- 无标题文档
查看论文信息

论文中文题名:

 白垩系砂岩立井冻结壁解冻过程蠕变力学特性及稳定性研究    

姓名:

 李祖勇    

学号:

 18104053006    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0814    

学科名称:

 工学 - 土木工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 岩土力学与工程    

第一导师姓名:

 杨更社    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-05-27    

论文外文题名:

 Study on creep mechanical properties and stability of the frozen wall of Cretaceous sandstone shaft during thawing process    

论文中文关键词:

 白垩系砂岩 ; 解冻过程 ; 蠕变特性 ; 分数阶理论 ; 稳定性评价    

论文外文关键词:

 Cretaceous sandstone ; Thawing process ; Creep properties ; Fractional order theory ; Stability evaluation    

论文中文摘要:

随着我国对煤炭资源需求的进一步增加,国家能源战略逐渐向西部转移。由于东西部地区的差异性,西部地区矿井通常需要穿越厚度较大的软岩地层,冻结法以其独特的优势被广泛应用。而在立井开挖完成后,冻结壁会处于一定时间的解冻状态,在长期荷载作用下冻结壁可能会产生较大变形造成井壁失稳破裂。本文针对我国西部地区立井冻结壁软岩解冻过程蠕变力学特性和冻结壁稳定性的关键问题,以甘肃新庄煤矿回风立井冻结工程为背景,以深厚软岩地层中的白垩系砂岩为研究对象,采用理论分析、室内试验、模型试验和数值模拟相结合的方法,研究白垩系砂岩在解冻过程中的蠕变力学特性及其损伤问题,对立井冻结壁在长期荷载作用下的稳定性进行评价。主要研究内容及结论如下:

(1)通过对白垩系砂岩的宏微观结构特征及其物理参数进行深入分析,揭示了白垩系地层水稳定性差的原因;通过测定白垩系砂岩在解冻条件下的热物理参数,系统掌握砂岩在解冻过程中的热传递规律;开展了白垩系砂岩解冻条件下的单轴和三轴压缩试验,系统分析了白垩系砂岩解冻过程中的力学特性变化规律;通过核磁共振技术探究了白垩系砂岩经过低温处理后内部水的赋存状态,分析砂岩破坏与未冻水的关系,建立了白垩系砂岩的二元介质本构模型。

(2)通过开展白垩系砂岩解冻过程蠕变试验,得到相应的蠕变应变-时间曲线、应变速率-时间曲线。经研究发现白垩系砂岩解冻条件下蠕变试验呈现出明显的衰减蠕变阶段、稳态蠕变阶段和加速蠕变阶段。在衰减蠕变阶段产生瞬时变形,持续较短时间后进入稳态蠕变阶段,此时蠕变速率较低,砂岩变形较小。随着解冻温度的升高,白垩系砂岩的蠕变行为存在明显的加速阶段,此时砂岩变形较大且速率较快。通过多种方法相互印证最终确定出砂岩的长期强度值。

(3)建立了白垩系砂岩解冻过程蠕变损伤模型。通过对白垩系砂岩解冻过程蠕变试验结果分析,发现砂岩的蠕变破坏与未冻水含量密切相关。在解冻过程中白垩系砂岩的未冻水含量逐渐增加,并且砂岩蠕变过程中存在压融现象,在温度和压融双重作用下使得砂岩内部未冻水含量增多,两者与未冻水含量的变化均呈正相关关系,但是并非简单的线性关系。因此引入分数阶理论,建立相应的蠕变损伤模型,揭示了白垩系砂岩解冻过程中在长期荷载作用下的蠕变破坏规律。

(4)开展室内相似模型试验和数值模拟分析,对白垩系砂岩冻结壁的稳定性进行了评价。根据工程实际情况结合室内试验条件确定出模型试验的相似比,应用相似理论原理确定出内摩擦角、重度、应变、应力、弹性模量、粘聚力和作用力等多个物理力学参数的理论值,按照相似材料选取原则确定出材料的成分,通过正交试验得到相似材料的配比。以新庄煤矿回风立井白垩系洛河组中粒砂岩层为模拟对象,根据相似比制作出立井井筒模型,根据地层参数确定出荷载设计值的大小,结合数据采集系统、信息处理系统和环境系统测试了相似材料解冻过程中的蠕变变形。基于ABAQUS软件对蠕变损伤方程进行二次开发,通过数值计算方法模拟冻结壁的解冻过程,对立井冻结壁在长期荷载作用下的稳定性作出了评价。

论文外文摘要:

With the further increase of China's demand for coal resources, the national energy strategy is gradually transferred to Western China. Due to the differences between the eastern and western regions, the mines in the western region usually need to pass through thick soft rock formations. Freezing method is widely used with its unique advantages. After the excavation of the shaft is completed, the frozen wall will be in a thawed state for a long time. Under the long-term load, the frozen wall may produce large deformation, resulting in instability and rupture of the well wall. This paper addresses the key issues of the creep mechanical properties and the stability of the frozen wall during the thawing process of the frozen wall soft rock in the western region of China. The Cretaceous sandstone in the deep soft rock stratum is selected as the research object based on the freezing project of the vertical shaft of Xinzhuang Coal Mine in Gansu Province. The creep mechanical properties and damage of Cretaceous sandstone during thawing are studied by combining theoretical analysis, laboratory test, model test and numerical simulation. The stability of the frozen wall of the vertical shaft under long-term loading is evaluated. The main research contents and conclusions are as follows:

(1) The reasons for the poor stability of Cretaceous formation water are revealed by in-depth analysis of the macro-structural and micro-structural characteristics and physical parameters of the Cretaceous sandstone. By measuring the thermophysical parameters of the Cretaceous sandstone under thawing conditions, the heat transfer law of the sandstone during the thawing process was systematically mastered. By carrying out uniaxial and triaxial compression tests under the thawing conditions of Cretaceous sandstone, the changing law of mechanical properties of Cretaceous sandstone during thawing process was systematically analyzed. The occurrence state of internal water in Cretaceous sandstone after low temperature treatment was explored by nuclear magnetic resonance technology. By analyzing the relationship between sandstone failure and unfrozen water, a binary medium constitutive model of Cretaceous sandstone is established. By analyzing the relationship between sandstone failure and unfrozen water, a binary medium constitutive model of Cretaceous sandstone is established.

(2) The corresponding creep strain-time curve and strain rate-time curve were obtained by carrying out the creep test during the thawing process of the Cretaceous sandstone. The study found that the creep test under the thawing condition of Cretaceous sandstone showed obvious attenuation creep stage, steady creep stage and accelerated creep stage. Transient deformation occurs during the decay creep stage. After a short period of time, it enters the steady-state creep stage, where the creep rate is low and the sandstone deformation is small. With the increase of temperature, the creep behavior of Cretaceous sandstone has an obvious acceleration stage, where the deformation of sandstone is larger and the rate is faster. The long-term strength value of the sandstone is finally determined through a variety of methods to verify each other.

