论文中文题名: | 基于景感生态理论的矿区生态修复 效果感知评价研究 |
姓名: | |
学号: | 22202230103 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 125600 |
学科名称: | 管理学 - 工程管理 |
学生类型: | 硕士 |
学位级别: | 工程管理硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 人因工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-18 |
论文答辩日期: | 2025-05-29 |
论文外文题名: | Research on Perception Evaluation of Ecological Restoration Effect in Mining Areas Based on Landscape Ecology Theory |
论文中文关键词: | |
论文外文关键词: | Landscape Ecology ; Neurological experiments ; Ecological restoration of mining areas ; Evaluation index system |
论文中文摘要: |
本研究以“双碳”目标为背景,聚焦矿区生态修复效能评估体系的创新构建,以W矿区为实证对象,探索景感生态学与神经科学融合的多模态评价范式。针对传统生态修复评价中主观性强、维度单一的问题,研究整合眼动追踪、脑电信号、生理指标与心理量表,构建“生理-心理-环境”联动的综合评价体系,揭示修复工程对人类感知的深层影响。 研究以W矿区修复前后的素材进行生态修复效果的感知评价实验对比发现,修复前得分为1.074,修复后得分为1.339,修复后的综合评价得分比修复前提高0.265,表明W煤矿的生态修复措施取得显著效果,表明修复措施对人的感知得分的提升显著。脑电特征(E1、E2、E3)和量表数据(BP、PCR)的标准化值显著提升,表明修复后被试者的心理状态更加放松和积极。E1从修复前的0.60提升至0.85,E2从0.50提升至0.72,E3从0.55提升至0.68,表明被试者的脑电活动趋于平稳,心理压力显著降低。BP(血压)和PCR(心理恢复能力)的标准化值分别从0.70和0.65提升至0.82和0.75,进一步验证被试者心理状态的改善。心率特征(SP、DP、HR)的标准化值有所提升,表明修复后被试者的生理状态更加稳定。HR从0.60提升至0.70,表明被试者的血氧饱和度提高,呼吸系统功能得到优化。眼动特征(EB1、EB2)的标准化值提升,表明修复后矿区景观对被试者的吸引力增强。EB1从0.40提升至0.55,EB2从0.45提升至0.60,表明被试者对矿区景观的关注度显著提高,景观设计更加符合人体工程学和审美需求。 针对W矿区生态修复状况依据景感的矿区生态修复模式从居民的生理状态、居民的心理状态以及矿区修复后吸引力三个方面提出优化建议,确保生态修复的可持续发展和综合效益,为W矿区的生态修复提供科学依据和实践指导。本研究将眼动、心率、脑电等生理数据引入矿区景感生态修复效果的感知评价,为景观修复效果提供更全面、科学的评估依据,为未来矿区修复设计提供科学依据,并为生态景观设计提供理论支持。 |
论文外文摘要: |
This study, set against the backdrop of China's "Dual Carbon" goals, focuses on innovating the evaluation system for ecological restoration effectiveness in mining areas. Using the W Mining Area as a case study, it explores a multimodal evaluation paradigm that integrates Sensescape Ecology and neuroscience. To address the limitations of traditional ecological restoration assessments—such as strong subjectivity and unidimensional metrics—the research combines eye-tracking, electroencephalogram (EEG) signals, physiological indicators, and psychological scales to construct a comprehensive "physiological-psychological-environmental" evaluation framework. This framework reveals the profound impact of restoration projects on human perception. A comparative perceptual evaluation of ecological restoration effects was conducted using pre- and post-restoration data from the W Mining Area. Results showed that the comprehensive evaluation score increased from 1.074 (pre-restoration) to 1.339 (post-restoration), marking a 0.265-point improvement, which demonstrates the significant efficacy of restoration measures in enhancing human