- 无标题文档
查看论文信息

论文中文题名:

 基于模糊PID的双向半桥变换器研究与设计    

姓名:

 李明庚    

学号:

 19206204045    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 开关变换器    

第一导师姓名:

 赵永秀    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Research and design of bi-directional half-bridge converter based on fuzzy PID    

论文中文关键词:

 双向半桥变换器 ; 互补PWM ; 模式切换 ; 小信号建模 ; 模糊PID    

论文外文关键词:

 bidirectional half-bridge converter ; complementary PWM ; mode switching ; small signal modeling ; fuzzy PID    

论文中文摘要:

由于传统化石燃料逐渐耗尽,环境污染严重以及温室效应的形成,新能源发电等电力电子相关技术被大力发展。双向DC/DC变换器作为发电与储能系统中的能量传输部分,实现了新能源发电与储能系统之间的协调配合使用。但实际中存在负载突增、突卸与输入电压不稳定等问题。因此探究双向DC/DC变换器设计方法,研究并设计提高变换器稳态精度与瞬态响应速度的控制策略,将进一步提升系统协调性与稳定性。

以双向半桥变换器为研究对象,深入分析其独立和互补PWM控制方式下的工作过程,推导出电感电流、输出纹波电压表达式,得出电路不同控制方式下的运行状态、电感和电容选取准则。基于状态空间平均法建立不同工作模式下的小信号模型,对比发现独立模式为互补模式的一种特殊模态;基于互补PWM控制方式下的模型分析得出了占空比与电压、功率流向之间的关系,推导出变换器功率流向判别条件。依据变换器工作过程与功率流向判别条件提出一种基于电感电流的双向切换控制策略,简化控制器设计过程,建立了统一控制模型。深入分析变换器两模式开环特性,设计两模式下的电压控制补偿环节;根据双向切换控制策略,以平均电感电流的流向为判断标准设计电流环与双向切换电流控制器。在PID控制器的基础上,将模糊控制灵活度高的优点与常规PID补偿网络精度高抗干扰能力强的优点相结合,提出模糊PID控制策略,通过模糊规则优化PID参数,得到模糊PID控制器。 

根据技术指标制作了基于模糊自适应PID的双向半桥变换器实验样机,搭建测试平台并完成实验验证。结果表明:稳态情况下变换器BUCK模式效率达到95%,BOOST模式下效率达到91%;在输入电压突变与负载突变条件下,保持输出快速恢复稳定;在达到切换条件时,稳定进行模式切换。实验验证了理论分析的正确性与控制方式的合理性。

论文外文摘要:

Due to the gradual exhaustion of traditional fossil fuels, serious environmental pollution and the formation of the greenhouse effect, new energy power generation and other power electronics-related technologies have been vigorously developed. As the energy transmission part of the power generation and energy storage system, the bidirectional DC/DC converter realizes the coordination and cooperation between the new energy power generation and the energy storage system, and solves the problem of unbalanced power supply and demand. Therefore, exploring the design method of the bidirectional DC/DC converter, researching and designing the control strategy to improve the steady-state accuracy and transient response speed of the converter will further improve the coordination and stability of the system.

Taking the bidirectional half-bridge converter as the research object, it deeply analyzes its working process under the independent and complementary PWM control modes, deduces the expressions of the inductor current and output ripple voltage, and obtains the operating state and the inductance and capacitance of the circuit under different control modes. Selection criteria. Based on the state space averaging method, the small-signal models under different operating modes are established, and the independent PWM mode of the bidirectional half-bridge converter is found to be a special case of the complementary PWM mode. Based on the model analysis under the complementary PWM control mode, the duty cycle and The relationship between the voltage and the power flow is derived, and the judgment condition of the power flow of the converter is deduced. According to the working process of the converter and the judgment conditions of the power flow, a bidirectional switching control strategy based on the inductor current is proposed, and a unified control model is established. Compared with the traditional control strategy, the converter can switch the working mode according to the set threshold, which simplifies the controller design. Process. In-depth analysis of the open-loop stability of the converter in two modes, analysis of the performance indicators of the converter according to the stability standard, and design of the voltage control compensation link under the two modes; with the flow direction of the average inductor current as the judgment standard, the current loop and the current loop are designed according to the bidirectional switching control strategy. Bidirectional switching current controller. On the basis of PID controller, combining the advantages of high flexibility of fuzzy control with the advantages of high precision and strong anti-interference ability of conventional PID compensation network, a fuzzy PID control strategy is proposed, PID parameters are optimized by fuzzy rules, and a fuzzy PID controller is obtained.