(3) A creep damage model of Cretaceous sandstone during thawing is established. By analyzing the creep test results of the Cretaceous sandstone during thawing, it is found that the creep failure of the sandstone is closely related to the unfrozen water content. The unfrozen water content of Cretaceous sandstones increases gradually during the thawing process. And there is pressure melting phenomenon in the sandstone creep process. Under the dual action of temperature and pressure, the unfrozen water content in the sandstone increases. Both are positively correlated with the change of unfrozen water content, but it is not a simple linear relationship. Therefore, the fractional-order theoretical zone was introduced to establish the corresponding creep damage model, which revealed the creep failure law of Cretaceous sandstone under long-term load during the thawing process.

(4) The indoor similarity model test and numerical simulation analysis were carried out to evaluate the stability of the frozen wall of Cretaceous sandstone. The similarity ratio of the model test is determined according to the actual situation of the project and the laboratory test conditions. The theoretical values of several physical and mechanical parameters are determined by applying similarity theory, such as internal friction angle, gravity, strain, stress, elastic modulus, cohesion and acting force. The composition of the material is determined according to the principle of selecting similar materials. The ratio of similar materials was obtained by orthogonal test. The Cretaceous Luohe Formation medium-grained sandstone in the vertical shaft of Xinzhuang Coal Mine is used as the simulation object. According to the similarity ratio, the vertical shaft model is made. Determine the size of the attached load according to the stratum parameters. Combined with data acquisition system, information processing system and environmental system, the creep deformation of similar materials during thawing is tested. The secondary development of the creep damage equation was carried out based on ABAQUS software. The thawing process of the frozen wall is simulated by numerical calculation method. The stability of the frozen wall of vertical shaft under long-term load is evaluated.

参考文献:

[1]胡省三, 成玉琪. 21世纪前期煤炭科技重点发展领域探讨[J]. 煤炭学报, 2005, 30(1): l-7.

[2]崔广心. 21世纪前期我国煤炭工业研究的新领域探讨[J]. 采矿与安全工程学报, 2006, 20(02): 133-136.

[3]张菲菲, 刘刚, 沈镭. 中国区域经济与资源丰度相关性研究[J]. 中国人口资源与环境, 2007, 17(04): 19-24.

[4]Cui Guangxin, Yang Weihao. Stress Analysis on Freezing Pipes by Modeling Test [C]// Proceeding of 6th International Symposium on Ground Freezing. 1991, 219-223.

[5]Cheng Guodong, Ma Wei. A Research Review of International Permafrost Engineering-5th International Symposium on Permafrost Engineering[J]. Journal Glaciology and Geocryology, 2003, 25(3): 303-311.

[6]Kozo Sugihara, Hisaya Yoshioka, Hiroya Matsui. Preliminary results of a study on the responses of sedimentary rocks to shafts excavation[J]. Engineering Geology, 1993, 35(3-4): 223-228.

[7]马巍. 中国地层土冻结技术研究的回顾与展望(英文)[J]. 冰川冻土, 2001, 23(03): 218-224.

[8]杨更社, 奚家米. 煤矿立井冻结设计理论的研究现状与展望分析[J]. 地下空间与工程学报, 2010, 6(03): 627-635.

[9]Du Yan, Xie Mowen, Jiang Yujing, et al. Experimental Rock Stability Assessment Using the Frozen-Thawing Test[J]. Rock Mech Rock Eng, 2017, 50(4): 1049-1053.

[10]Cai Chengzheng, Li Gensheng, Huang Zhongwei, et al. Rock Pore Structure Damage Due to Freeze During Liquid Nitrogen Fracturing[J]. Arab J Sci Eng, 2014, 39(12): 9249-9257.

[11]杨更社, 张全胜, 蒲毅彬. 冻融条件下岩石损伤扩展特性研究(英文)[J]. 岩土工程学报, 2004, 16(06): 838-842.

[12]杨更社, 张全胜, 蒲毅彬. 冻结温度影响下岩石细观损伤演化CT扫描[J]. 长安大学学报(自然科学版), 2004, 6(06): 40-42+46.

[13]Lv Zhitao, Xia Caichu, Li Qiang, et al. Empirical Frost Heave Model for Saturated Rock Under Uniform and Unidirectional Freezing Conditions[J]. Rock Mech Rock Eng, 2019, 52(3): 955-963.

[14]Zhou Keping, Li Bin, Li Jielin, et al. Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment[J]. T Nonferr Metal Soc, 2015, 25(4): 1254-1261.

[15]Lv Zhitao, Xia Caichu, Li, Qiang. Experimental and numerical study on frost heave of saturated rock under uniform freezing conditions[J]. J Geophys Eng, 2018, 15(2): 593-612.

[16]刘泉声, 康永水, 刘小燕. 冻结岩体单裂隙应力场分析及热-力耦合模拟[J]. 岩石力学与工程学报, 2011, 30(02): 217-223.

[17]黄达, 黄润秋, 张永兴. 粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(02): 245-255.

[18]唐礼忠, 朱俊, 刘涛, 等. 基于颗粒流的矽卡岩静态加载速率效应研究[J]. 武汉理工大学学报, 2013, 35(06): 101-106.

[19]Lv Zhitao, Xia Caichu, Wang Yuesong, et al. Frost heave and freezing processes of saturated rock with an open crack under different freezing conditions[J]. Front Struct Civ Eng, 2020, 14: 947-960.

[20]夏才初, 王岳嵩, 郑金龙, 等. 裂隙岩体不均匀冻胀性研究[J]. 岩土力学, 2020, 41(04): 1161-1168.

[21]贾海梁, 韩力, 孙强, 等. 微波照射冻结石英砂岩热融软化特性及损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(09): 1884-1893.

[22]乔趁, 王宇, 宋正阳, 等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(08): 2141-2150.

[23]单仁亮, 白瑶, 孙鹏飞, 等. 裂隙红砂岩冻胀力特性试验研究[J]. 煤炭学报, 2019, 44(06): 1742-1752.

[24]张功, 刘波, 马永君, 等. 砂质泥岩人工冻结力学特性的单轴声发射研究[J]. 地下空间与工程学报, 2019, 15(03): 699-707.

[25]吕志涛, 夏才初, 李强, 等. 单向冻结时开放条件下饱和砂岩冻胀试验及THM耦合冻胀模型[J]. 岩土工程学报, 2019, 41(08): 1435-1444.

[26]荣腾龙, 申艳军, 杨更社, 等. 冻融过程中岩石内部热传导弛豫特性研究[J]. 采矿与安全工程学报, 2019, 36(01): 207-214.