perception. Key findings include: Neurophysiological improvements: Standardized values of EEG features (E1, E2, E3) and psychological metrics (BP, PCR) significantly increased. E1 rose from 0.60 to 0.85, E2 from 0.50 to 0.72, and E3 from 0.55 to 0.68, indicating stabilized brain activity and reduced psychological stress. Cardiovascular and respiratory optimization: Blood pressure (BP) improved from 0.70 to 0.82, and psychological recovery capacity (PCR) from 0.65 to 0.75. Heart rate features (SP, DP, HR) showed enhanced stability—SP increased from 0.65 to 0.78, DP from 0.55 to 0.65, and HR from 0.60 to 0.70—reflecting better cardiovascular and respiratory function. Enhanced visual engagement: Eye-tracking metrics (EB1, EB2) improved from 0.40 to 0.55 and 0.45 to 0.60, respectively, indicating heightened attention to restored landscapes and ergonomic-aesthetic alignment in design. Guided by the Sensescape Ecology framework, the study proposes actionable recommendations for the W Mining Area across three dimensions: residents' physiological health, psychological well-being, and post-restoration landscape attractiveness. These strategies aim to ensure sustainable development and holistic benefits. By integrating physiological data (e.g., eye movements, heart rate, EEG) into perceptual evaluations of ecological restoration, this research provides a scientifically robust and comprehensive assessment methodology. It offers both theoretical and practical guidance for future mining area restoration designs and ecological landscape planning. |
参考文献: |
[1]李勇, 高岚. 中国"碳中和"目标的实现路径与模式选择[J]. 华南农业大学学报(社会科学版), 2021, 20(05): 77-93. [2]彭建, 吕丹娜, 董建权, 等. 过程耦合与空间集成: 国土空间生态修复的景观生态学认知[J]. 自然资源学报, 2020, 35(01): 3-13. [3]宋晓波, 胡伯. 碳中和背景下煤炭行业低碳发展研究[J]. 中国煤炭, 2021, 47(07): 17-24. [4]李淑娟, 郑鑫, 隋玉正. 国内外生态修复效果评价研究进展[J]. 生态学报, 2021, 41(10): 4240-4249. [5]李超凡, 尹岩, 郗凤明等. 碳中和背景下矿山生态修复的文献计量分析[J]. 土壤通报, 2023, 54(04): 955-965. [6]常俊杰, 刘乐. 基于自然解决方案的矿山生态修复[J]. 科技创新与应用, 2022, 12(03): 107-109. [7]沈维明, 张星辉. 浅谈北京市废弃矿山生态修复技术与措施[J]. 水利水电技术, 2011, 42(01): 24-26. [8]陈进斌, 李林, 陈建宏, 等. 矿山生态修复中微生物技术的应用[J]. 能源与环境, 2020, (04): 102-103. [9]田占良. 碳中和视角下露天废弃矿山生态修复技术优化[J]. 能源与环保, 2022, 44(02): 29-34. [11]张竹村, 段然. 国内外城市生态修复效果评价研究进展[J]. 建设科技, 2016, (22): 60-63. [12]郎亮明, 徐涛, 刘国彬, 等. 农户生态修复行为与修复效果间的互馈效应研究——基于陕北地区调查数据的实证分析[J]. 干旱区资源与环境, 2018, 32(06): 57-63. [13]常江, Theo Koetter. 从采矿迹地到景观公园[J]. 煤炭学报, 2005, (03): 399-402. [14]关军洪, 郝培尧, 董丽, 等. 矿山废弃地生态修复研究进展[J]. 生态科学, 2017, 36(02): 193-200. [15]毕慧娟. 工矿废弃地的生态修复与景观设计——评《煤矿废弃地生态植被恢复与高效利用》[J]. 矿业研究与开发, 2020, 40(04): 173-174. [16]赵景柱. 关于生态文明建设与评价的理论思考[J]. 