, 2018, 34(12): 90–94+100.

[151] 孟祥豹, 王俊峰, 张延松, 等. 惰性粉体对油页岩粉尘爆炸火焰的抑制性能和作用机理研究[J]. 爆炸与冲击, 2021, 41(10): 166–177.

[152] 王秋红, 闵锐, 王清峰. 3种阻燃粉体抑制锆粉云爆炸强度的效果和机理[J].华南理工大学学报(自然科学版), 2020, 48(08): 72–81+90.

[153] 金子钰, 肖玉玲, 张紫璇, 等. PC/硅氧烷复合材料的阻燃抑烟机理研究[J]. 火灾科学, 2021, 30(02): 80–91.

[154] 颜龙, 徐志胜, 徐彧, 等. 典型硼化合物与磷酸二氢铵协效阻燃松木的燃烧性能及热解动力学研究[J]. 中国安全生产科学技术, 2015, 11(03): 19–23.

[155] 夏煜, 程扬帆, 胡芳芳, 等. 典型固体抑爆剂对乙炔–空气的抑爆特性[J]. 高压物理学报, 2022, 36(06): 173–181.

[156] 高伟, 姜海鹏, 张田娇, 等. 粉尘燃爆抑制与泄放动力学机理研究进展[J]. 消防科学与技术, 2022, 41(10): 1329–1335.

[157] Yang W, Wang H, Zhuo QY, et al. Mechanism of water inhibiting gas outburst and the field experiment of coal seam infusion promoted by blasting[J]. Fuel, 2019, 251: 383–393.

[158] 江赛华, 黄裕斌, 游文杰. RPUF用rGO/SiO2气凝胶阻燃涂层制备及性能研究[J]. 中国安全科学学报, 2020, 30(09): 142–148.

[159] Eckhoff RK. Influence of dispersibility and coagulation on the dust explosion risk presented by powders consisting of nm–particles[J]. Powder Technology, 2013, 239: 223–230.

[160] 蔡闯, 陈先锋, 员亚龙, 等. 强点火作用下C3HF7对甲烷–空气爆炸的抑制[J]. 高压物理学报, 2020, 34(02): 110–117.

[161] Guo XX, Lu CY, Li YM, et al. Preparation and fire extinguishing mechanism of core–shell solid–liquid composite powder containing ammonium dihydrogen phosphate[J]. Powder Technology, 2023, 420: 118391.

[162] Li H, Yu ZM, Cao XH, et al. Chitosan modification and its synergism with clay to mitigate harmful algal blooms[J]. Environmental Technology & Innovation, 2023, 29: 103028.

[163] Benettayeb A, Ghosh S, Usman M, et al. Some well–known alginate and chitosan modifications used in adsorption: a review[J]. Water, 2022, 14(09): 1353.

[164] GB/T 6040, 红外光谱分析方法通则[S]. 北京: 国家市场监督管理总局, 中国国家标准化管理委员会, 2019.

[165] Agarwala UC, Nigam HL, Agrawal S. Infrared Spectroscopy of Molecules[M]. 2014.

[166] Xu ZH, Zhu Q, Bian JM. Preparation of a recyclable demulsifier for the treatment of emulsified oil wastewater by chitosan modification and sodium oleate grafting Fe3O4[J]. Journal of Environmental Chemical Engineering, 2021, 9(04): 105663.

[167] 刘丁玮, 王春荣, 赵明川, 等. 壳聚糖改性钠基膨润土稳定剂对重金属污染底泥的处理[J]. 环境工程学报, 2022, 16(12): 3906–3915.

[168] Li QZ, Wang K, Zheng YN, et al. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust[J]. Powder Technology, 2016, 292: 290–297.

[169] Fan RJ, Jiang Y, Li W, et al. Investigation of the physical and chemical effects of fire suppression powder NaHCO3 addition on methane–air flames[J]. Fuel, 2019, 257: 116048.

[170] Zhang CD, Li HC, Guo XX, et al. Experimental and theoretical studies on the effect of Al(OH)3 on the fire–extinguishing performance of superfine ABC dry powder[J]. Powder Technology, 2021, 393: 280–290.

[171] 徐建中, 武红娟, 武伟红, 等. 酚醛树脂/K2CO3复合阻燃剂对木材的阻燃处理及热性能研究[J]. 化学工程师, 2011, 25(08): 22–25+38.

[172] Jiang HP, Bi MS, Li B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion[J]. Journal of Hazardous Materials, 2019, 361: 273–282.

[173] Liu YL, Liu YN, Yang RJ. Polylactic acid flame–retarded by nano–compound of form II ammonium polyphosphate with montmorillonite[J]. Journal of Fire Sciences, 2021, 39(06): 073490412110254.

[174] 韩咚林, 邵宁, 李东亮, 等. 壳聚糖–聚磷酸铵阻燃改性薄片的制备及燃烧热解特性研究[J]. 中国烟草学报, 2018, 24(06): 26–33.

[175] Yu MG, Li SS, Zhai F, et al. Effects of volatile contents on the deflagration characteristics and soot formation of methane/coal volatiles hybrid explosion using reaction kinetics simulation[J]. Fuel, 2022, 319: 123767.