[27]蒋钰峰, 吴光, 刘芳. 冻融循环条件下碳质千枚岩物理力学性质研究[J]. 水文地质工程地质, 2018, 45(06): 114-121.

[28]Yavuz H, Altindag R, Sarac S, et al. Estimating the index properties of deteriorated carbonate rocks due to freeze–thaw and thermal shock weathering[J]. Int J Rock Mech Min, 2006, 43(5): 767-775.

[29]Bayram F. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J]. Cold Reg Sci Technol, 2012, 83(12): 98-102.

[30]Kang Yongshui, Hou Congcong, Liu Bin, et al. Frost Deformation and a Quasi-Elastic-Plastic-Creep Constitutive Model for Isotropic Freezing Rock[J]. Int J Geomech, 2020, 20(8).

[31]Chen Yanlong, Wu Peng, Yu Qing, et al. Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope[J]. Adv Mater Sci Eng, 2017.

[32]Huang Shibing, Liu Quansheng, Liu Yanzhang, et al. Freezing Strain Model for Estimating the Unfrozen Water Content of Saturated Rock under Low Temperature[J]. Int J Geomech, 2018, 18(2).

[33]Mu Jianqiao, Pei Xiangjun, Huang Runqiu, et al. Degradation characteristics of shear strength of joints in three rock types due to cyclic freezing and thawing[J]. Cold Reg Sci Technol, 2017, 138: 91-97.

[34]Liu Q., Chen W., Guo J.K., Li R.F., et al. Fractional Stress Relaxation Model of Rock Freeze-Thaw Damage[J]. Adv Mater Sci Eng, 2021.

[35]Liu Chuanju, Wang Daguo, Wang Zhixiu, et al. Dynamic splitting tensile test of granite under freeze-thaw weathering[J], Soil Dyn Earthq Eng, 2021, 140.

[36]Yuan Wenhua, Chen Changyi. Experimental Study on Mechanical Characteristics of Freeze-Thaw Damage of Fractured Rock Mass and Its Failure Mechanism[J]. Fresen Environ Bull, 2021, 30(10): 11388-11394.

[37]Luo Xuedong, Jiang Nan, Fan Xinyu, et al. Effects of freeze-thaw on the determination and application of parameters of slope rock mass in cold regions[J]. Cold Reg Sci Technol, 2015, 110: 32-37.

[38]Jiang Haibo, Li Keni, Jin Jin. The variation characteristics of micro-pore structures of underground rocks in cold regions subject to freezing and thawing cycles[J]. Arab J Geosci, 2020, 13(1).

[39]Tomanovic Z., Miladinovic B., Zivaljevic, S., et al. Criteria for defining the required duration of a creep test[J]. Can Geotech J, 2015, 52(7): 883-889.

[40]Hashiba K., Fukui K. Twenty-Year Creep Test with Tuff under Uniaxial Compression[J]. Geotech Test J, 2020, 43(3): 800-808.

[41]Mavko Gary, Saxena Nishank. Rock-physics models for heterogeneous creeping rocks and viscous fluids[J]. Geophysics, 2016, 81(4): D427-D440.

[42]Firme PALP, Brandao NB, Roehl D. Enhanced double-mechanism creep laws for salt rocks[J]. Acta Geotechnica, 2018, 13(6): 1329-1340.

[43]Wang Zhen, Gu Linlin, Zhang Qingzhao, et al. Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions[J]. Int J Earth Sci, 2020, 109(3): 945-958.

[44]Liu H Z, Xie H Q, He J D, et al. Nonlinear creep damage constitutive model for soft rocks[J]. Mech Time-Depend Mat, 2017, 21(1): 73-96.

[45]Wu Fei, Chen Jie, Zou Quanle. A nonlinear creep damage model for salt rock[J]. Int J Damage Mech, 2018, 28(5): 758-771.

[46]Karev V. I., Kilmov D. M., Kovalenko Y. F., et al. Experimental Study of Rock Creep under True Triaxial Loading[J]. Mechanics of Solids, 2019, 54(8): 1151-1156.

[47]Hu Bo, Yang Shengqi, Xu Peng, et al. Cyclic loading-unloading creep behavior of composite layered specimens[J]. Acta Geophys, 2019, 67(2): 449-464.

[48]Yang Wendong, Duan Kang, Zhang Qiangyong, et al. In situ creep tests on the long-term shear behaviors of a fault located at the dam foundation of Dagangshan hydropower station, China[J]. Energy Sci Eng, 2020, 8(1): 216-235.

[49]Luo Zuosen, Li Jianlin, Wang Lehua, et al. Study on the Creep Characteristics of Sandstone under Coupled Stress-water Pressure[J]. Period Polytech-Civ, 2019, 63(4): 1038-1051.

[50]Wang Xingang, Yin Yueping, Wang jiading, et al. A nonstationary parameter model for the sandstone creep tests[J]. Landslides, 2018, 15(7): 1377-1389.

[51]Gunther R.M., Salzer K., Popp T., et al. Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling[J]. Rock Mech Rock Eng, 2015, 48(6): 2603-2613.

[52]Liu Z.B., Xie S.Y., Shao J.F., et al. Multi-step triaxial compressive creep behaviour and induced gas permeability change of clay-rich rock[J]. Geotechnique, 2018, 68(4): 281-289.

[53]Andargoli Mohammad Bagher Eslami, Shahriar Kurosh, amezanzadeh Ahmad, et al. The analysis of dates obtained from long-term creep tests to determine creep coefficients of rock salt[J]. B Eng Geol Environ, 2019, 78(3): 1617-1629.

[54]王宇, 艾芊, 李建林, 等. 考虑不同影响因素的砂岩损伤特征及其卸荷破坏细观特性研究[J]. 岩土力学, 2019, 40(04): 1341-1350.

[55]张强勇, 张龙云, 向文, 等. 考虑温度效应的片麻状花岗岩三轴蠕变试验研究[J]. 岩土力学, 2017, 38(09): 2507-2514.

[56]王青元, 刘杰, 王培涛, 等. 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学, 2020, 41(03): 781-788+798.

[57]苏荣华, 刘晓林, 沈洪爽. 周期冲击扰动下粉砂岩单轴蠕变特性研究[J]. 应用基础与工程科学学报, 2018, 26(06): 1327-1337.

[58]黄万朋, 孙远翔, 陈绍杰. 岩石蠕变扰动效应理论及其在深地动压工程支护中的应用[J]. 岩土工程学报, 2021, 43(09): 1621-1630.

[59]马丹, 段宏宇, 张吉雄, 等. 断层破碎带岩体突水灾害的蠕变-冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报, 2021, 40(09): 1751-1763.

[60]刘之喜, 赵光明, 孟祥瑞, 等. 基于线性储能规律的红砂岩蠕变能量演化分析方法[J]. 中南大学学报(自然科学版), 2021, 52(08): 2748-2760.