According to the technical indicators, a test prototype of the bidirectional half-bridge converter based on fuzzy adaptive PID was made, and the test platform was built and the test verification was completed. The results show that the efficiency of the converter in buck mode reaches 95% in steady state, and the efficiency in boost mode reaches 91%; under the condition of sudden change of input voltage and load, the output can be maintained quickly and stabilized; When the switching conditions are reached, the mode switching can be performed stably. The experiment verifies the correctness of the theoretical analysis and the rationality of the control method.

参考文献:

[1]白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J].中国电机工程学报, 2015, 35(14): 3699-3705.

[2]卢强. 创新发展储能技术, 提高新能源利用效率[J]. 科技导报, 2016, 34(23): 12-13.

[3]李国壮,王慧贞,黄泽雷,宋洁.双Buck逆变器的有限集模型预测控制[J].电力电子技术,2020,54(09):104-107+127.

[4]吴学智,祁静静,刘京斗,杨安娜,吕格格.谐振开关电容DC/DC变换器拓扑研究综述[J].中国电机工程学报,2021,41(02):655-667.

[5]Carlos Restrepo et al. Multicomplex Digital Average Current Controls of the Versatile Buck–Boost Converter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(2) : 879-890.

[6]Wei Yu qi et al. Wide voltage gain range application for full-bridge LLC resonant converter with narrow switching frequency range[J]. IET Power Electronics, 2020, 13(15) : 3283-3293.

[7]宋家康,彭勇刚,王晓明,年珩.基于神经网络的三端口DC-DC变换器解耦控制策略[J].电工电能新技术,2019,38(02):20-26.

[8]Abdul Basit Khan and Woo Choi. Optimal Charge Pattern for the High-Performance Multistage Constant Current Charge Method for the Li-Ion Batteries[J]. IEEE Transactions on Energy Conversion, 2018, 33(3) : 1132-1140.

[9]张治学. 基于BP神经网络PID的DC-DC控制器设计[D].东南大学, 2018.

[10]孙孝峰,袁野,王宝诚,李昕,潘尧.零电压开关三电平Buck-Boost双向变换器[J].电工技术学报,2018,33(02):293-300.

[11]Xu De Shi et al. Adaptive fuzzy sliding mode command-filtered backstepping control for islanded PV microgrid with energy storage system[J]. Journal of the Franklin Institute, 2019, 356(4) : 1880-1898.

[12]童亦斌,吴峂,金新民等.双向DC/DC变换器的拓扑研究[J]. 中国电机工程学报, 2007, 27(013):81-86.

[13]吴峂,金新民,童亦斌.基于同步整流技术的全数字双向DC/DC变换器的研制[J]. 电气应用, 2006(12):106-110+127.

[14]Wang Fang, Wang Jian Mei, Wang Kun, ZONG Qun, Hua Chang Chun. Adaptive Backstepping Sliding Mode Control of Uncertain Semi-Strict Nonlinear Systems and Application to Permanent Magnet Synchronous Motor[J].Journal of Systems Science & Complexity,2021,34(02):552-571.

[15]D. Trevisani, W. Stefanutti, P. Mattarella. FPGA control of SIMO DC-DC converters using load current estimation[C]. 37st Annual IEEE Industrial Electronics Society(IECON). 2015: 1-6.

[16]张国荣,罗闰三,解润生,等.双向全桥DC-DC变换器的回流功率特性分析[J]. 电气传动, 2019, 49(01):35-40.

[17]Zhang C,Jiang D,Zheng H,et al.A Bi-Directional Buck /Boost Voltage Balancer for DC Distribution System[C].International Conference on Digital Manufacturing &Automation. IEEE Computer Society,2019: 9-13.

[18]郭强,李山,谢诗云,杨奕.多相交错并联DC-DC变换器单电流传感器控制策略[J].电工技术学报,2022,37(04):964-975.