[176] Feldgun V, Karinski YS, Yankelevsky D. Some characteristics of an interior explosion within a room without venting[J]. Structural Engineering and Mechanics. 2011, 38: 633–649.

[177] 徐维铮, 吴卫国. 密闭空间内爆炸准静态压力理论计算研究[J]. 中国舰船研究, 2019, 14(05): 124–130.

[178] 徐维铮. 约束空间内爆炸场高精度数值计算及载荷特性研究[D]. 武汉理工大学, 2019.

[179] 王鑫, 张连生, 张明明, 等. 密闭空间TNT内爆炸准静态压力研究[J]. 兵器装备工程学报, 2020, 41(05): 188–192.

[180] Zhou JH, Li B, Ma DQ, et al. Suppression of nano–polymethyl methacrylate dust explosions by ABC powder[J]. Process Safety and Environmental Protection, 2019, 122: 144–152.

[181] Yu Y, Li YH, Zhang QW, et al. Experimental investigation of the inerting effect of crystalline II type Ammonium Polyphosphate on explosion characteristics of micron–size Acrylates Copolymer dust[J]. Journal of Hazardous Materials, 2018, 344: 558–565.

[182] Li PL, Huang P, Liu ZY, et al. Experimental study on vented explosion overpressure of methane/air mixtures in manhole[J]. Journal of Hazardous Materials, 2019, 374: 349–355.

[183] Akram M, Kishore VR, Kumar S. Laminar burning velocity of propane/CO2/N2–air mixtures at elevated temperatures[J]. Energy & Fuels, 2012, 26(09):5509–5518.

[184] 王岳, 雷宇, Eigenbrod C, 等. 湍流预混火焰中的浮力效应[J]. 工程热物理学报, 2004, 03: 527–530.

[185] Wang XT, Dai HM, Liang GQ, et al. Flame propagation characteristics of mixed pulverized coal at the atmosphere of gasification[J]. Fuel, 2021, 300(02–03): 120954.

[186] Su B, Luo ZM, Wang T, et al. Coupling analysis of the flame emission spectra and explosion characteristics of CH4/C2H6/air mixtures[J]. Energy & Fuels, 2019, 34(01): 920–928.

[187] 董清丽, 蒋勇, 邱榕. 基于浓度敏感性分析和遗传算法的甲烷燃烧机理简化与优化[J]. 火灾科学, 2014, 23(01): 41–49.

[188] Akrami S, Watanabe M, Ling TH, et al. High–pressure TiO2–II polymorph as an active photocatalyst for CO2 to CO conversion[J]. Applied Catalysis B: Environmental, 2021, 298: 120566.

[189] Yuan BH, He YL, Chen XF, et al. Flame and shock wave evolution characteristics of methane explosion in a closed horizontal pipeline filled with a three–dimensional mesh porous material[J]. Energy, 2022, 260: 125137.

[190] 李丹, 王双峰. 浮力效应对射流扩散火焰转捩特性影响的实验研究[J]. 空间科学学报, 2018, 38(02): 227–233.

[191] Yin HP, Dai HM, Liang GQ. Inhibition evaluation of magnesium hydroxide, aluminum hydroxide, and hydrotalcite on the flame propagation of coal dust[J]. Process Safety and Environmental Protection, 2022, 157: 443–457.

[192] 贾海林, 崔博, 焦振营, 等. 基于TG/DSC/MS技术的煤氧复合全过程及气体产物研究[J]. 煤炭学报, 2022, 47(10): 3704–3714.

[193] FZ/T 01160, 纺织品 聚苯硫醚纤维与聚四氟乙烯纤维混合物定量分析 差示扫描量热法(DSC)[S]. 北京: 中华人民共和国工业和信息化部, 2022.

[194] 韩刘杨, 韩向娜, 田兴玲, 等. 红外光谱和热重分析法评估三种加固剂对“小白礁Ⅰ号”考古木材微力学性能的影响[J]. 光谱学与光谱分析, 2022, 42(05): 1529–1534.

[195] 徐通模, 惠世恩. 燃烧学[M]. 北京: 机械工业出版社, 2010.

[196] Wang H, Dong YN, 郑超湳, 等. 同时活化二氧化碳和氨气用于催化氰基化反应[J]. 科学新闻, 2019, 557(02): 107.

[197] 王宏图, 周丽明, 胡国忠, 等. 尿素合成生产工艺过程火灾爆炸危险性分析[J]. 重庆大学学报, 2009, 32(05): 556–560+565.

[198] 于晓蕾. CO/NH3介质阻挡放电等离子体反应研究[D]. 大连理工大学, 2016.

[199] 陆国元. 有机化学[M]. 南京: 南京大学出版社, 2018.

[200] 安红. 化学工程与工艺专业实验[M]. 南京: 南京大学出版社, 2020.

[201] Li R, Li Q, Sun XY, et al. Removal of lead complexes by ferrous phosphate and iron phosphate: Unexpected favorable role of ferrous ions[J]. 2020, 392: 122509.

中图分类号:

 X932    

开放日期:

 2025-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式