[61]陈英, 谢辉, 杨俊, 等. 真实水压作用下裂隙大理岩蠕变特性试验研究[J]. 工程科学与技术, 2021, 53(04): 149-157.

[62]经纬, 郭瑞, 杨仁树, 等. 考虑岩石流变及应变软化的深部巷道围岩变形理论分析[J]. 采矿与安全工程学报, 2021, 38(03): 538-546.

[63]李晓照, 贾亚星, 张骐烁, 等. 脆性岩石蠕变裂纹成核宏细观力学机理研究[J]. 力学学报, 2021, 53(04): 1059-1069.

[64]韩钢, 侯靖, 周辉, 等. 层间错动带剪切蠕变试验及蠕变模型研究[J]. 岩石力学与工程学报, 2021, 40(05): 958-971.

[65]李福林, 杨健, 刘卫群, 等. 单轴压缩条件下泥岩加载速率变化效应研究[J]. 岩土力学, 2021, 42(02): 369-378.

[66]刘德峰, 刘鹏涛, 张臻悦, 等. 轴压水压耦合作用下裂隙砂岩蠕变特性[J]. 工程科学与技术, 2021, 53(01): 94-103.

[67]Li L., Xu W.Y., Wang H.L., et al. Permeability Evolution of Granite Gneiss During Triaxial Creep Tests[J]. Rock Mech Rock Eng, 2016, 49(9): 3455-3462.

[68]Liu Yang, Liu Changwu, Kang Yaming, et al. Experimental research on creep properties of limestone under fluid-solid coupling[J]. Environ Earth Sci, 2015, 73(1): 7011-7018.

[69]Zhang Y., Liu Z.B., Xu W.Y., et al. Change in the permeability of clastic rock during multi-loading triaxial compressive creep tests[J]. Geotech Lett, 2015, 5(3): 167-172.

[70]Jia C., Yu J., Zuo J., et al. The creep behaviour and permeability evolution of breccia lava in triaxial creep tests[J]. Geotech Lett, 2019, 9(2): 94-98.

[71]Zhu Wancheng, Li Shaohua, Li Shuai, et al. Influence of Dynamic Disturbance on the Creep of Sandstone: An Experimental Study[J]. Rock Mech Rock Eng, 2019, 52 (4): 1023-1039.

[72]Kumsar Halil, Aydan Omer, Tano Hisataka, et al. An Integrated Geomechanical Investigation, Multi-Parameter Monitoring and Analyses of Babadag-Gundogdu Creep-like Landslide[J]. Rock Mech Rock Eng, 2016, 49(6): 2277-2299.

[73]龚囱, 赵坤, 包涵, 等. 红砂岩蠕变破坏声发射震源演化及其分形特征[J]. 岩土力学, 2021, 42(10): 2683-2695.

[74]陈国庆, 万亿, 孙祥, 等. 不同温差冻融后砂岩蠕变特性及分数阶损伤模型研究[J]. 岩石力学与工程学报, 2021, 40(10): 1962-1975.

[75]万亿, 陈国庆, 孙祥, 等. 冻融后不同含水率红砂岩三轴蠕变特性及损伤模型研究[J]. 岩土工程学报, 2021, 43(08): 1463-1472.

[76]Li Feng, Wang Xuan, Shi Binbin, et al. Measurements of mechanical properties of discontinuities by rheological tests. J Optoelectron Adv M, 2016, 18(3-4): 407-413.

[77]Wang Junbao, Zhang Qiang, Song Zhanping, et al. Creep properties and damage constitutive model of salt rock under uniaxial compression[J]. Int J Damage Mech, 2019, 29(6): 902-922.

[78]Wu Fei, Gao Renbo, Zou Quanle, et al. Long-term strength determination and nonlinear creep damage constitutive model of salt rock based on multistage creep test: Implications for underground natural gas storage in salt cavern[J]. Energy Sci Eng, 2020, 8(5): 1592-1603.

[79]Hou Roubin, Zhang Kai, Tao Jing. Effects of Initial Damage on Time-Dependent Behavior of Sandstone in Uniaxial Compressive Creep Test[J]. Arch Min Sci, 2019, 64(4): 687-707.

[80]张龙云, 张强勇, 李术才, 等. 硬脆性岩石卸荷流变试验及长期强度研究[J]. 煤炭学报, 2015, 40(10): 2399-2407.

[81]王军保, 刘新荣, 宋战平, 等. 基于反S函数的盐岩单轴压缩全过程蠕变模型[J]. 岩石力学与工程学报, 2018, 37(11): 2446-2459.

[82]王青元, 朱万成, 刘洪磊, 等. 单轴压缩下绿砂岩长期强度的尺寸效应研究[J]. 岩土力学, 2016, 37(04): 981-990.

[83]张玉, 金培杰, 徐卫亚, 等. 坝基碎屑岩三轴蠕变特性及长期强度试验研究[J]. 岩土力学, 2016, 37(05): 1291-1300.

[84]刘新喜, 李盛南, 周炎明, 等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报, 2020, 39(01): 138-146.

[85]Tang Hao, Wang Dongpo, Huang Runqiu, et al. A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics[J]. B Eng Geol Environ, 2018, 77(1): 375-383.

[86]Wang Junbao, Liu Xinrong, Song Zhanping, et al. An improved Maxwell creep model for salt rock[J]. Geomech Eng, 2015, 9 (4): 499-511.

[87]Wang Junbao, Liu Xinrong, Liu Xiaojun, et al. Creep properties and damage model for salt rock under low-frequency cyclic loading[J]. Geomech Eng, 2014, 7(5): 569-587.

[88]Hashiba K., Fukui K. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation[J]. Rock Mech Rock Eng, 2016, 49(7): 2569-2580.

[89]Wu L.Z., Li S.H., Sun P., et al. Shear Creep Tests on Fissured Mudstone and an Improved Time-Dependent Model[J]. Pure Appl Geophys, 2019, 176(11): 4797-4808.

[90]刘振, 杨圣奇, 柏正林, 等. 循环加卸载下闪长玢岩蠕变特性及损伤本构模型[J]. 工程科学学报, 2022, 44(01): 143-151.

[91]赵晨阳, 雷明锋, 贾朝军, 等. 含软弱结构面岩体蠕变力学模型[J]. 中南大学学报(自然科学版), 2021, 52(10): 3541-3549.

[92]孙晓明, 缪澄宇, 姜铭, 等. 基于改进西原模型的不同含水率砂岩蠕变实验及理论研究[J]. 岩石力学与工程学报, 2021, 40(12): 2411-2420.

[93]张亮亮, 王晓健. 考虑黏弹塑性应变分离的岩石复合蠕变模型研究[J]. 中南大学学报(自然科学版), 2021, 52(05): 1655-1665.