生态学报, 2013, 33(15): 4552-4555. [17]吴迪, 代方舟, 严岩, 等. 煤电一体化开发对锡林郭勒盟环境经济的影响[J]. 生态学报, 2011, 31(17): 5055-5060. [19]雷少刚, 张周爱, 陈航, 等. 草原煤电基地景观生态恢复技术策略[J]. 煤炭学报, 2019, 44(12): 3662-3669. [20]张轶群, 吴迪, 付晓, 等. 景感生态学在煤电基地生态建设与管理中的应用[J]. 生态学报, 2020, 40(22): 8063-8074. [21]唐立娜, 潘磊, 邱全毅, 等. 城市环境总体规划研究重点及保障措施分析[J]. 环境保护, 2015, 43(22): 21-24. [28]朱明清, 李喜东, 陈庆文, 等. 湿地生态环境监测系统设计与实现[J]. 自动化技术与应用, 2017, 36(10): 121-123+153. [36]傅伯杰, 刘世梁, 马克明. 生态系统综合评价的内容与方法[J]. 生态学报, 2001, (11): 1885-1892. [37]江源通, 田野, 郑拴宁. 海岛型城市生态安全格局研究——以平潭岛为例[J]. 生态学报, 2018, 38(03): 769-777. [38]陈康. 矿山生态修复的实践难点与突破[J]. 石材, 2025, (03): 31-33. [39]李若愚, 张伟. 基于生态系统价值的多目标优化采煤塌陷地生态修复研究[J]. 煤矿现代化, 2024, 33(05): 5-8. [40]王睿, 张伟. 采煤塌陷区湿地生态修复与景观再生设计研究——以徐州市潘安湖为例[J]. 能源与环保, 2024, 46(09): 71-76+83. [41]张建民, 付晓, 李全生, 等. 大型煤电基地开发生态累积效应及定量分析方法研究[J]. 生态学报, 2022, 42(08): 3066-3081. [42]潘叶, 王腊春, 张燕. 基于生态价值的幕府山采矿废弃地修复效果评估[J]. 水土保持研究, 2019, 26(02): 180-186. [43]潘叶, 张燕. 矿山废弃地生态修复效益评价研究——以南京幕府山为例[J]. 中国水土保持, 2016(05):61-65. [44]李积普, 庄小静, 谢红彬. 基于模糊综合评价的福建紫金山国家矿山公园综合效益分析[J]. 山西师范大学学报(自然科学版), 2021, 35(02): 114-120. [45]顾建伟, 高洁, 刘一兵, 等. “双碳”目标下我国风光水火储多能互补标准体系研究[J]. 中国标准化, 2025, (06): 77-86. [46]王江萍, 张毅川. 从废弃地到优质地: 城郊白垩土矿业废弃地的生态恢复与景观重建[J]. 中国园林, 2015, 31(04): 20-24. [47]韩冬. 垃圾填埋场再生景观评价研究[D]. 浙江农林大学, 2019. [62]姜耿, 赵春临. 基于EEG的脑机接口发展综述[J]. 计算机测量与控制, 2022, 30(07): 1-8. [64]高晓卿, 王永跃, 葛列众. 眼动技术与脑电技术的结合——一种认知研究新方法[J]. 人类工效学, 2005, (01): 36-37+44. [66]王崴, 赵敏睿, 高虹霓, 等. 基于脑电和眼动信号的人机交互意图识别[J]. 航空学报, 2021, 42(02): 292-302. [67]史建成. 北美环境美学的起源与启示[J]. 旅游学刊, 2019, 34(12): 98-108. [68]Rock I, Harris C S. Vision and touch[J]. Scientific American, 1967, 216(5): 96-107. [69]唐立娜,欧阳静怡,徐烨,等.基于景感生态学对生态修复的再思考[J].生态学报,2022,42(04):1639-1644. [70]刘德成,周亚伟.城市生态修复理念下的废弃矿坑公园景观重塑研究[J].环境生态学,2022,4(01):37-41+70. [71]陈绍杰,张立波,李振华,等.采煤沉陷区土地建筑利用研究进展与展望[J].绿色矿山,2023,1(01):101-118. [82]袁晓梅. 中国传统园林植物造景的声音美意匠[J]. 中国园林, 2015, 31(5): 58-63. [84]石龙宇, 赵会兵, 郑拴宁, 等. 城乡交错带景感生态规划的基本思路与实现[J]. 生态学报, 2017, 37(06): 2126-2133. [85]李阳. 奥林匹克森林公园公共广播系统设计[J]. 智能建筑, 2009, (11): 71-74. [86]方智果, 宋昆, 叶青. 芦原义信街道宽高比理论之再思考——基于“近人尺度”视角的街道空间研究[J]. 新建筑, 2014, (05): 136-140. [87]黄汝锦. 城市森林生态游览区生态修复与景观设计分析[J]. 南方农业, 2020, 14(06): 160-164. [94]袁波, 林进, 何川. 基于感知维度的城市生态公园设计研究[J]. 长沙理工大学学报(自然科学版), 2022, 19(03): 129-136. [99]廖八根, 罗兴华. 心境状态量表监测运动疲劳的评价研究[J]. 北京体育大学学报, 2004, (08): 1068-1069+1077. [100]张万勇. 简式POMS量表对体育锻炼女大学生心境状态的适用性评价[J]. 西安体育学院学报, 2009, 26(04): 508-512. [106]迟松, 林文娟. 简明心境量表(BPOMS)的初步修订[J]. 中国心理卫生杂志, 2003, (11): 768-770+767. [108]刘天娇, 马锦飞. 高速公路驾驶员主动疲劳的脑电检测分析[J]. 中国安全科学学报, 2018, 28(10): 13-18. [109]裴玉龙, 金英群, 陈贺飞. 基于脑电信号分析的不同年龄驾驶人疲劳特性[J]. 中国公路学报, 2018, 31(04): 59-65+77. |
中图分类号: | X826 |
开放日期: | 2025-06-24 |