[19]霍崇灿. 直流微网中双向DC/DC变换器控制策略研究[D].杭州电子科技大学,2019.

[20]汪义旺,张波,曹丰文,等. 光伏LED照明系统中双向变换器研究[J]. 电力电子技术, 2011(09):82-84.

[21]Tao H, Kotsiopoulos A, Duarte J L, et al. Triple-half-bridge bidirectional converter controlled by phase shift and PWM[C].Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC'06. IEEE, 2006: 7.

[22]李武杰.移相全桥 DC-DC 变换器及其数字控制的研究[D].华中科技大学,2015.

[23]D. Trevisani, W. Stefanutti, P. Mattarella. FPGA control of SIMO DC-DC converters using load current estimation[C]. 37st Annual IEEE Industrial Electronics Society(IECON). 2015: 1-6.

[24]杨轶成,丁明进,王响成,董春光,刘春松.基于超级电容的双向DC-DC变换器控制研究[J].电源学报,2021,19(04):129-139.

[25]熊飞,吴俊勇,郝亮亮,张巨瑞,张皎.隔离型双半桥DC-DC变换器的软开关特性[J].电工技术学报,2017,32(10):196-205+221.

[26]M Mahdavia, MB Poudel. Improving the efficiency of power supplies with an adaptive control method[C].International Conference on Electrical Engineering/electronics, Computer, (ECTI-CON). 2019: 1-4.

[27]杨丰萍,程权,周铭栀,张殷.基于改进自抗扰控制的微电网混合储能控制策略[J].科学技术与工程,2022,22(05):1898-1905.

[28]F Kurosawa, R Yoshida, Y Maeda, K Murata. Transient Response of Fast Digital PID Control Switching Power Supply[C]. IEEE Vehicle Power and Propulsion Conference, 2012: 614-617.

[29]V Harikatha, J.A Qihoo. Adaptive Digital Proportional-Integral-Derivative Controller for Power Converters[J]. IET Power Electronics, 5(3), 2012: 341-348.

[30]Vimala Vindhya, Venkat Reddy. PID-Fuzzy Logic Hybrid Controller for a Digitally Controlled DC-DC Converter. International Conference on Green Computing, Communication and Conservation of Energy(ICGCE),Chennai India,2013: 362-366.

[31]Chang yuan Chang et al. Field programmable gate array implementation of a single-input fuzzy proportional–integral–derivative controller for DC–DC buck converters[J]. IET Power Electronics, 2016, 9(6) : 1259-1266.

[32]Huang W, Abu Qahouq J A. Tuning of a digital proportional-integral compensator for DC-DC power converter[C].Applied Power Electronics Conference & Exposition. IEEE, 2015:270-275.

[33]Abu Qahouq J A, Arikatla V. Online Closed-Loop Autotuning Digital Controller for Switching Power Converters[J]. IEEE Transactions on Industrial Electronics, 2016, 60(5):1747-1758.

[34]Lee A T L , Chan P C H , Sin J K O . Adaptive high-bandwidth digitally controlled buck converter with improved line and load transient response[J]. Power Electronics, 2016, 7(3):515-526.

[35]Wang Q , Chen N , Xu S , et al. Trajectory prediction control for digital control DC–DC converters with fast transient response[J]. Microelectronics Journal, 2018, 45(6):767-774.

[36]Asim Amir et al. Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems[J]. Renewable Energy, 2019, 136 : 1147-1163.

[37]Salah S. Alharbi, Mohammad Matin. Experimental Evaluation of Medium-Voltage Cascade Gallium Nitride(GaN) Devices for Bidirectional DC–DC Converters[J].CES Transactions on Electrical Machines and Systems,2021,5(03):232-248.

[38]Rigatos G , Saina P , Sayed-Mouthwash M . Adaptive neuro fuzzy H-infinity control of DC–DC voltage converters[J]. Neural Computing and Applications, 2020, 32(7):2507-2520.

[39]Arikatla V P, Qahouq J A . Adaptive digital proportional-integral-derivative controller for power converters[J]. IET Power Electronics, 2016, 5(3):341-348.