[94]林韩祥, 张强勇, 张龙云, 等. 大埋深隧洞泥质粉砂岩的三轴蠕变试验与理论分析[J]. 中南大学学报(自然科学版), 2021, 52(05): 1552-1561.

[95]Jia Shanpo, Wen Caoxuan, Wu Bisheng, et al. A nonlinear elasto-viscoplastic model for clayed rock and its application to stability analysis of nuclear waste repository[J]. Energy Sci Eng, 2020, 8(1): 150-165.

[96]Li Shiyuan, Urai Janos L. Rheology of rock salt for salt tectonics modeling[J]. Petrol Sci, 2016, 13(4): 712-724.

[97]Song Z.P., Yang T.T., Jiang A.N., et al. Experimental investigation and numerical simulation of surrounding rock creep for deep mining tunnels[J]. J S Afr I Min Metall, 2016, 116 (12): 1181-1188.

[98]Li Huan, William Ngaha Tiedeu, Daemen Jaak, et al. A power function model for simulating creep mechanical properties of salt rock[J]. J Cent South Univ, 2020, 27(2): 578-591.

[99]申艳军, 杨更社, 王铭, 等. 冻融-周期荷载下单裂隙类砂岩损伤及断裂演化试验分析[J]. 岩石力学与工程学报, 2018, 37(03): 709-717.

[100]张慧梅, 孟祥振, 彭川, 等. 冻融-荷载作用下基于残余强度特征的岩石损伤模型[J].煤炭学报, 2019, 44(11): 3404-3411.

[101]张慧梅, 彭川, 杨更社, 等. 考虑冻融效应的岩石损伤统计强度准则研究[J]. 中国矿业大学学报, 2017, 46(05): 1066-1072.

[102]贾海梁, 项伟, 申艳军, 等. 冻融循环作用下岩石疲劳损伤计算中关键问题的讨论[J]. 岩石力学与工程学报, 2017, 36(02): 335-346.

[103]Chen Youliang, Ni Jing, Jiang Lihao, et al. Experimental study on mechanical properties of granite after freeze-thaw cycling[J]. Environ Earth Sci, 2014, 71(8): 3349-3354.

[104]Khanlari Gholamreza, Sahamieh Reza Zarei, Abdilor Yasin. The effect of freeze-thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran[J]. Arab J Geosci, 2015, 8(8): 5991-6001.

[105]Liu Lulu, Liu Xiaoyan, Li Zhe, et al. Experimental Analysis on the Mechanical Properties of Saturated Silty Mudstone under Frozen Conditions[J]. J Test Eval, 2019, 47(1): 188-202.

[106]Yu Jin, Chen Xu, Li Hong, et al. Effect of Freeze-Thaw Cycles on Mechanical Properties and Permeability of Red Sandstone under Triaxial Compression[J]. J Mt Sci-Engl, 2015, 12(1): 218-231.

[107]张慧梅, 杨更社. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报, 2013, 38(10): 1756-1762.

[108]Zhang Jian, Deng Hongwei, Taheri Abbas, et al. Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion[J]. Cold Reg Sci Technol, 2018, 155: 37-46.

[109]Liu Chuanju, Deng Hongwei, Zhao Huatao, et al. Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test[J]. Cold Reg Sci Technol, 2018, 155: 327-332.

[110]陈有亮, 王朋, 张学伟, 等. 花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J]. 岩土工程学报, 2014, 36(12): 2226-2235.

[111]Jiang Haibo, Mo Zuguo, Hou Xiongbin, et al. Association Rules between the Microstructure and Physical Mechanical Properties of Rock-mass under Coupled Effect of Freeze-thaw Cycles and Large Temperature Difference[J]. Sains Malays, 2017, 46(11): 2215-2221.

[112]Jiang Haibo. The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles[J]. Earth Sci Res J, 2018, 22(1): 53-57.

[113]李杰林, 周科平, 张亚民, 等. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报, 2012, 31(06): 1208-1214.

[114]周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(04): 731-737.

[115]Ghobadi M H, Beydokhti A R T, Nikudel M R, et al. The effect of freeze-thaw process on the physical and mechanical properties of tuff[J]. Environ Earth Sci, 2016, 75(9).

[116]刘慧, 杨更社, 叶万军, 等. 基于CT图像三值分割的冻结岩石水冰含量及损伤特性分析[J]. 采矿与安全工程学报, 2016, 33(06): 1130-1137.

[117]申艳军, 杨更社, 荣腾龙, 等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析[J]. 岩石力学与工程学报, 2017, 36(03): 562-570.

[118]陆翔, 周伟, 才庆祥, 等. 冻融循环下泥岩力学特性及细观破裂机理研究[J]. 采矿与安全工程学报, 2021, 38(04): 819-829.

[119]许梦飞, 姜谙男, 张勇, 等. 基于Hoek-Brown准则的岩体冻融-荷载耦合损伤模型及其算法研究[J]. 应用基础与工程科学学报, 2021, 29(03): 702-717.

[120]刘杰, 张瀚, 王瑞红, 等. 冻融循环作用下砂岩层进式损伤劣化规律研究[J]. 岩土力学, 2021, 42(05): 1381-1394.

[121]宋勇军, 杨慧敏, 谭皓, 等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报, 2021, 40(08): 1513-1524.

[122]杨鸿锐, 刘平, 孙博, 等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(03): 545-555.

[123]刘波, 孙颜顶, 袁艺峰, 等. 不同含水率冻结砂岩强度特性及强度强化机制[J]. 中国矿业大学学报, 2020, 49(06): 1085-1093+1127.

[124]刘慧, 蔺江昊, 杨更社, 等. 冻融循环作用下砂岩受拉损伤特性的声发射试验[J]. 采矿与安全工程学报, 2021, 38(04): 830-839.

[125]王鲁男, 尹晓萌, 韩杰, 等. 化学溶液与冻融循环作用下粉砂岩强度衰减及预测模型[J]. 中南大学学报(自然科学版), 2020, 51(08): 2361-2372.

[126]申艳军, 魏欣, 杨更社,等. 岩石-混凝土界面黏结强度冻融劣化模型及试验分析[J]. 岩石力学与工程学报, 2020, 39(03): 480-490.

[127]李平, 唐旭海, 刘泉声, 等. 双裂隙类砂岩冻胀断裂特征与强度损失研究[J]. 岩石力学与工程学报, 2020, 39(01): 115-125.

[128]乔趁, 李长洪, 王宇, 等. 冻融循环作用下中部锁固岩桥破坏试验研究[J]. 岩石力学与工程学报, 2020, 39(06): 1094-1103.

[129]Zhang Shuguang, Liu Wenbo, Lv Hongmiao. Creep energy damage model of rock graded loading[J]. Results Phys, 2019, 12: 1119-1125.

