论文中文题名: | 低照度图像增强算法研究 |
姓名: | |
学号: | 18207205060 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085208 |
学科名称: | 工学 - 工程 - 电子与通信工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-21 |
论文答辩日期: | 2021-06-05 |
论文外文题名: | Research on Low-illumination Image Enhancement Algorithm |
论文中文关键词: | |
论文外文关键词: | Low-light image enhancement ; Gamma correction ; Robust principal component analysis ; Denoising-Autoencoder |
论文中文摘要: |
低照度图像增强是一种通过增强图像整体或局部区域对比度来提高图像质量的重要技术,它能有效改善图像的视觉效果。然而,目前低照度图像增强技术在进行图像增强时仍存在三个问题:一是图像增强技术在增强复杂光照条件下的非均匀照度图像时,会出现过度增强和增强不足的问题,二是低照度图像的暗区域中存在噪声,图像增强技术在提高对比度的同时会放大噪声,三是图像增强技术在处理低信噪比图像时不能较好的处理同为高频的细节信息和噪声。因此,针对上述三个问题,提出了三种有效的低照度图像增强算法,主要研究内容及成果如下: (1)针对过度增强和增强不足的问题,提出一种基于信息熵的自适应伽马矫正算法。该算法利用伽马函数对图像直方图进行修改使其分布更均匀,以提高图像对比度。算法进一步将图像信息熵作为衡量直方图均匀程度的指标,求解其最大时对应的最优伽马值,并应用于伽马矫正,从而实现算法的自适应能力。实验结果表明,所提算法与其他六种经典的图像增强算法相比,在主观视觉和客观指标两个方面都有较好的效果。 (2)针对图像中噪声被放大的问题,提出一种基于鲁棒性主成分分析(Robust Principal Component Analysis,RPCA)的自适应增强算法。该算法通过RPCA分解将照度信息与噪声分离得到低秩分量和稀疏分量,并对低秩分量采用上述自适应伽马矫正算法提高图像对比度。所提算法充分考虑像素之间的空间关系,且对幅值较大的噪声有较强的鲁棒性。实验结果表明,所提算法与其他四种经典的图像增强算法相比,在主观视觉和客观指标两个方面都有较好的效果。 (3)针对低信噪比图像中存在大量噪声的问题,提出了一种基于降噪自编码网络的自适应增强算法。该算法以降噪自编码器为网络模型,选择RPCA分解模型中的稀疏分量作为训练集,将稀疏分量中同为高频的细节信息和噪声进行分离,实现噪声抑制,并通过分步训练进一步改善网络的噪声抑制效果。实验结果表明,所提算法与其他两种经典的降噪算法相比,在主观视觉和客观指标两个方面都有较好的效果。 |
论文外文摘要: |
Low illumination image enhancement is an important technology to improve image quality by enhancing the overall or partial area contrast of the whole or local area of the image, and it effectively improves the visual effect of the image. However, current low-illuminance images still have three main shortcomings that need to be solved: First, the complex lighting conditions make the image illuminance uneven, and the enhancement results will have over-enhancement or under-enhancement problems. Second, the interference information in the image will increase with the contrast. The increase of is magnified, and thirdly, the noise with larger amplitude will obscure the details of the image. In response to the above three problems, three low-light image enhancement algorithms are proposed. The main research contents and results are as follows: (1) In order to solve the problem of complex lighting conditions in the image, an adaptive gamma correction algorithm based on information entropy was proposed. The algorithm calculates the optimal parameters of gamma correction by maximizing the information entropy to realize the adaptive adjustment of image contrast, effectively avoiding the problems of over-enhancement and under-enhancement. In addition, the algorithm has higher operating efficiency and better real-time performance. According to experimental comparison and analysis, result show that compared with other six classic image enhancement algorithms, the proposed algorithm has better results in both subjective vision and objective indicators. (2) Aiming at the problem that the interference information in the image is amplified, an adaptive enhancement algorithm based on robust principal component analysis (RPCA) was proposed. The algorithm uses RPCA decomposition to separate the illuminance information and noise to obtain low-rank components and sparse components, and uses the above-mentioned adaptive gamma correction algorithm for low-rank components to improve image contrast. The proposed algorithm adequately considers the spatial relationship between pixels, and has strong robustness to noise with larger amplitude. According to experimental comparison and analysis, results show that, compared with the other four classic image enhancement algorithms, the proposed algorithm has better results in both subjective vision and objective indicators. (3) Aiming at the problem of a large amount of noise in low signal-to-noise ratio images, an adaptive enhancement algorithm based on denoising self-encoding network was proposed. The algorithm uses the denoising autoencoder as the network model, and selects the sparse components in the RPCA decomposition model as the training set to separates the detailed information and noise which belong to high-frequency components to realizes noise suppression, and further trains them through step-by-step training. Improve the noise suppression effect of the network. According to experimental comparison and analysis, results show that the proposed algorithm has better results in both subjective vision and objective indicators compared with the other two classic noise reduction algorithms. |
参考文献: |
[6]李金洪, 邹梅. 低照度CMOS图像传感器设计与实现[J]. 红外与激光工程, 2018, 47(07): 256-262. [7]张元涛, 柴孟阳, 孙德新, 刘银年. 全局快门sCMOS图像传感器数字TDI微光成像技术[J]. 光学学报, 2018, 38(09): 144-151. [12]李乐鹏, 孙水发, 夏冲, 等. 直方图均衡技术综述[J]. 计算机系统应用, 2014, 23(03): 1-8. [13]冈萨雷斯[美].数字图像处理(第三版)[M].电子工业出版社,2011. [14]田小平, 徐小京, 吴成茂. 基于LIP模型的低照度彩色图像增强新算法[J]. 西安邮电大学学报, 2015, 20(01): 9-13. [16]Land E H, McCann J J. Lightness and retinex theory[J]. Josa, 1971, 61(1): 1-11. [23]张红英, 朱恩弘, 吴亚东. 一种基于细节层分离的单曝光HDR图像生成算法[J]. 自动化学报, 2019, 45(11): 2159-2170. [25]李赓飞, 李桂菊, 韩广良,等. 亮通道先验Retinex对低照度图像的光照补偿[J]. 光学精密工程, 2018, 26(05): 1191-1200. [45]智宁, 毛善君, 李梅. 基于双伽马函数的煤矿井下低亮度图像增强算法[J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(01): 191-197. [53]Petro A B, Sbert C, Morel J M. Multiscale retinex[J]. Image Processing On Line, 2014: 71-88. [57]NASA, “Retinex image processing,” 2012. [Online]. Available: https://dragon.larc.nasa.gov/retinex/pao/news [58]Makhzani A, Frey B. K-sparse autoencoders[J]. arXiv preprint arXiv:1312.5663, 2013. |
中图分类号: | TP391 |
开放日期: | 2021-06-21 |