[40]贺明智,许建平,胡晓明.基于FPGA的DC/DC开关变换器的数字控制器[J].电力电子技术,2007,41(6)71-73.

[41]许晓航,孔明,李文宏.一种高频数字DC-DC开关电源控制器的设计[J].复旦学报(自然科学版),2008,47(1):40-44.

[42]吕玲. 基于新型PID算法的数字DC-DC变换器的设计[D].东南大学,2015.

[43]胡长斌,王慧圣,罗珊娜,周京华,马瑞.计及直流微电网扰动抑制的残差动态分散补偿控制策略[J].电工技术学报,2021,36(21):4493-4507.

[44]范红,沙广林,盛万兴,段青,孟晓丽,马春艳,赵彩虹.一种定频移相控制双向隔离型直流变换器的运行特性统一分析方法研究[J].中国电机工程学报,2021,41(12):4226-4239.

[45]张永领,解光军,张章.等.一种提高DC /DC开关变换器瞬态响应的补偿算法[J].合肥工业大学学报: 自然科学版,2018,41(3) : 362-367.

[46]陆天华,沈锦飞,潘庭龙.基于单神经元PID控制的DC/DC变换器研究[J]. 通信电源技术, 2008, 25(2): 33-36.

[47]陈红星,林维明,曾涛.一种高增益双向Cuk电路及其模糊控制[J].中国电机工程学报,2021,41(17):6025-6039.

[48]刘宽,董华,王红利,魏峥嵘,李政.基于BP神经网络的Buck变换器设计[J]. 电器与能效管理技术, 2015 (23) : 54-56

[49]孙鹤旭,张厚升.两并联双向DC/DC变换器的滑模变结构控制[J].电力电子技术,2016, 50(05): 4-8.

[50]林维明,郭晓君,黄超.改进单周期控制策略的双向大变比DC-DC开关变换器[J].中国电机工程学报, 2012, 32(21):31-37.

[51]梅杨,陈丽莎,黄伟超,李晓晴,孙凯.级联式双向DC-DC变换器的优化控制方法[J].电工技术学报,2017,32(19):153-159.

[52]梅杨,陈丽莎,黄伟超,李晓晴.交错并联Buck-Boost变换器模型预测控制方法[J].电气传动, 2017, 47(07): 32-36.

[53]胥京宇.TI推动数字电源创新——新的隔离电源数字控制器及MOSFET驱动器助力数字电源设计[J].世界电子元器件,2012(04):61-65.

[54]M.Z. Hossain and N.A. Rahim and Jeyaraj al Selvaraj. Recent progress and development on power DC-DC converter topology, control, design and applications: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 205-230.

[55]丁雄,林国庆.三相并网逆变器的改进模型预测控制研究[J].电气技术,2020,21(03):16-21.

[56]刘树林,刘健.开关变换器分析与设计[M].北京:机械工业出版社,2010:75-80.

[57]焦尚彬,张磊,刘丁,席振强.基于增量式切换项的模糊滑模高频开关电源控制[J].电工技术学报,2018,33(22):5311-5318.

[58]Chang yuan Chang et al. Field programmable gate array implementation of a single-input fuzzy proportional–integral–derivative controller for DC–DC buck converters[J]. IET Power Electronics, 2016, 9(6) : 1259-1266.

[59]王攘攘,张广明,梅磊.基于状态观测器的DC-DC升压变换器滑模控制[J].电气传动,2019,49(05):55-58+78.

[60]Shahid M A , Abbas G , Hussain M R , et al. Artificial Intelligence-Based Controller for DC-DC Flyback Converter[J]. Applied Sciences, 2019, 9(23):5108.

[61]Xu Shen,Li Fei,Yao Yun Peng,et al.A high-frequency model for a PCM buck converter[J].IEEE Transactions on Power Electronics,2015,30(4):2304-2312.

[62]史永胜,余强,李雷,马铭远.光伏混合储能双向DC/DC变换器非线性控制[J].电力电子技术,2019,53(12):28-31.

[63]张博彦,齐铂金,周阳.基于模糊PID算法的半桥DC/DC控制器的优化设计[J].电力电子技术,2018,52(09):74-77.

中图分类号:

 TM46    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式