[130]Ma Linjian, Wang Mingyang, Zhang Ning, et al. A Variable-Parameter Creep Damage Model Incorporating the Effects of Loading Frequency for Rock Salt and Its Application in a Bedded Storage Cavern[J]. Rock Mech Rock Eng, 2017, 50(9): 2495-2509.

[131]曹广勇, 程桦, 荣传新. 基于Kelvin损伤模型的侏罗系地层冻结压力理论解[J]. 采矿与安全工程学报, 2021, 38(05): 972-978.

[132]陈国庆, 简大华, 陈宇航, 等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报, 2021, 43(04): 661-669.

[133]刘新喜, 李盛南, 徐泽沛, 等. 冻融循环作用下炭质页岩蠕变模型研究[J]. 中国公路学报, 2019, 32(11): 137-145.

[134]杨秀荣, 姜谙男, 王善勇, 等. 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40(11): 4331-4340.

[135]张峰瑞, 姜谙男, 江宗斌, 等. 化学腐蚀-冻融综合作用下岩石损伤蠕变特性试验研究[J]. 岩土力学, 2019, 40(10): 3879-3888.

[136]Hou Rongbin, Zhang Kai, Tao Jing, et al. A Nonlinear Creep Damage Coupled Model for Rock Considering the Effect of Initial Damage[J]. Rock Mech Rock Eng, 2019, 52(5): 1275-1285.

[137]Zhou Hongwei, Liu Di, Lei Gang, et al. The Creep-Damage Model of Salt Rock Based on Fractional Derivative[J]. Energies, 2018, 11(9).

[138]Wang Ruihong, Jiang Yuzhou, Yang Chao, et al. A Nonlinear Creep Damage Model of Layered Rock under Unloading Condition[J]. Math Probl Eng, 2018.

[139]Ma Shuqi, Gutierrez Marte. A time-dependent creep model for rock based on damage mechanics[J]. Environ Earth Sci, 2020, 79(19).

[140]Ping Cao, Wen Youdao, Wang Yixian, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock[J]. Environ Earth Sci, 2016, 75(10).

[141]Wang Q.Y., Zhu W.C., Xu T., et al. Numerical Simulation of Rock Creep Behavior with a Damage-Based Constitutive Law[J]. Int J Geomech, 2017, 17(1).

[142]杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 2018, 37(03): 545-563.

[143]Heidari Mahdi, Nikolinakou A, Flemings P B. Coupling geomechanical modeling with seismic pressure prediction[J]. Geophysics, 2018, 83(5): B253-B267.

[144]Sherman Christopher, Mellors Robert, Morris Joseph, et al. Geomechanical modeling of distributed fiber-optic sensor measurements[J]. Interpretation-A Journal Of Subsurface Characterization, 2019, 7(1): SA21-SA27.

[145]Shahri Mojtaba P., Oar Trevor T., Safari Reza, et al. Advanced Semianalytical Geomechanical Model for Wellbore-Strengthening Applications[J]. Spe Journal, 2015, 20(6): 1276-1286.

[146]Mahta Vishkai, Wang Jingyi , Wong Ron C. K., et al. Modeling geomechanical properties in the montney formation, Alberta, Canada[J]. 2017, 96: 94-105.

[147]徐前卫, 程盼盼, 朱合华, 等. 跨断层隧道围岩渐进性破坏模型试验及数值模拟[J]. 岩石力学与工程学报, 2016, 35(03): 433-445.

[148]李术才, 王凯, 李利平, 等. 海底隧道新型可拓展突水模型试验系统的研制及应用[J]. 岩石力学与工程学报, 2014, 33(12): 2409-2418.

[149]Zhang Lei, Yang Mingzhi, Liang Xifeng, et al. Oblique tunnel portal effects on train and tunnel aerodynamics based on moving model tests[J]. J Wind Eng Ind Aerod, 2017, 167: 128-139.

[150]Zhou Xinhai, Cheng Xuansheng, Qi Lei, et al. Shaking Table Model Test of Loess Tunnel Structure under Rainfall[J]. KSCE J Civ Eng, 2021, 25: 2225-2238.

[151]Cheng Jianwei, Liu Fangyuan, Shi Yu, et al. Model tests of fire smoke control effects in highway tunnels[J]. Gradevinar, 2020, 72(9): 781-792.

[152]Shahin Hossain Md., Nakai Teruo, Ishii Kenji, et al. Investigation of influence of tunneling on existing building and tunnel: model tests and numerical simulations[J]. Acta Geotechnica, 2016, 11(3): 679-692.

[153]Xu Hua, Li Tianbin, Xia Lei, et al. Shaking table tests on seismic measures of a model mountain tunnel[J]. Tunn Undergr Sp Tech, 2016, 60: 197-209.

[154]Xie Qiang, Cao Zhilin, Xie Wenbo, et al. Model Test and Numerical Analysis of Cutting Slope with Skip Cut Method[J]. Nat Hazards Rev, 2021, 22(2).

[155]Lei Mingfeng, Lin Dayong, Yang Weichao, et al. Model test to investigate failure mechanism and loading characteristics of shallow-bias tunnels with small clear distance[J]. J. Cent. South Univ, 2016, 23: 3312-3321.

[156]Sun Guanhua, Lin Shan, Cheng Shengguo, et al. Mechanisms of Interaction Between an Arch Dam and Abutment Slope Using Physical Model Tests[J]. Rock Mech Rock Eng, 2018, 51: 2483-2504.

[157]王玉峰, 程谦恭, 黄英儒. 不同支护模式下黄土高边坡开挖变形离心模型试验研究[J]. 岩石力学与工程学报, 2014, 33(05): 1032-1046.

[158]张力霆, 齐清兰, 李强, 等.尾矿库坝体溃决演进规律的模型试验研究[J].水利学报, 2016, 47(02): 229-235.

[159]杨旭, 周翠英, 刘镇, 等. 华南典型巨厚层红层软岩边坡降雨失稳的模型试验研究[J]. 岩石力学与工程学报, 2016, 35(03): 549-557.

[160]左自波, 张璐璐, 王建华. 降雨触发不同级配堆积体滑坡模型试验研究[J]. 岩土工程学报, 2015, 37(07): 1319-1327.

[161]江强强, 焦玉勇, 宋亮, 等. 降雨和库水位联合作用下库岸滑坡模型试验研究[J]. 岩土力学, 2019, 40(11): 4361-4370.

[162]吴昊, 赵维, 年廷凯, 等. 反倾层状岩质边坡倾倒破坏的离心模型试验研究[J]. 水利学报, 2018, 49(02): 223-231.

[163]许旭堂, 简文彬, 吴能森, 等. 降雨诱发残积土坡失稳的模型试验[J]. 中国公路学报, 2018, 31(02): 270-279.

[164]杨忠民, 高永涛, 吴顺川, 等. 隧道大变形机制及处治关键技术模型试验研究[J]. 岩土力学, 2018, 39(12): 4482-4492.

[165]叶帅华, 赵壮福, 朱彦鹏. 框架锚杆支护黄土边坡大型振动台模型试验研究[J]. 岩土力学, 2019, 40(11): 4240-4248.

[166]王德超, 王永军, 王琦, 等. 深井综放沿空掘巷围岩应力特征模型试验研究[J]. 采矿与安全工程学报, 2019, 36(05): 932-940.

[167]李方政, 丁航, 张绪忠. 渗流作用下富水砂层双排管冻结壁形成规律模型试验研究[J]. 岩石力学与工程学报, 2019, 38(02): 386-395.

[168]胡志平, 张丹, 张亚国, 等. 地下综合管廊结构斜穿活动地裂缝的变形破坏机制室内模型试验研究[J]. 岩石力学与工程学报, 2019, 38(12): 2550-2560.

[169]华心祝, 杨明, 刘钦节, 等. 深井沿空留巷底鼓演化机理模型试验研究[J]. 采矿与安全工程学报, 2018, 35(01): 1-9.

[170]汤明高, 李松林, 许强, 等. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(03): 755-764.

[171]Zhao Kui, Huang Zhen, Yu Bin. Damage characterization of red sandstones using uniaxial compression experiments[J]. Rsc Adv, 2018, 8(70): 40267-40278.

[172]Luo Ning, Liang Hanliang, Shen Tao, et al. Temperature Dependence of Young'S Modulus of Red Sandstone[J]. Therm Sci, 2019, 23(3): 1599-1606.

[173]杨更社, 屈永龙, 奚家米, 等. 西部白垩系富水基岩立井冻结压力实测研究[J]. 采矿与安全工程学报, 2014, 31(06): 982-986+994.

[174]杨更社, 屈永龙, 奚家米. 白垩系地层煤矿立井冻结壁的力学特性及温度场研究[J]. 岩石力学与工程学报, 2014, 33(09): 1873-1879.

[175]宋雷, 杨维好, 李海鹏. 郭屯煤矿主井冻结法凿井信息化监测技术研究[J]. 采矿与安全工程学报, 2010, 27(01): 19-23.

[176]杨更社, 奚家米, 李慧军. 三向受力条件下冻结岩石力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(3): 459-464.

[177]杨更社, 奚家米, 王宗金, 等. 胡家河煤矿主井井筒冻结壁岩石力学特性研究[J].煤炭学报, 2010, 35(4): 565-570.

[178]李栋伟, 汪仁和, 范菊红. 基于卸荷试验路径的泥岩变形特征及数值计算[J].煤炭学报, 2010, 35(3): 387-391.

[179]李栋伟, 汪仁和, 范菊红. 白垩系冻结软岩非线性流变模型试验研究[J]. 岩土工程学报, 2011, 33(03): 398-404.

[180]王衍森, 黄家会, 杨维好, 等. 特厚冲积层中冻结井外壁温度实测研究[J]. 中国矿业大学学报, 2006, 35(04): 468-472.

[181]宋朝阳, 纪洪广, 曾鹏, 等. 西部典型弱胶结粗粒砂岩单轴压缩破坏的类相变特征研究[J]. 采矿与安全工程学报, 2020, 37(05): 1027-1036.

[182]杨志良, 张村, 宋红华, 等. 不同沉积年代砂质泥岩拉伸力学特性研究[J]. 中国矿业大学学报, 2020, 49(02): 271-279.

[183]刘波, 马永君, 盛海龙, 等. 不同围压与冻结温度下白垩系红砂岩力学性质试验研究[J]. 岩石力学与工程学报, 2019, 38(03): 455-466.

[184]董西好, 杨更社, 田俊峰, 等. 侧向卸荷条件下冻结砂岩变形特性[J]. 岩土力学, 2018, 39(07): 2518-2526.

[185]杨更社, 奚家米, 李慧军,等. 煤矿立井井筒冻结壁软岩力学特性试验研究[J]. 地下空间与工程学报, 2012, 8(04): 690-697.

[186]Yao Zhishu, Cai Haibing, Xue Weipei, et al. Numerical simulation and measurement analysis of the temperature field of artificial freezing shaft sinking in Cretaceous strata[J]. Aip Adv, 2019, 9(2).

[187]Wang Lei, Qin Yue, Jia Haibin, et al. Study on Mechanical Properties and Energy Dissipation of Frozen Sandstone under Shock Loading[J]. Shock Vib, 2020.

[188]李化敏, 李回贵, 宋桂军, 等. 神东矿区煤系地层岩石物理力学性质[J]. 煤炭学报, 2016, 41(11): 2661-2671.

[189]陈军浩, 张瑞, 陈飞敏. 白垩系地层冻结施工立井融化规律现场实测研究[J]. 煤炭工程, 2013, 45(03): 4-7.

[190]吕广罗, 田刚军, 张勇, 等. 巨厚砂砾岩含水层下特厚煤层保水开采分区及实践[J]. 煤炭学报, 2017, 42(01): 189-196.

[191]柴敬, 袁强, 王帅, 等. 白垩系含水地层立井突水淹井治理技术[J]. 煤炭学报, 2016, 41(02): 338-344.

[192]缪澄宇, 杨柳, 许永震, 等. 基于核磁共振监测的砂岩强度软化实验及微观机制研究[J]. 岩石力学与工程学报, 2021, 40(11): 2189-2198.

[193]王涛, 岳丰田, 檀鲁新, 等. 白垩系地层冻结温度场实测与数值模拟分析[J]. 煤炭技术, 2009, 28(03): 121-123.

[194]Zhu Qingyong, Yang Weibin, Yu Huaizhong. Study on The Permeability of Red Sandstone Via Image Enhancement[J]. Fractals, 2017, 25(6).

[195]Yu Chaoyun, Tang Shibing, Tang Chun’an, et al. The effect of water on the creep behavior of red sandstone[J]. Eng Geol, 2019, 253: 64-74.

[196]Yang Cai, Liu Shengdong, Yang Haiping. Self-potential response characteristics of red sandstone samples under uniaxial compression[J]. J Geophys Eng, 2019, 16(4): 742-752.

[197]Yang Shengqi, Ni Hongmei, Wen Sen. Spatial acoustic emission evolution of red sandstone during multi-stage triaxial deformation[J]. J Cent South Univ, 2014, 21(8): 3316-3326.

[198]Wang Tong, Song Zhanping, Yang Jianyong, et al. Experimental research on dynamic response of red sandstone soil under impact loads[J]. Geomech Eng, 2019, 17(4): 393-403.

[199]Niu Yong, Zhou Xiaoping, Berto Filippo. Evaluation of fracture mode classification in flawed red sandstone under uniaxial compression[J]. Theor Appl Fract Mec, 2020, 107.

[200]Zhang Huimei, Meng Xiangzhen, Yang Gengshe. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure[J]. Cold Reg Sci Technol, 2020, 174.

[201]奚家米. 深厚富水软岩井筒冻结壁力学特性及应用研究[D]. 西安: 西安科技大学, 2011.

[202]李博融. 白垩系地层冻结井筒岩石物理力学特性及温度场研究[D]. 西安: 西安科技大学, 2016.

[203]Zhang Huimei, Meng Xiangzhen, Liu Xiaoyu. Establishment of constitutive model and analysis of damage characteristics of frozen-thawed rock under load[J]. Arab J Geosci, 2021, 14(13).

[204]Li Zuyong, Yang Gengshe. Constitutive model of frozen red sandstone based on ice-solid binary medium[J]. Arab J Geosci, 2021, 14, 1616

[205]Zhang Huimei, Yuan Chao, Yang Gengshe, et al. A novel constitutive modelling approach measured under simulated freeze-thaw cycles for the rock failure[J]. Eng Comput-Germany, 2021, 37(1): 779-792.

[206]魏尧. 西部白垩系饱和冻结砂岩蠕变损伤力学特性研究[D]. 西安科技大学, 2020.

[207]魏尧, 杨更社, 申艳军, 等. 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(08): 2636-2646.

[208]Li Zuyong, Yang Gengshe, Wei Yao, et al. Construction of nonlinear creep damage model of frozen sandstone based on fractional-order theory[J]. Cold Reg Sci Technol, 196, 103517.

[209]Li Zuyong, Yang Gengshe, Wei Yao. Construction of Frozen Sandstone Creep Damage Model And Analysis of Influencing Factors Based on Fractional Order Theory[J]. Arabian Journal For Science And Engineering, 46, 11373-11385.

[210]Jia Hailiang, Ding Shun, Zi Fan, et al. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks[J]. Catena, 2020, 195.

[211]Jia Hailiang, Ding Shun, Wang Yan, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Reg Sci Technol, 2019, 168

[212]Zhao Yixin, Sun Yingfeng, Liu Shimin, et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel, 2017, 190: 359-369.

[213]申艳军, 杨更社, 王铭, 等. 冻融循环过程中岩石热传导规律试验及理论分析[J]. 岩石力学与工程学报, 2016, 35(12): 2417-2425.

[214]于超云, 唐世斌, 唐春安. 含水率对红砂岩瞬时和蠕变力学性质影响的试验研究[J]. 煤炭学报, 2019, 44(02): 473-481.

[215]陈国庆, 郭帆, 王剑超, 等. 冻融后石英砂岩三轴蠕变特性试验研究[J]. 岩土力学, 2017, 38(S1): 203-210.

[216]Deng, H.F., Zhou, M.L., Li, J.L., et al. Creep degradation mechanism by water-rock interaction in the red-layer soft rock[J]. Arab J Geosci, 2016, 9(12): 601.

[217]Liu Zhen, Zhou Cuiying, Li Batong, et al. Effects of grain dissolution-diffusion sliding and hydro-mechanical interaction on the creep deformation of soft rocks[J]. Acta Geotech, 2020, 15(5): 1219-1229.

[218]Jia Hailiang, Zi Fan, Yang Gengshe, et al. Influence of Pore Water (Ice) Content on the Strength and Deformability of Frozen Argillaceous Siltstone[J]. Rock Mech Rock Eng. 2020, 53(2): 967-974.

[219]潘东东, 李术才, 许振浩, 等. 岩溶隧道承压隐伏溶洞突水模型试验与数值分析[J]. 岩土工程学报, 2018, 40(05): 828-836.

[220]杨超, 黄达, 蔡睿, 等. 张开穿透型单裂隙岩体三轴卸荷蠕变特性试验[J]. 岩土力学, 2018, 39(01): 53-62.

[221]李术才, 潘东东, 许振浩, 等. 承压型隐伏溶洞突水灾变演化过程模型试验[J]. 岩土力学, 2018, 39(09): 3164-3173.

[222]汪北方, 梁冰, 王俊光, 等. 煤矿地下水库岩体碎胀特性试验研究[J]. 岩土力学, 2018, 39(11): 4086-4092+4101.

[223]李浪, 蒋海明, 陈显波, 等. 应变型岩爆模型试验及其力学机制研究[J]. 岩石力学与工程学报, 2018, 37(12): 2733-2741.

[224]巨能攀, 邓天鑫, 李龙起, 等. 强震作用下陡倾顺层斜坡倾倒变形机制离心振动台试验[J]. 岩土力学, 2019, 40(01): 99-108+117.

[225]高成路, 李术才, 林春金, 等. 隧道衬砌渗漏水病害模型试验系统的研制及应用[J]. 岩土力学, 2019, 40(04): 1614-1622.

[226]刘新荣, 邓志云, 刘永权, 等. 地震作用下水平层状岩质边坡累积损伤与破坏模式研究[J]. 岩土力学, 2019, 40(07): 2507-2516.

[227]汪北方, 梁冰, 张晶, 等. 浅埋煤层采空区岩体应力空间分布特征研究[J]. 采矿与安全工程学报, 2019, 36(06): 1203-1212.

[228]郑达, 王沁沅, 毛峰, 等. 反倾层状岩质边坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J]. 岩石力学与工程学报, 2019, 38(10): 1954-1963.

[229]史林肯, 周辉, 宋明, 等. 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(06): 1933-1943.

[230]赵建军, 李金锁, 马运韬, 等. 降雨诱发采动滑坡物理模拟试验研究[J]. 煤炭学报, 2020, 45(02): 760-769.

[231]刘金海, 姜福兴, 朱斯陶, 等. 典型深厚表土煤层冲击地压模式研究[J]. 煤炭学报, 2020, 45(05): 1753-1763.

[232]姚晔, 章广成, 陈鸿杰, 等. 反倾层状碎裂结构岩质边坡破坏机制研究[J]. 岩石力学与工程学报, 2021, 40(02): 365-381.

[233]郑赟, 单仁亮, 黄博, 等. 强帮强角应用于沿空留巷支护的相似模型试验研究[J]. 采矿与安全工程学报, 2021, 38(01): 94-102.

[234]韩滔, 金长宇, 鲁宇, 等. 岩体裂隙区全长黏结锚杆应变测试方法[J]. 东北大学学报(自然科学版), 2021, 42(01): 131-138.

[235]黄达, 谢周州, 宋宜祥, 等. 软硬互层状反倾岩质边坡倾倒变形离心模型试验研究[J]. 岩石力学与工程学报, 2021, 40(07): 1357-1368.

中图分类号:

 TU458    

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式